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Abstract: Flavonoids, including maackiain (Maac) from Sophora flavescens Aiton roots, have many
pharmacological properties, such as antitumor, antimicrobial, and antifungal activities. This research
aimed to develop an in vitro plant and callus culture system for S. flavescens for the purpose of
generating an alternative production system for enhancing Maac production, as Maac is usually
present in very small amounts in S. flavescens’ roots. We arranged the optimal conditions of different
tissues of S. flavescens and supplemented the medium with various plant growth regulators (PGRs).
The highest induction and proliferation rates of callus was shown in combination treatments of all
concentrations of thidiazuron (TDZ) and picloram. In addition, calli induced with leaf explants
cultured on 2.0 mg/L picloram and 0.5 mg/L 6-benzyladenine (BA) in Murashige and Skoog (MS)
medium had the highest accumulation of the active metabolite Maac. In vitro shoots were regenerated
on medium containing combinations of TDZ and α-Naphthalene acetic acid (NAA). A reliable
protocol for the mass production of secondary metabolites using a callus culture of S. flavescens was
successfully established.

Keywords: callus induction; herbal resource; plant growth regulators; secondary metabolite; Sophora
flavescens

1. Introduction

Medicinal and aromatic plants may heal and cure human diseases and have gained worldwide
attention as alternative therapies due to their efficacy and safety with few associated side effects [1].
Isolated bioactive compounds such as flavonoids and phenolic and polyphenolic compounds are used
directly or semi-synthetically as food additives, flavors, cosmetics, and other industrially important
biochemicals [2,3]. Sophora flavescens Aiton, which is a diffused species from the Fabaceae family,
grows widely throughout Asia. The root of S. flavescens has been commonly used for improvement of
asthma, sores, allergies, and inflammation as well as for treating diarrhea, gastrointestinal hemorrhage,
and eczema [4,5]. Flavonoids, such as prenylated or lavandulylated flavanones, and a series of lupin
alkaloids from S. flavescens’ roots have many attractive pharmacological properties, such as antitumor,
antimicrobial, and antifungal activities [6,7]. Maackiain (Maac) is a flavonoid metabolite classified as a
derivative of pterocarpan and is present in very small amounts in the S. flavescens’ root.

Industries use in vitro culture systems for mass production of the bioactive compounds of
medicinal plants to ensure a continuous supply in a relatively short period of time. Harvesting the
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roots and underground parts requires the plant to be cut down [8,9], which negatively affects rare plant
species and leads to limited quantities of wild plants [10,11]. In vitro systems employ plant cell culture
technology without destroying the natural habitat. Previous studies established production systems
of secondary metabolites through in vitro cultures [12–15]. Callus cultures of S. flavescens were first
established by Furuya and Ikuta [16], and the production of prenylated flavanones (sophoraflavanone
G, lehmannin, and pterocarpans) and their glycosides from cell suspension cultures has been previously
reported [17,18].

The balance of plant growth regulators (PGRs), especially auxin and cytokinin, has an important
effect on the determination of plant regeneration through organogenesis or somatic embryogenesis
from callus. In studies aimed at producing useful ingredients through callus culture, not only induction
of callus but also continuous proliferation are entirely dependent on the effects of PGRs. In the latter
case, a specific type and a relatively high concentration of auxin are mainly used according to the plant
species. In Nothapodytes foetida, 16.11 µM (micromole) NAA (α-Naphthalene acetic acid) and 2.22 µM
BA (6-benzyladenine) are the best PGRs’ condition for callus induction [19], otherwise, in Allium
sativum, 4.5 µM 2,4-D and 4.43 µM BA are the best combination [20]. The effectiveness of 2,4-D,
4-amino-3,5,6-trichloropicolinic acid (picloram), benzo[b]selenienyl acetic acid (BSAA), and NAA on
callus induction has been proven in many other reports [21–24]. Also, it is possible to increase the
content of bioactive secondary metabolites in callus due to various culture conditions, especially the
combination of types and concentrations of PGRs. In Pyrostegia venusta, 9.05 µM 2,4-D and 8.88 µM BAP
(6-benzylamino purine) treatments resulted in obtaining calli with contents of total phenolic compounds
and flavonoids [25]. Andrographis lineata callus culture producing Echioidinin and 7-O-Methywogonin
as a source for cancer chemotherapeutic agents was established on MS (Murashige and Skoog) medium
containing 1.0 mg/L IAA (Indole-3-acetic acid) [26].

This study aimed to develop an in vitro plant and callus culture system for S. flavescens with the
objective of generating an alternative production system for isoflavonoids.

2. Results

2.1. In Vitro Germination of S. flavescens

The first visible sign of germination appeared 3 days after sowing in the germination medium;
greenish shoots and roots emerged in about 7 days and 12 days, respectively (Figure 1). One-month-old
seedlings had the appearance of an intact plant with fully expanded leaves, and germination rates
were about 25%. No previous studies have reported on seed germination of S. flavescens. In this
study, we used seeds that had been stored for 2 years, which may have caused germination reduction.
Norton et al. [27] assessed germination rates between 24- and 40-year-old and fresh Sophora seeds,
and found that although Sophora seeds retained their viability after prolonged storage, long periods of
storage dramatically decreased the germination rates compared with fresh seeds.

Figure 1. In vitro germination of Sophora flavescens Aiton. Three days (A), 5 days (B), 7 days (C),
10 days (D), and 14 days (E) after germination with root development. In vitro plant growth (F).
Seeds were dipped in 2.0 mg/L GA3 (Gibberellin A3) for 24 h, and then the surface was sterilized.
Then, they were placed on plant growth regulator-free MS (Murashige and Skoog) medium.
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2.2. Callus Induction and Selection

A total of 100 combinations of different types and concentrations of PGRs were added to MS
medium to induce calli from leaf, stem, and root segments. After 8 weeks of culture, callus initiation
at the cut surfaces of explants was observed on media containing the most combinations of PGRs;
the highest rate (100%) was shown for all types of explants for all concentrations of TDZ (thidiazuron)
and picloram combinations (data not shown). In contrast, the PGR-free and kinetin-only cultures
showed no callus formation for all types of explants. The stem and root explants were more suitable
for callus induction than the leaf explants under the same conditions.

Induced calli were subcultured every 4 weeks in the same medium and proliferated to 5-fold each
time. Representative calli derived from various PGR combinations are shown in Figure 2. It is apparent
that yellow and juicy calli were formed in media combinations of BA and picloram (callus number 54,
55, and 58), and white and sticky calli were formed in TDZ and NAA combinations (callus number 93,
97, and 100). The calli induced in medium containing kinetin and picloram turned brownish after about
5–6 weeks. Otherwise, the calli induced in the medium containing BA propagated well regardless of
auxin, but many calli were wet and easily aggregated. In the medium containing TDZ, the callus was
transparent, yellowish, and compact.

Figure 2. Variations in callus color and morphology under different culture conditions after 8 weeks
of cultures. Conditions for each numbered callus are presented under the photographs. P, picloram;
Ki, kinetin; BA, 6-benzyladenine; TDZ, thidiazuron; 2,4-D, 2,4-dichlorophenoxyacetic acid.

2.3. Total Phenolic and Flavonoid Contents

After 6 months of subculture, we obtained one line of leaf-derived, one line of root-derived,
and three lines of stem-derived calli, which were well-proliferated and had an appropriate appearance.
These were used as materials for the analysis of the accumulation of secondary metabolites. The total
phenolic content of the L58 callus extract, calculated from the calibration curve (R2 (coefficient of
determination) = 0.998), was 6.00 ± 0.30 gallic acid equivalents/g, and the total flavonoid content
(R2 = 0.999) was 5.40 ± 0.56 quercetin equivalents/g (Table 1), exhibiting a much higher phenolic
and flavonoid content than other lines. In wild-type root, phenolic and flavonoid compounds were
7.82 ± 0.52 mg GAE (gallic acid equivalents)/g FW (fresh weight) and 9.75 ± 0.18 mg QE (quercetin)/g
FW, respectively, accumulating higher amounts than any of the others. Phenolic compounds are one of
the redox property compounds providing defense against pathogenic attack, as signaling molecules,
and regulating vital biochemical processes including antioxidant activity [28]. Plant flavonoids,
including flavones and flavanols, have antioxidant activity as secondary metabolites.
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Table 1. Quantitative analysis of TPC, TFC, DPPH, SOD, and POD in Sophora flavescens callus and
explant (n = 3 biological replicates).

Callus
Type

TPC (mg
GAE/g FW)

TFC (mg
QE/g FW) DPPH (%) SOD

(nM/min/mgFW)
POD

(nM/min/mgFW)

Root * - 7.82 ± 0.52a 9.75 ± 0.18a 84.00 ± 6.56a 0.71 ± 0.04a 5.60 ± 0.43a
Root (in vitro) ** - 5.09 ± 0.28bc 5.80 ± 0.39b 70.67 ± 8.02ab 0.68 ± 0.04a 5.07 ± 0.29a

L58 (0.5 mg/L BA + 2.0
mg/L picloram) LY/JS 6.00 ± 0.30b 5.40 ± 0.56b 62.67 ± 7.09b 0.42 ± 0.04b 4.10 ± 1.31ab

R76 (0.5 mg/L TDZ +
0.2 mg/L 2,4-D) GY/F 4.93 ± 0.59bc 3.22 ± 0.67c 57.00 ± 7.00b 0.38 ± 0.06bc 2.37 ± 0.23bc

S18 (1.0 mg/L Picloram) Y/F 3.99 ± 0.28c 4.96 ± 0.33b 32.00 ± 5.29c 0.24 ± 0.04c 1.22 ± 0.59c
S55 (0.1 mg/L BA + 2.0

mg/L picloram) Y/JS 5.93 ± 0.44b 3.61 ± 0.17c 55.00 ± 4.58b 0.25 ± 0.07c 3.13 ± 0.47b

S88 (0.5 mg/L TDZ + 2.0
mg/L picloram) Y/JS 5.31 ± 1.28bc 3.91 ± 0.19c 53.00 ± 8.54b 0.33 ± 0.04bc 2.67 ± 0.55bc

Different letters indicate significant difference at the 5% level by Tukey’s honest significant difference test. * Indicates
that the materials come from field-grown S. flavescens root; ** indicates that the materials come from in vitro
S. flavescens root (µg/g dry weight). Color: Yellowish (Y), light yellow (LY), green yellow (GY), white (W).
Texture: Friable (F), juicy and sticky (JS). TPC: Total phenolic content, expressed in gallic acid equivalent (mg GAE/g).
TFC: Total flavonoid content, expressed in quercetin equivalent (mg QE/g). DPPH: 2,2-diphenyl-1-picrylhydrazyl.
SOD: Superoxide dismutase. POD: Peroxidase.

2.4. Analysis of Flavonoid Metabolites, Including Maackiain, in Calli by UHPLC

Isoflavonoid-related metabolites in the five independent calli lines were analyzed by UHPLC
(Ultra-High Performance Liquid Chromatography). Five new compounds, those classified as flavanones,
were characterized by comparison of their retention times with Maac (4.9 min), Kurari-OCH3 (8.4 min),
Kush F (8.78 min), Kurari (12.1 min), and Kush E (12.65 min) (Figure 3). In accordance with the values
of dry biomass, calli induced and proliferated on medium containing 2.0 mg/L picloram and 0.5 mg/L
BA from leaf explants, named L58, produced the highest amount of Maac (1580.6 µg/g dry weight)
(Table 2), which was 10- and 12-fold higher than that of the field-grown plant root (145.9 µg/g) and
in vitro plant root (123.3 µg/g), respectively. Other root- or stem-derived calli (named as R76, S18, S55,
and S88) yielded nearly similar levels of Maac between them, producing higher levels than in plant
tissues (Table 2). Interestingly, field- or in vitro-grown plant root, but not calli, contained Kurari-OCH3

and Kurari. Kush E was not detected in any samples. These calli containing flavonoid compounds
were analyzed for antioxidant activity.

Table 2. Quantitative analysis of maackiain and other isoflavonoids from UHPLC in S. flavescens callus
and explant (n = 3 biological replicates).

Maackiain Kurari-Methoxy Kush F Kurari Kush E

Root * 145.9a 468.6b 1621.4d 299.1a 0
Root (in vitro) ** 123.3a 69.2a 933.1c 781.3b 0

L58 1580.6d 0 229.1b 0 0
R76 653.7c 0 0 0 0
S18 428.3b 0 0 0 0
S55 592.4c 0 182.6b 0 0
S88 395.9b 0 14.8a 0 0

* Indicates that the materials came from field-grown S. flavescens root; ** indicates that the materials came from
in vitro S. flavescens root (µg/g dry weight). Different letters indicate significant difference at the 5% level by
Duncan’s multiple range test. UHPLC: Ultra-High Performance Liquid Chromatography. Kush F: Kushenol F.
Kurari: Kurarinone. Kush E: Kushenol E.
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Figure 3. Chromatogram (total run time = 20 min) of authentic standards of Maac (4.9 min), Kurari-OCH3
(8.4 min), Kush F (8.78 min), Kurari (12.1 min), and Kush E (12.65 min). Maac, maackiain; Kurari-OCH3,
methoxy kurarinone; Kush F, kushenol F; Kurari, kurarinone; Kush E, Kushenol E.

2.5. DPPH Radical Scavenging Activity

To measure the antioxidant activity, DPPH, as a free radical, along with ascorbic acid as a
control, is typically employed, followed by examination of samples for percentage of scavenging free
radicals [29]. DPPH activity was detected in five different calli, WT (wild type) plant root, and in vitro
plant root (Table 1). Stem calli grown on MS medium containing 1.0 mg/L picloram alone exhibited the
lowest antioxidant activity (32.0%), while further increases in antioxidant activity were observed in
calli grown on MS medium containing 2.0 mg/L picloram combined with cytokines, such as 0.1 mg/L
BA (55.0%) or 0.5 mg/L TDZ (53.0%), respectively. The highest value was detected in the L58 calli
(62.0%) grown on MS media containing 0.5 mg/L BA + 2.0 mg/L picloram. The antioxidant activity of
calli was comparable to that of the roots of wild-type and in vitro-grown S. flavescens. A total of 84%
and 70% DPPH for wild-type- and in vitro-derived roots, respectively, were higher than those of the
callus cultures (Table 1).

2.6. POD and SOD Activities

The induction of calli is considered as a stress factor in cultivated plants. We, therefore, analyzed
SOD and POD enzyme activities. Both are iso-enzymes, differentiated by various physical and chemical
features and amino acid sequences, but with the same catalyst reaction. The enzyme activities found
in the L58 callus (SOD: 0.42 ± 0.0398 nM (nanomole)/min/mg FW, POD: 4.1 ± 1.21) were compared
with those found in the S18 callus (SOD: 0.24 ± 0.0471 nM/min/mg FW, POD: 1.2 ± 0.58) (Table 1).
The enzymatic activities (SOD and POD) in the selected callus line L58 of S. flavescens, which showed
the highest flavonoid metabolites content, were the highest in the eighth week.

2.7. Biomass Production and Growth Kinetics

The biomass accumulation of callus line L58, which contained the highest secondary metabolites,
was increased by approximately 10 times when compared to the initial weight. Fresh weight of 1.3 g
as starting material was inoculated on the medium, and fresh weight of 15 g was harvested after the
eighth week of culture (Figure 4).

Figure 4. Fresh weight growth kinetics of S. flavescens callus (L58) cultures for 8 weeks. Values represent
means ± standard error from triplicates.
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2.8. In Vitro Shoot Regeneration from the Callus

Induced calli from various treatments were continuously cultured to form shoots in 4-week
subcultures. Interestingly, following 8 weeks of culture on media containing all combinations of TDZ
and NAA, stem explants formed a compact, green, or yellow-green regenerative callus with buds and
shoots. In contrast, leaf- or root-derived calli cultured on the same medium composition showed no
shoot formation. There were 3–18 shoots formed from a single callus (Table 3). The shoots excised
from the calli were rooted one month after transfer to the PGR-free MS medium. The rooting ratio of
shoots was the highest in the 1.0 mg/L TDZ and 2.0 mg/L NAA (average = 75%, Table 3), and shoots
were well grown with a thin cylindrical shape (2–6 cm in length and 1–2 mm in diameter) and were
externally pale yellow.

Table 3. Shoot regeneration through organogenesis in Sophora flavescens callus induced from stem on
MS medium treated with the TDZ (thidiazuron) and NAA (α-Naphthalene acetic acid) combinations
shown in Table 1. They were incubated in a growth room at 24 ± 1 ◦C, 16/8 h (light/dark).

Plant Growth Regulators (mg/L)
Shoot Numbers Per Callus Rooting Rates (%)

TDZ NAA

0.1 0.2 4.0 ± 0.68a 25.0 ± 4.52b
1.0 3.1 ± 0.90a 66.0 ± 14.6d
2.0 9.0 ± 1.08c 11.0 ± 1.37a

0.5 0.2 6.0 ± 0.97b 66.0 ± 9.88d
1.0 4.1 ± 0.58a 25.0 ± 7.72b
2.0 18.0 ± 1.53d 16.0 ± 8.10a

1.0 0.2 6.0 ± 1.18b 66.7 ± 5.06d
1.0 3.0 ± 0.97a 33.3 ± 12.48c
2.0 4.2 ± 0.64a 75.0 ± 6.27e

Values represent the mean ± standard deviation. Values within the same column followed by the same letter are
not significantly different according to the least significance at p < 0.05 (Duncan 1955). Each treatment consisted
of three replications of 100 explants each. All data were collected 8 weeks after being inoculated in the medium
supplemented with PGRs (plant growth regulators).

3. Discussion

Currently, most plant resources for natural or Chinese medicine are taken from their natural
habitats. This is not sustainable and negatively affects the natural environment over time. Furthermore,
the “Nagoya Protocol” treaty regarding the conservation and sustainable use of biodiversity was signed
in 2010 and was an important turning point for the indiscreet use of plant resources from around the
world. Prerequisites for the commercialization of herbal medicinal products are mass production of
the plant itself or the active ingredient. In the present study, we established optimal conditions for
callus induction, isolation, and maintenance to accumulate high levels of the active ingredient, Maac,
of S. flavescens. Callus formation of S. flavescens was influenced by the explant type, PGRs, and their
interaction. The appearance of callus formation depended on the types and concentrations of the PGRs
added, even for the same genus [30]. The in vitro production of secondary compounds in medicinal
plants is possible due to variations in the culture conditions, including changes in the types and
concentrations of PGRs [31,32]. Auxin and cytokinin are essential factors for the differentiation of the
explant. The auxins initiate cell division and control the processes of growth and cell elongation because
they induce the transcription of mRNA (microRNA) encoding proteins important for growth [33]. It is
often reported that 2,4-D (2,4-dichlorophenoxyacetic acid) is the most suitable auxin for callus initiation
and proliferation [34–37]. The cytokinins regulate many cellular processes, but the control of cell
division is central to the growth and development of medicinal plants [33]. We found that the induction
rate of calli, according to the cytokinin type, was the highest in the medium containing TDZ and was
relatively low in that containing kinetin; while, for the auxins, the callus induction rate was highest in
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the medium containing picloram, followed by 2,4-D, and the lowest rate was in the medium containing
NAA. Maximum callus induction in this study was observed in MS medium containing TDZ and
picloram. Similar results were observed in the Phlomis armeniaca medicinal plant [38]. Our study
demonstrated that the secondary metabolite Maac was present in significantly larger amounts in the
undifferentiated cultured cells grown with 0.5 mg/L BA and 2.0 mg/L picloram when compared to the
extracts of mother plant tissues.

The presence and accumulation of secondary metabolites is affected by the level of cellular
differentiation and organization of the tissue [39]. Pasqua et al. [40] and Palacio et al. [31] suggested that
the differentiation of specialized tissues is a prerequisite for the production of secondary metabolites.
For example, the hypericin content in the callus was less than that found in in vitro-regenerated plantlets
in comparative studies [40]. Cell cultures from Digitalis lanata, Digitalis purpurea, or Azadirachta indica did
not induce secondary metabolites, such as cardenolide, digitoxin, or nimbin; however, after induction of
organogenesis, these substances could be detected in differentiated tissue cultures [41–43]. In contrast,
morphological differentiation is not a prerequisite, as the highest concentrations were detected in
completely undifferentiated cells [44]. Karakas and Turker [38] demonstrated that the well-proliferated,
green, and compact calli accumulated higher levels of caffeic acid and p-coumaric acid than the
leaf tissue.

The number of subcultures (age of the callus) may also play an important role in the expression of
secondary metabolites in vitro. The phenolic compounds and flavonoid contents in the superior cell line
of A. indica have an inverse relationship with cell growth determined by callus weight [45], especially in
media containing BA. The relationship between cell growth and the accumulation of secondary
metabolites has been reported, although it is still not well understood [31,46]. Loredo-Carrillo et al. [46]
suggested that a decrease in growth may be related to the use of energy from sucrose in the culture
medium for the synthesis of secondary metabolites. In our study, calli with high weights had high
accumulation of isoflavonoids. In addition, we were able to obtain cultures with high isoflavonoid
levels even in the absence of light and without elicitation, while Loredo-Carrillo et al. [46] reported that
the in vitro compounds were only produced in calli in the presence of light and polyethylene glycol.

When we aim fir mass production of bioactive secondary metabolites through callus culture, it may
not be necessary to induce regeneration of in vitro shoots. Nevertheless, the development of in vitro
propagation system is valuable because of the need to sustain natural resources due to global climate
change. The genus Sophora shoot regeneration has been sparsely studied [47,48]. Zhao et al. [47] and
Jana et al. [48] established a micro-propagation system S. flavescens and Sophora tonkinensis, respectively,
using young stem node by optimizing PGRs’ combination conditions. Unlike our results, which showed
high efficiency of shoot regeneration in a combination of 1.0 mg/L TDZ and 2.0 mg/L NAA, they reported
that the best responses to shoot multiplication were observed in a combination of 8.88 µM 6-BA and
2.69 µM NAA for S. flavescens and 2.0 µM 2-isopentyladenine (2iP) for S. tonkinensis. In vitro shoot
regeneration is highly influenced by the media formulations containing PGRs and other components.
In addition, responses to them vary depending on the plant species, explant types, and culture
environment. In this study, we developed optimal conditions for S. flavescens’ shoot regeneration.
We believe that it has provided basic results for future research to apply new biotechnologies on
metabolic pathway engineering by revealing conditions that can induce plants from S. flavescens’ callus,
which is expected to contain bioactive compounds.

4. Materials and Methods

4.1. Study Materials

The seeds of S. flavescens were kindly provided by The Wild Plant Seed Bank of Korea. All macro
and micronutrients for tissue culture media, sucrose, agar, and plant growth regulators (PGRs) were
obtained from Duchefa (Haarlem, The Netherlands).
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4.2. In Vitro Seed Germination

For germination, 52 seeds were sterilized with 10% (v (volume)/v) sodium hypochlorite solution
for 15 min, placed on Murashige and Skoog (MS) [49] medium supplemented with 3% sucrose and
solidified with 0.8% agar containing 2.0 mg/L gibberellin A3 (GA3), and incubated in a growth room
at 25 ± 2 ◦C with a photoperiod of 16/8 h (light/dark). Germinated in vitro plants were propagated
through subculture of one-month intervals and used in the experiments. All processes were carried
out under sterile conditions using a laminar air-flow hood. In addition, the MS medium used was
autoclaved at 121 ◦C for 15 min, and then the pH was adjusted to 5.8.

4.3. Callus Induction

Leaf, stem, and root explants of the in vitro-developed shoots were aseptically cut into 5 × 5 mm,
5~6 mm, and 7~8 mm pieces, respectively. They were then placed horizontally with their abaxial side
down on MS medium supplemented with 0.0, 0.2, 1.0, and 2.0 mg/L of auxins (2,4-dichlorophenoxyacetic
acid (2,4-D), picloram, and α-naphthalene acetic acid (NAA)) in combination with 0.0, 0.1, 0.5,
and 1.0mg/L of cytokinins (kinetin, 6-benzyladenine (BA), and thidiazuron (TDZ)). A total of
100 combinations of media including 81 combinations consisting of three types of auxin and three types
of cytokinins with three concentrations per each PGR, auxin-only, cytokinin-only, and without PGRs
group were used. For each combination, 20 explants were cultured on each Petri dish (90 × 15 mm)
with a replication of five Petri dishes. The percentage of callus induction was recorded after eight
weeks of culture. Callus was subcultured every four weeks over a period of six months. The culture
plates were maintained in the dark at 24 ± 1 ◦C.

For the statistical analysis, data were examined by analysis of variance (ANOVA) with a significance
value of p < 0.05 using Microsoft Office Excel 2013 (Microsoft Corporation, Redmond, WA, USA),
and Duncan’s multiple range test and Tukey’s honest significant difference test were used to compare
the differences among the mean values.

4.4. Analysis of Flavonoid Metabolites by Ultra-High-Performance Liquid Chromatography (UHPLC)

Approximately 3 g each of selected calli, stem, young leaf, and root tissues from in vitro- or
field-grown plants were lyophilized and pulverized to form a fine powder. Powder (1.25 mg/mL
(w (weight)/v (volume)) from each sample was placed in flasks of methanol and extracted (repeated
three times) for 20 min at room temperature in an ultrasonic extractor. The chromatographic separations
of the samples were performed on an Acquity UHPLC system (Waters Co., Milford, MA, USA) with a
BEH (Ethylene Bridged Hybrid) C18 column (100 mm, 2.1 mm, 1.7 µm, 130 Å, WT186002352) at 35 ◦C.
The conditions were as follows: Solvent, acetonitrile; 0.4 mL/min flow rate; 5 µL injection; and 2540nm
detection with a 4-nm bandwidth. Maac and other isoflavonoids (methoxy kurarinone (Kurari-OCH3),
kushenol F (Kush F), kushenol E (Kush E), and kurarinone (Kurari)) were identified by comparing their
ultraviolet spectra and the retention times of their peaks with those of authentic standards purchased
from Sigma-Aldrich (St. Louis, MO, USA). Quantitative data were calculated on the basis of the peak
area of each compound in the chromatograms at 254 nm. The contents were estimated as µg/g of dry
weight of sample.

4.5. Total Phenolic Content

To determine the total phenolic content (TPC), Folin–Ciocalteu reagent was used according to the
protocol of Slinkard and Singleton [50] with slight modifications. Briefly, the Folin–Ciocalteu reagent
(90µL) was added to each well containing 20µL of the samples in 96-well plates. Then, sodium carbonate
(90 µL) was added from the 6% stock solution to the wells, and plates were kept at room temperature
for 90 min under normal room light. Gallic acid (1 mg/mL) and methanol (20 µL) were used as positive
and negative controls, respectively. The absorbance was measured at 725 nm by using a UV-VIS
spectrophotometer (UV-160A, Shimadzu Ltd, Tokyo, Japan). The calibration curve (0–50 µg/mL,



Plants 2020, 9, 688 9 of 13

R2 = 0.968) was plotted by using gallic acid as the standard, and the TPC was expressed as gallic acid
equivalents (GAE)/g of dry weight. TPC was measured by using the following formula and estimated
in mg GAE/L:

Total phenolic production mg/L = Dry weight (g/L) × Total phenolic content (mg/g) (1)

4.6. Total Flavonoid Content

The total flavonoid content (TFC) concentration was quantified using the colorimetric assay
method from [51] with slight modification. Briefly, 50 µL of crude extract (1 mg/mL ethanol) was
dissolved in methanol to a total volume of 1 mL. The solution was mixed with 4 mL of distilled water
and then we added 0.3 mL of 5% NaNO2 solution. Then, 0.3 mL of 10% AlCl3 solution was added after
5 min of incubation, and the mixture was allowed to stand for 6 min at room temperature. Then, 2 mL
of 1 mol/L NaOH solution was added, and the final volume of the mixture was brought to 10 mL with
double-distilled water. The mixture was allowed to stand for 15 min, and absorbance was measured at
510 nm. The TFC was calculated from a calibration curve (0–40 µg/mL, R2 = 0.998), which was plotted
by using quercetin as the standard. The TFC was expressed as mg quercetin equivalent (QE)/g of dry
weight. Total flavonoid production (TFP) was calculated by using the following formula and expressed
in mg QE/L:

TFP mg/L = Dry weight (g/L) × TFC (mg/g) (2)

4.7. DPPH Radical Scavenging Activity Determination

The antioxidant activity of S. flavescens callus extracts was assessed on the basis of the free radical
scavenging effect of 2,2-diphenyl-1-picrylhydrazyl (DPPH) according to the method described by
Tiwari et al. [52] with slight modification. Ten grams (fresh weight (FW)) from selected calli showing
high maackiain content was harvested and completely dried in a dry oven for 48 h at 50 ◦C. A mixture of
dry sample and methanol (1:10 (w/v)) was incubated at 50 ◦C overnight in a water bath. A 100 µmol/L
solution of DPPH was added to the methanol extracts in varying concentrations (1.0, 2.0, 3.0, 4.0,
and 5.0 (mg/mL)). The solutions were kept in the dark for 20 min to complete the reaction, and then
the absorbance was measured at 517 nm. Ascorbic acid, in a series of concentrations, was used as the
reference material. All tests were performed in triplicate. The percentages of DPPH radical scavenging
activities of S. flavescens callus extracts were calculated using the following formula [53]:

DPPH (%) activity = [(A0 − A1) / A0] × 100 (3)

where A0 is the absorbance of the blank and A1 is the absorbance of the sample.

4.8. Peroxidase Activity

Samples were extracted to determine peroxidase (POD) activity using the protocol of Nayyar
and Gupta [54] with slight modification. Briefly, 100 mg of the fresh sample was homogenized with
1 mL potassium phosphate buffer (50 mM, pH 7) containing 1% PVP (polyvinylpolypyrrolidone) and
centrifuged at 15,000 rpm for 30 min. The supernatant was retained for further analysis. The reaction
mixture for POD activity was prepared by combining 40 µL potassium phosphate buffer (50 mM; pH 7),
20 µL guaiacol (100 mM; 10×), 20 µL fresh sample extract, 100 µL dH2O, and 20 µL H2O2 ((27.5 mM;
10×) [55]). The control was carried out by applying equal amounts of all the reagents except the sample
extract. After the 20-s incubation period, the absorbance was recorded at 470 nm using a Thermo
Scientific Multiskan GO, and the enzymatic activity was measured using the following formula:

Absorbance = E (Extinction coefficient, 6.39/mM/cm) × L (Length of wall, 0.25 cm)
× C (enzyme concentration, value calculated in nM/min/mg FW)

(4)
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4.9. Superoxide Dismutase Activity

Superoxide dismutase (SOD) activity was determined using an assay kit (Cell Biolabs. Inc,
San Diego, CA, USA) according to the protocol provided by the manufacturer. Briefly, the activity was
obtained by mixing 20 µL of the reaction mixture with 60 µL of fresh sample extract. The same mixture
excluding extract samples was run as a control. After a 2-h incubation period under fluorescent light,
the absorbance was measured at 490 nm with a microplate reader (Thermo Scientific Multiskan GO).
In order to measure the enzymatic activity, the same formula was used as for POD.

4.10. In Vitro Shoot Regeneration

For shoot regeneration, induced calli were transferred to MS medium containing different
concentrations and combinations of both TDZ (0.1, 0.5, and 1.0 mg/L) and NAA (0.2, 1.0, and 2.0 mg/L).
Cultures were maintained in a growth chamber at 24 ± 1 ◦C with a 16-h photoperiod (light intensity of
40µmol/m2/s1 provided by fluorescent tubes). The best combination with the highest shoot regeneration
frequency was chosen, and regenerated shoots were grown on PGR-free media.

5. Conclusions

We identified that leaf-derived calli grown on MS medium containing 2.0 mg/L picloram and
0.5 mg/L BA produced approximately 10-fold higher Maac than wild-type plants. Findings of our
study will be helpful for increasing the mass production of Maac in vitro for commercialization.
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