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The classic algorithms of Needleman–Wunsch and Smith–Waterman find a maximum a posteriori probability alignment
for a pair hidden Markov model (PHMM). To process large genomes that have undergone complex genome
rearrangements, almost all existing whole genome alignment methods apply fast heuristics to divide genomes into
small pieces that are suitable for Needleman–Wunsch alignment. In these alignment methods, it is standard practice to
fix the parameters and to produce a single alignment for subsequent analysis by biologists. As the number of
alignment programs applied on a whole genome scale continues to increase, so does the disagreement in their results.
The alignments produced by different programs vary greatly, especially in non-coding regions of eukaryotic genomes
where the biologically correct alignment is hard to find. Parametric alignment is one possible remedy. This
methodology resolves the issue of robustness to changes in parameters by finding all optimal alignments for all
possible parameters in a PHMM. Our main result is the construction of a whole genome parametric alignment of
Drosophila melanogaster and Drosophila pseudoobscura. This alignment draws on existing heuristics for dividing whole
genomes into small pieces for alignment, and it relies on advances we have made in computing convex polytopes that
allow us to parametrically align non-coding regions using biologically realistic models. We demonstrate the utility of
our parametric alignment for biological inference by showing that cis-regulatory elements are more conserved
between Drosophila melanogaster and Drosophila pseudoobscura than previously thought. We also show how whole
genome parametric alignment can be used to quantitatively assess the dependence of branch length estimates on
alignment parameters.
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Introduction

Needleman–Wunsch pairwise sequence alignment [1] is
known to be sensitive to parameter choices. To illustrate the
problem, consider the eighth intron of the Drosophila
melanogaster CG9935-RA gene (as annotated by FlyBase [2])
located on chr4:660,462–660,522 (April 2004 BDGP release 4).
This intron, which is 61 base pairs long, has a 60 base pair–
ortholog in Drosophila pseudoobscura. The ortholog is located at
Contig8094_Contig5509:4,876–4,935 in the August 2003
freeze 1 assembly, as produced by the Baylor Genome
Sequencing Center.

Using the basic 3-parameter scoring scheme (match M,
mismatch X, and space penalty S), these two orthologous
introns have the following optimal alignment when the
parameters are set to M ¼ 5, X ¼�5, S ¼�5:

mel GTAAGTTTGTTTAT-ATTTTTTTTTTTTTGAAGTGA-CAAATAGC-A-CTTATAAATATACTTAG

pse GTTCGTTAACACATGAAATTCCATCGCCTGAT-TGTTCA-CTATCTAACTAACGAAT-T--TTAG

** *** ** * ** * *** ** ** ** * * ** * *** * ****

However, if we change the parameters toM¼5, X¼�6, and
S ¼�4, then the following alignment is optimal:

mel GTAAGTT------TGTTTATATTTTTTTT--T--TT-TTGAAGTGA-CAAATAGCACTTATA--A

pse GTTCGTTAACACATG-A-A-ATTCCATCGCCTGATTGTT-CACT-ATC---TA--AC-TA-ACGA

** *** ** * *** * * ** ** * * * * ** ** ** * *

mel ATATACTTAG

pse AT-T--TTAG

** * ****

Note that a relatively small change in the parameters
produces a very different alignment of the introns. This
problem is exacerbated with more complex scoring schemes,
and is a central issue with whole genome alignments
produced by programs such as MAVID [3] or BLASTZ/

MULTIZ [4]. Indeed, although whole genome alignment
systems use many heuristics for rapidly identifying alignable
regions and subsequently aligning them, they all rely on the
Needleman–Wunsch algorithm at some level. Dependence on
parameters becomes an even more crucial issue in the
multiple alignment of more than two sequences.
Parametric alignment was introduced by Waterman, Eggert,

and Lander [5] and further developed by Gusfield et al. [6,7]
and Fernandez-Baca et al. [8] as an approach for overcoming
the difficulties in selecting parameters for Needleman–
Wunsch alignment. See [9] for a review and [10,11] for an
algebraic perspective. Parametric alignment amounts to
partitioning the space of parameters into regions. Parameters
in the same region lead to the same optimal alignments.
Enumerating all regions is a non-trivial problem of computa-
tional geometry. We solve this problem on a whole genome
scale for up to five free parameters.
Our approach to parametric alignment rests on the idea

that the score of an alignment is specified by a short list of
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numbers derived from the alignment. For instance, given the
standard three-parameter scoring scheme, we summarize
each alignment by the number m of matches, the number x of
mismatches, and the number s of spaces in the alignment. The
triple (m,x,s) is called the alignment summary. As an example,
consider the above pair of orthologous Drosophila introns. The
first (shorter) alignment has the alignment summary (33,23,9)
while the second (longer) alignment has the alignment
summary (36,10,29).

Remarkably, even though the number of all alignments of
two sequences is very large, the number of alignment
summaries that arise from Needleman–Wunsch alignment is
very small. Specifically, in the example above, where the two
sequences have lengths 61 and 60, the total number of
alignments is

1,511,912,317,060,120,757,519,610,968,109,962,170,434,175,129

’ 1.531046.

There are only 13 alignment summaries that have the
highest score for some choice of parameters M,X,S. For
biologically reasonable choices, i.e., when we require M . X
and 2S , X, only six of the 13 summaries are optimal. These
six summaries account for a total of 8,362 optimal alignments
(Table 1).

Note that the basic model discussed above has only d ¼ 2

free parameters, because for a pair of sequences of lengths l,l
all the summaries (m,x,s) satisfy

2mþ 2xþ s ¼ lþ l9 ð1Þ

This relation holds with lþ l9 for the six summaries in Table 1.
Figure 1 shows the alignment polygon, as defined in the
section ‘‘Alignment polytopes,’’ in the coordinates (x,s).
In general, for two DNA sequences of lengths l and l9, the

number of optimal alignment summaries is bounded from
above by a polynomial in l and l9 of degree d(d � 1)/(d þ 1),
where d is the number of free parameters in the model [9,10].
For d¼ 2, this degree is 0.667, and so the number of optimal
alignment summaries has sublinear growth relative to the
sequence lengths. Even for d¼5, the growth exponent d(d�1)/
(d þ 1) is only 3.333. This means that all optimal alignment
summaries can be computed on a large scale for models with
few parameters.
The growth exponent d(d � 1)/(d þ 1) was derived by

Gusfield et al. [6] for d ¼ 2 and by Fernandez-Baca at al. [8]
and Pachter-Sturmfels [10] for general d. Table 1 can be
computed using the software XPARAL [7]. This software
works for d¼ 2 and d¼ 3, and it generates a representation of
all optimal alignments with respect to all reasonable choices
of parameters. Although XPARAL has a convenient graphical
interface, it seems that this program has not been widely used
by biologists, perhaps because it is not designed for high
throughput data analysis and the number of free parameters
is restricted to d � 3.
In this paper, we demonstrate that parametric sequence

alignment can be made practical on the whole-genome scale,
and we argue that computing output such as Table 1 can be
very useful for comparative genomics applications where
reliable alignments are essential. To this end, we introduce a
mathematical point of view, based on the organizing
principle of convexity, which was absent in the earlier studies
[5,6,9]. Our advances rely on new algorithms, which are quite
different from what is implemented in XPARAL, and which
perform well in practice, even if the number d of free
parameters is greater than three.
Convexity is the organizing principle that reveals the

needles in the haystack. In our example, the ‘‘haystack’’
consists of more than 1046 alignments, and the ‘‘needles’’ are
the 8,362 optimal alignments. The summaries of the optimal
alignments are the vertices of the alignment polytope. The
alignment polytope is the convex hull of the summaries of all
(exponentially many) alignments. Background on convex

Table 1. The 8,362 Optimal Alignments for Two Drosophila
Intron Sequences

Vertex Alignment Summary Number of Alignments

with That Summary

A (25,35,1) 5

B (28,35,3) 15

C (32,25,7) 44

D (33,23,9) 78

E (34,20,13) 156

F (36,10,29) 8,064

DOI: 10.1371/journal.pcbi.0020073.t001

Figure 1. The Alignment Polygon for Our Two Introns Is Shown on the

Left

For each of the alignment summaries A,B, . . . F in Table 1, the
corresponding cone in the alignment fan is shown on the right. If the
parameters (S,X) stay inside a particular cone, every optimal alignment
has the same alignment summary.
DOI: 10.1371/journal.pcbi.0020073.g001
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Synopsis

Dewey and colleagues describe a parametric alignment of the
genomes of Drosophila melanogaster and Drosophila pseudoobscura.
The parametric alignment consists of all optimal alignments of the
two Drosophila genomes for all choices of parameters for some
widely used scoring schemes. Computation and analysis of the
parametric alignment requires the integration of ideas from
mathematics, algorithms, and biology. Mathematically, the para-
metric analysis rests on the geometric principle of convexity. In
particular, the alignment polytope, which organizes the alignments
according to the optimal alignments, is introduced and described.
Algorithmically, efficient procedures are developed for computing
alignment polytopes on a large scale and for models with more
parameters than had previously been practical. Biologically, the
utility of parametric analysis is demonstrated by showing that the
degree of conservation between cis-regulatory elements in Droso-
phila melanogaster and Drosophila pseudoobscura is higher than
previously thought, and by assessing the dependence of branch
length estimates on alignment parameters.
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hulls and how to compute the alignment polytopes are
provided in the section From Genomes to Polytopes (see also
[11]). Thus, parametric alignment of two DNA sequences
relative to some chosen pair hidden Markov model (PHMM)
means constructing the alignment polytope of the two
sequences. The dimension of the alignment polytope is d,
the number of free model parameters. For d ¼ 2 (the basic
model), the polytope is a convex polygon, as shown in Figure
1 for the pair of introns above.

The basic model is insufficient for genomics applications.
More realistic PHMMs for sequence alignment include gap
penalties. We consider three such models. The symmetries of
the scoring matrices for these models are derived from those
of the evolutionary models known as Jukes–Cantor (d ¼ 3),
Kimura-2 (d ¼ 4), and Kimura-3 (d ¼ 5). The models are
reviewed in the section ‘‘Models, alignment summaries, and
robustness cones.’’

Our contribution is the construction of a whole genome
parametric alignment in all four models for D. melanogaster
and D. pseudoobscura. Our methods and computational results
are described in the next section. Three biological applica-
tions are presented in the section From Polytopes to Biology.
A discussion follows in the Discussion section.

From Genomes to Polytopes
Our main computational result is the construction of a

whole genome parametric alignment for two Drosophila
genomes. This result depended on a number of innovations.
By adapting existing orthology mapping methods, we were
able to divide the genomes into 1,999,817 pairs of reliably
orthologous segments, and among these we identified 877,982
pairs for which the alignment is uncertain. We computed the
alignment polytopes of dimensions two, three, and four for
each of these 877,982 sequence pairs, and of dimension five
for a subset of them. The methods are explained in the
section ‘‘Alignment polytopes.’’ The vertices of these poly-
topes represent the optimal alignment summaries and the
robustness cones. These concepts are introduced in the
section ‘‘Models, alignment summaries, and robustness
cones.’’ Computational results are presented in the section
‘‘Computational results.’’

Orthology mapping. The orthology mapping problem for a pair
of genomes is to identify all orthologous segments between
the two genomes. These orthologous segments, if selected so
as not to contain genome rearrangements, can then be
globally aligned to each other. This strategy is frequently used
for whole genome alignment [12,13], and we adapted it for
our parametric alignment computation.

MERCATOR is an orthology mapping program suitable for
multiple genomes that was developed by Dewey et al. [14]. We
applied this program to the D. melanogaster and D. pseudoobs-
cura genomes to identify pieces for parametric alignment.
The MERCATOR strategy for identifying orthologous seg-
ments is as follows. Exon annotations in each genome are
translated into amino acid sequences and then compared
with each other using BLAT [15]. The annotations are based
on reference gene sets, and on ab initio predictions (see
Materials and Methods). The resulting exon hits are then used
to build a graph whose vertices correspond to exons, and with
an edge between two exons if there is a good hit. A greedy
algorithm is then used to select edges in the graph that

correspond to runs of exons that are consistent in order and
orientation.
The MERCATOR orthology map for D. melanogaster and D.

pseudoobscura has 2,731 segments. However, in order to obtain
a map suitable for parametric alignment, further subdivision
of the segments was necessary. This subdivision was accom-
plished by the additional step of identifying and fixing exact
matches of length at least 10 bp (see Materials and Methods).
We derived 1,116,792 constraints, which are of four

possible types: 1) exact matching non-coding sequences, 2)
ungapped high scoring aligned coding sequences, 3) segment
pairs between two other constraints where one of the
segments has length zero, so the non-trivial segment must
be gapped, and 4) single nucleotide mismatches that are
squeezed between other constraints.
We then removed all segments where the sequences

contained the letter N (which means the actual sequence is
uncertain). This process resulted in 877,982 pairs of segments
for parametric alignment. The lengths of the D. melanogaster
segments range from one to 80,676 base pairs. The median
length is 42 bp and the mean length is 99 bp. In all, 90.4% of
the D. melanogaster genome and 88.7% of the D. pseudoobscura
genome were aligned by our method.
Models, alignment summaries, and robustness cones. For

each of the 877,982 pairs of orthologous segments, we
constructed all optimal Needleman–Wunsch alignments, with
respect to various scoring schemes that are derived from
PHMMs. We considered models with two, three, four, and five
parameters. See [16] for a review of PHMMs and their
relationship to the scoring schemes typically used for aligning
DNA sequences. In what follows, we only refer to the scores,
which are the logarithms of certain ratios of the parameters
of the PHMM. Our four models are specializations of the
general 33-parameter model [11] that incorporates muta-
tions, insertions, and deletions of DNA sequences. It is
customary to reduce the dimension by assuming that many of
the 33 parameters are equal to each other.
The basic model, discussed in the Introduction, has three

natural parameters, namely, M for match, X for mismatch,
and S for space. If the numbers M, X, and S are fixed, then we
seek to maximize M � mþ X � xþ S � s, where (m,x,s) runs over
the summaries of all alignments. In light of Equation 1, this
model has only two free parameters and there is no loss of
generality in assuming that the match score M is zero. From
now on we set M¼ 0 and take X and S as the free parameters.
We define the alignment summary to be the pair (x,s).
Following the convention of Pachter and Sturmfels [11], we

summarize a scoring scheme with a 535 matrix w whose rows
and columns are both indexed by A, C, G, T, and -. The matrix
w for the basic model is the leftmost matrix in Figure 2, and it
corresponds to the Jukes–Cantor model of DNA sequence
evolution.
Our 3d model is the most commonly used scoring scheme for

computing alignments. This model includes the number g of
gaps. A gap is a complete block of spaces in one of the aligned
sequences; it either begins at the start of the sequence or is
immediately preceded by a nucleotide, and it either follows
the end of the sequence or is succeeded by a nucleotide. The
3d alignment summary is the triple (x,s,g). The score for a gap, G,
is known as the affine gap penalty. If X, S, and G are fixed, then
the alignment problem is to maximize X � x þ S � s þ G � g
where (x,s,g) runs over all 3d alignment summaries. The
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parametric version is implemented in XPARAL. Introducing
the gap score G does not affect the matrix w, which is still the
leftmost matrix in Figure 2.

Our 4d model is derived from the Kimura-2 model of sequence
evolution. The 4d alignment summary is the vector (x,y,s,g) where
s and g are as above, x is the number of transversion mismatches
(between a purine and a pyrimidine or vice versa) and y is the
number of transition mismatches (between purines or between
pyrimidines). The four parameters are X, Y, S, and G. The
matrix w of scores, as specified in [11], is now the middle
matrix in Figure 2.

Our 5d scoring scheme is derived from the Kimura-3 model.
Here the matrix w is the rightmost matrix in Figure 2. The 5d
alignment summary is the vector (x,y,z,s,g), where s counts spaces,
g counts gaps, x is the number of mismatches A

C
, C
A
, G
T
, or T

G
, y is

the number of mismatches A
G
, G
A
, C
T
, or T

C
, and z is the number

of mismatches A
T
, T

A
, C

G
, or G

C
. Thus, the 5d alignment

summaries of the two Drosophila intron alignments at the
beginning of the Introduction are (4,10,9,9,8) and
(3,3,4,29,17). Even the 5d model does not encompass all
scoring schemes that are used in practice. See the section
‘‘Assessment of the BLASTZ alignment’’ for a discussion of
the BLASTZ scoring matrix [17] and its proximity to the
Kimura-2 model.

Suppose we are given a specific alignment of two DNA
sequences. Then the robustness cone of that alignment is the set
of all parameter vectors that have the following property: any
other alignment that has a different alignment summary is
given a lower score. As a mathematical object, the robustness
cone is an open convex polyhedral cone in the space Rd of
free parameters.

An alignment summary is said to be optimal, relative to one
of our four models, if its robustness cone is not empty.
Equivalently, an alignment summary is optimal if there exists
a choice of parameters such that the Needleman–Wunsch
algorithm produces only that alignment summary. Such a
parameter choice will be robust, in the sense that if we make a
small enough change in the parameters then the optimal
alignment summary will remain unchanged. Each robustness
cone is specified by a finite list of linear inequalities in the
model parameters.

For example, consider the first alignment in the Introduc-
tion. Its 2d alignment summary is the pair (x,s) ¼ (23,9),
labeled D in Table 1. The robustness cone of this summary is
the set of all points (X,S) such that the score 23Xþ 9S is larger
than the score of all other alignments summaries other than
(23,9). This cone is specified by the two linear inequalities S .

X and 4S , 3X.
If we fix two DNA sequences, then the robustness cones of

all the optimal alignments define a partition of the parameter
space, Rd. That partition is called the alignment fan of the two
DNA sequences. Figure 1 shows the (biologically relevant part
of the) alignment fan of two Drosophila introns in the 2d
model. While this alignment fan has only 13 robustness cones,
the alignment fan of the same introns has 76 cones for the 3d
model, 932 cones for the 4d model, and 10,009 cones for the
5d model. These are the vertex numbers in Table 2.
Alignment polytopes. The convex hull of a finite set S of

points in Rd is the smallest convex set containing these points.
It is denoted conv(S) and called a convex polytope. There exists a
unique smallest subset V � S for which conv(S)¼ conv(V). The
points in V are called the vertices of the convex polytope. The
vertices lie in higher-dimensional faces on the boundary of the
polytope. Faces include edges, which are one-dimensional, and
facets, which are (d � 1)-dimensional. Introductions to these
concepts can be found in the textbooks [18,19]. By computing
the convex hull of a finite set S � Rd, we mean identifying the
vertices and the facets of conv(S), and, if possible, all faces of
all dimensions.
Consider one of the four models discussed in the previous

section. The alignment polytope of two DNA sequences is the
convex polytope conv(S) � Rd, where S is the set of alignment
summaries of all alignments of these two sequences. For
instance, the 3d alignment polytope of two DNA sequences is
the convex polytope in R3 that is formed by taking the convex
hull of all alignment summaries (x,s,g). Figure 3 shows the 3d
alignment polytope for the two sequences in the Introduc-
tion. Its projection onto the (x,s)-plane is the polygon
depicted in Figure 1.
It is a basic fact of convexity that the maximum of a linear

function over a polytope is attained at a vertex. Thus, an
alignment of two DNA sequences is optimal if and only if its
summary is in the set V of vertices of the alignment polytope.
The Needleman–Wunsch algorithm efficiently solves the
linear programming problem over this polytope. For in-
stance, for the 3d model with fixed parameters, the alignment
problem is the linear programming problem

Maximize X � xþ S � sþ G � g subject to ðx; s; gÞ 2 V : ð2Þ

For a numerical example, consider the parameter values X
¼ �200, S ¼ �80, and G ¼ �400, which represent an
approximation of the BLASTZ scoring scheme (see the
‘‘Assessment of the BLASTZ alignment’’ section). The

Figure 2. The Jukes–Cantor Matrix, Kimura-2 Matrix, and Kimura-3

Matrix

These three matrices correspond to JC69, K80, and K81 in the Felsenstein
hierarchy [11] of probabilistic models for DNA sequence evolution.
DOI: 10.1371/journal.pcbi.0020073.g002

Table 2. Face Numbers of the Alignment Polytopes for the
Intron Sequences from the Beginning of the Introduction

Polytope Property Dimension

2d 3d 4d 5d

Number of vertices 13 76 932 10,009

Number of edges 13 159 3,546 66,211

Number of second faces — 85 4,208 139,723

Number of third faces — — 1,594 118,797

Number of fourth faces — — — 35,278

Average number of edges per vertex 2 4.2 7.6 13.2

The average number of edges containing a vertex is the average number of linear
inequalities bounding a robustness cone.
DOI: 10.1371/journal.pcbi.0020073.t002
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solution to Equation 2 is attained at the vertex (x,s,g) ¼
(30,5,2), which is the 3d summary of the following alignment
of our two Drosophila introns

mel GTAAGTTTGTTTATATTTTTTTTTTTTTGAAGTGACAAATAGC--ACTTATAAATATACTTAG

pse GTTCGTTAACACATGAAATTCCATCGCCTGATTGTTCACTATCTAACTAACGAAT---TTTAG

** *** ** ** * * ** * ** * *** * *** ****

The 3d summary of this alignment is the marked vertex in
Figure 3.

The problem of computing a parametric alignment is now
specified precisely. The input consists of two DNA sequences.
The output is the set of vertices and the set of facets of the
alignment polytope conv(S). See also [11]. We note that the
robustness cone of an optimal alignment summary is the
normal cone of the polytope at that vertex. The alignment fan is
the normal fan of the alignment polytope. See [11] for
definitions of these concepts.

We considered two different methods for constructing all
alignment polytopes for the two Drosophila genomes: polytope
propagation and incremental convex hull. In our study we found
that polytope propagation was outperformed by the incre-
mental convex hull algorithm, especially for the higher
dimensional models.

We now briefly outline the two methods. Polytope
propagation for sequence alignment is the Needleman–
Wunsch algorithm with the standard operations of plus and
max replaced by Minkowski sum and polytope merge (convex
hull of union). The polytope propagation algorithm was
introduced in [10,11].

The incremental convex hull algorithm, on the other hand,
gradually builds the alignment polytope by successively
finding new optimal alignment summaries, the vertices of
the polytope. To find the new optimal summaries, the
algorithm repeatedly calls a Needleman–Wunsch (NW) subroutine
that is an efficient implementation of the classical Needle-
man–Wunsch algorithm. For fixed values of the parameters,
this subroutine returns an optimal alignment summary. For
instance, for the 3d model, the input to the NW subroutine is
a parameter vector (X,S,G) and the output is an optimal
summary (x,s,g).

Suppose we have already found a few optimal alignment
summaries, by running the NW subroutine with various
parameter values. We let P be the convex hull of the
summaries in Rd, and we assume that P is already d-
dimensional. We maintain a list of all vertices and facets of
P. Each facet is either tentative or confirmed, where being
confirmed means that its affine span is already known to be a
facet-defining hyperplane of the final alignment polytope. In
each iteration, we pick a tentative facet of P and an outer
normal vector U of that facet. We then call the NW
subroutine with U as the input parameter. The output of
the NW subroutine is an optimal summary v. If the optimal
score U � v equals the maximum of the linear function U � w
over all w in P, then we declare the facet to be confirmed.
Otherwise, the score U � v is greater than the maximum and
we replace P by the convex hull of P and v. This convex hull
computation utilizes the beneath–beyond construction [19], which
erases some of the tentative facets of the old polytope and
replaces them with new tentative facets.
The algorithm terminates when all facets are confirmed.

The current polytope P at that iteration is the final alignment
polytope. The number of iterations of this incremental
convex hull algorithm equals the number of vertices plus
the number of facets of the final polytope P. So for a given
model, the running time of the incremental convex hull
algorithm scales linearly in the size of the output. This was
confirmed in practice by our computations (Table 3).
Our software, together with more details about our

incremental convex hull implementation, is available for
download at http://bio.math.berkeley.edu/parametric/.
Given an alignment polytope, there are various subsequent

computations one may wish to perform. For instance, we may
be interested in the robustness cones at the vertices. To get an
irredundant inequality representation of a robustness cone, it
suffices to know the edges emanating from the corresponding
vertex. Thus it is useful to also compute the edge graph of
each of our polytopes.
Computational results. Using our implementation of the

incremental convex hull algorithm described above, we
computed the 2d, 3d, and 4d polytopes for each of the
877,982 segment pairs. We also computed 5d polytopes in
many cases. These polytopes are available for downloading
and viewing at http://bio.math.berkeley.edu/parametric/.
We empirically determined the expected CPU time to

construct alignment polytopes. The results are reported in

Figure 3. The Third Alignment Polytope of Our Two Drosophila Introns

Has 76 Vertices

The marked vertex (x,s,g) ¼ (30,5,2) represents the BLASTZ alignment.
DOI: 10.1371/journal.pcbi.0020073.g003

Table 3. Observed Running Times of the Incremental Convex
Hull Algorithm for Computing Alignment Polytopes

Dimension Running Time (in Seconds)

2d 4.52 � 10�2 þ 6.16 � 10�7 Vll9

3d 4.76 � 10�2 þ 9.28 � 10�7 Vll9 þ 2.41 � 10�7 Fll9

4d 1.05 � 10�1 þ 9.53 � 10�7 Vll9 þ 3.84 � 10�7 Fll9

5d 16.0 þ 1.20 � 10�6 Vll9 þ 5.66 � 10�7 Fll9

Here, V is the number of vertices of a polytope, F the number of facets, and l,l9 are the
sequence lengths. The given functions are a best-fit estimation from a sample of 764 out
of the 877,982 sequence pairs. In particular, 90% of the actual measured running times
from this sample were within 10% of this estimation. The running times are on a 2.5-GHz
machine.
DOI: 10.1371/journal.pcbi.0020073.t003
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Table 3. As expected, the running time of the incremental
convex hull algorithm scales linearly with the number of
vertices plus facets. The running time of a single Needleman–
Wunsch subroutine call scales linearly with the product ll9 of
the sequence lengths l and l9.

To effectively compute these polytopes, not only must we
have an algorithm that runs quickly as a function of the
number of vertices and facets, but also the number of vertices
and facets must themselves be small. The theoretical bounds
discussed in the Introduction ensure that these numbers grow
polynomially, for any fixed d. In our computations we found
that the numbers of vertices and facets of alignment polytopes
are quite manageable even in dimensions 4 and 5. Averages of
the numbers we actually observed are reported in Table 4.

We conclude our summary of computational results with a
look at the alignment polytopes of the orthologous pair of
introns in the Introduction. The sequence lengths are l ¼ 60
and l9¼ 61. The 2d alignment polytope is shown in Figure 1.
The 3d alignment polytope is shown in Figure 3. Table 2
reports statistics for the 2d, 3d, 4d, and 5d alignment
polytopes for this sequence pair.

From Polytopes to Biology
We describe three applications of our whole genome para-

metric alignment. First, wediscuss howalignmentpolytopes are
useful for parameter selection, and we assess the BLASTZ
alignment ofD.melanogaster andD. pseudoobscura.We then revisit
the cis-regulatory element study in [20], and we determine
alignments that identify previously missed conserved binding
sites. Finally, we examine the problem of branch length
estimation and provide a quantitative analysis of the depend-
ence of branch length estimates on alignment parameters.

Assessment of the BLASTZ alignment. A key problem in
sequence alignment is to determine appropriate parameters
fora scoring scheme.The standardapproach is to select amodel
and then to identify parameter values that are effective in
producing alignments that correctly align certain features. For
example, the BLASTZ scoring matrix [17] was optimized for
human–mouse alignment by finding parameters that were
effective in aligning genes in the HOXD region. The BLASTZ
scoringscheme isgivenbyascoringmatrixcalledHOXD70 [17],

A
C
G
T

A C G T
91 �114 �31 �123
�114 100 �125 �31
�31 �125 100 �114
�123 �31 �114 91

0
BBBB@

1
CCCCA;

together with a space score of �30, and a gap score of �400.
Although the HOXD70 matrix has six distinct entries, it can
be approximated by a Kimura-2 matrix (Figure 2), since 91 is
close to 100, and 114 is close to 123 and 125.

The alignment polytope of a pair of DNA sequences is a
representation of all possible alignments organized according
to a scoring scheme. Thus, our results and methodology make
it possible, for the first time, to identify parameters that are
guaranteed to optimize the alignment according to desired
criteria. Moreover, our results offer biologists a mathematical
tool for systematically assessing whether a proposed single
alignment is suitable for its intended purpose.

We initiated such a study for the BLASTZ alignment [4] of
D. melanogaster and D. pseudoobscura, which is available at http://
genome.ucsc.edu. This alignment is widely used by biologists

who study Drosophila. Although the BLASTZ alignment
procedure is based on an initial ‘‘seeding’’ procedure (similar
to our identification of constrained segment pairs), the
alignments are then constructed using the Needleman–
Wunsch algorithm with the HOXD70 matrix.
Recall that our orthology map consisted of 1,999,817

segment pairs: 1,116,792 consisted of segments for which we
fixed the alignment (constrained segment pairs), and 883,025
were unconstrained segment pairs for which we constructed
alignment polytopes. We found that the BLASTZ alignment
agreed with 623,710 of our unconstrained segment pairs, of
which 622,173 did not contain Ns. For each of these 622,173
segment pairs, we computed the 2d, 3d, and 4d alignment
summaries for the BLASTZ alignments, and we determined
whether or not they are optimal for some choice of model
parameters.
We found that 269,186 (43.3%) of the BLASTZ alignments

are vertices of the 3d polytope, but not the 2d polytope, and
201,982 (32.5%) are vertices of both the 2d and 3d polytopes.
Only 151,004 (24.3%) of the BLASTZ alignments are not
vertices of either the 2d or 3d alignment polytopes. In
summary, our computations show that 32.5% of the BLASTZ
alignments correspond to vertices of the 2d polytope and
75.7% correspond to vertices of the 3d polytope. These
numbers are even higher for the 4d and 5d alignment
polytopes.
Curiously, there is precisely one sequence pair where the

BLASTZ alignment is a vertex of the 2d polytope but not the
3d polytope. This alignment is

mel AGCCGAACCGGATATCCAGGCCGAGGCC

pse GCCAGAGCCGGA-GCCTGAGCCGGAG--

* ** ***** * *** *

The 3d summary of this alignment is (11,3,2), which is the
midpoint of the edgewith vertices (11,3,1) and (11,3,3) on the 3d
polytope.Hence this alignment is not optimal for any choice of
parameters (X,S,G). However, it is optimal for the 2d model
since the edge maps onto the vertex (11,3) of the 2d polygon.
Our results show that not only does the BLASTZ alignment

agree well with our constrained segment pairs, but also the
BLASTZ alignments are mostly vertices of the three dimen-
sional polytopes, even on the unconstrained segment pairs.
This suggests that there may be a statistical advantage to
working with one of the lower dimensional models, and also
indicates that the polytopes may be useful for finding
parameters. We illustrate this point of view in the next
section, where we identify vertices in the alignment polytope
(and therefore parameter robustness cones) that are suitable
for the alignment of cis-regulatory elements. Any user of the

Table 4. Averages of the Number V of Vertices and the Number
F of Facets of Alignment Polytopes

Dimension Average V Average F

2d 5.8 5.8

3d 47.8 47.1

4d 580.8 859.4

5d 6,406.0 18,996.5

These averages are from the same sample as in Table 2. The average of the sum lþ l9 of
the sequence lengths for this sample was 82.7.
DOI: 10.1371/journal.pcbi.0020073.t004
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BLASTZ alignments may now use the alignment polytopes we
provide to assess whether or not the fixed choice of the
HOXD70 matrix is the right one for their particular
biological application.

Conservation of cis-regulatory elements. A central question
in comparative genomics is the extent of conservation of cis-
regulatory elements and the implications for genome
function and evolution. Using our parametric alignment, we
discovered that cis-regulatory elements may be more con-
served between D. melanogaster and D. pseudoobscura than
previously thought. Specifically, we used our alignment
polytopes to examine the degree of conservation for 1,346
transcription factor binding sites [21] available at http://www.
flyreg.org (we excluded 16 sites that were located in segment
pairs containing Ns). The 1,346 sites include the 142 sites
examined by Richards et al. [20] in their comparison of D.
pseudoobscura and D. melanogaster.

Specifically, for each of the 1,346 elements, we identified the
orthologous segment pairs from our orthology map that
contained the elements. We then extracted the polytopes from
our whole genome parametric alignment. For each polytope,
we determined an optimal alignment for which the number of
matching bases of the corresponding element was maximized.

As an example, consider the transcription factor Adf1. It
binds to a cis-regulatory element at chr3R:2,825,118–
2,825,144 in D. melanogaster (Adf1-. Antp:06447 in the flyreg
database). The BLASTZ alignment for this element is

mel TGTGCGTCAGCGTCGGCCGCAACAGCG

pse TGT-----------------GACTGCG

*** ** ***

This alignment suggests that the D. melanogaster cis-regulatory
element is not conserved in D. pseudoobscura. However, there
are many optimal alignments that indicate that this element
is conserved. Examining our constrained segment pairs, we
found that the prefix TGTG was at the end of a 13-bp exact
match. The remaining D. melanogaster element was part of a
segment pair which has 813 distinct optimal alignments in the
3d model. Among these, we found the following alignment
with parameters G ¼�3, S ¼�8, X ¼�18:

mel TGTG----CGTCAGC---G----TCGGCC---GC-AACAG-CG

pse TGTGACTGCG-CTGCCTGGTCCTCGGCCACAGCCAAC-GTCG

**** ** * ** * ****** ** *** * **

Note that we include the TGTG prefix to show a complete
alignment of the cis-regulatory element. The second align-
ment has 24 matches instead of the BLASTZ alignment with
eight. The number of matches can be used to calculate the
percent identity for an element as follows:

percent identity ¼ 1003
# matches

# bases in element
:

Percent identity was used in [20] as a criterion to determine
whether binding sites are conserved. The BLASTZ alignment
has 30% identity and the alignment with 24 matches has 89%
identity. It is an optimal alignment with the highest possible
percent identity. After examining all 813 optimal alignments,
it appeared to us that the following alignment (obtained with
G¼�882, S¼�87, X¼�226) is more reasonable, even though
it has a lower percent identity (67%):

mel TGTGCGTCAGC------GTCGGCCGCAACAGCG

pse TGTGACTGCGCTGCCTGGTCCTCGGCCACAGC-

**** * ** *** * ** *****

This alternative alignment suggests that the percent identity

criterion may not be the best way to judge the conservation of
elements. Regardless, we believe our parametric alignment
indicates that in this particular case, the D. melanogaster cis-
regulatory element is likely to have been conserved in D.
pseudoobscura.
Our overall results are summarized in Table 5. We found

that parameters can be chosen so as to significantly increase
the number of matches for cis-regulatory elements. The
‘‘optimal parameters’’ row in the table shows results for the
case where parameters were chosen separately for each
segment pair so as to maximize the percent identity of the cis-
regulatory elements. The ‘‘fixed parameters’’ row shows
results when one parameter was selected (optimally) for all
segment pairs simultaneously (this was only computed for the
2d model). Note that the mean per-site percent identity
reported in [20] was 51.3%, considerably lower than what we
found using the whole genome parametric alignment (even
for the 2d model).
Our results seem to indicate that cis-regulatory elements

are more conserved between D. melanogaster and D. pseudoobs-
cura than previously thought. The alignment polytopes should
be a useful tool for further investigation of the extent of
conservation of cis-regulatory elements among the Drosophila
genomes.
The Jukes–Cantor distance function. An important prob-

lem in molecular evolution is the estimation of branch
lengths from aligned genome sequences. A widely used
method for estimating branch lengths is based on the
Jukes–Cantor model of evolution [22]. Given an alignment
of two sequences of lengths l,l9, with 2d alignment summary
(x,s), one computes the Jukes–Cantor distance of the two
genomes as follows:

dJCðx; sÞ ¼ � 3
4
log 1� 4

3
2x

lþ l9� s

� �� �
:

See [11] for a derivation of this expression, which is also
known as the Jukes–Cantor correction of the two aligned
sequences. The Jukes–Cantor distance can be interpreted as
the expected number of mutations per site.
Because the Jukes–Cantor distance dJC(x,s) depends on the

underlying pairwise sequence alignment summary, which in
turn depends on the alignment parameters, it is natural to ask
how the branch length estimate depends on the parameters in
a 2d-scoring scheme. We therefore introduce the Jukes–Cantor
distance function which is the function JC: R2 ! [0,‘) given by
(X,S) 7!dJCðx̂; ŝÞ where ðx̂; ŝÞ is the alignment summary max-
imizing X � x þ S � s.
We computed the Jukes–Cantor distance function JC for the

entire genomes of D. melanogaster and D. pseudoobscura. As the

Table 5. Cis-Regulatory Element Conservation

Dimension Mean Percent Identity

Optimal Parameters Fixed Parameters

2d 80.4 79.1

3d 85.1 —

4d 86.5 —

DOI: 10.1371/journal.pcbi.0020073.t005
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result of this computation, we now know the Jukes–Cantor
distances for all whole genome alignments that are optimal for
some choice of biologically reasonable parameters (X,S).

The notion of ‘‘optimal’’ used here rests on the following
precise definitions. Given parameters (X,S), the optimal 2d
alignment summary (x,s) for the two genomes is the sum of
the optimal summaries of all 877,982 unconstrained segment
pairs plus the sum of the alignment summaries of the non-
coding constrained segment pairs (which do not depend on
the parameters). We determined that the constrained seg-
ment pairs contained 91,355 mismatches and 16,339,305
matches. The genome alignment polytope is the Minkowski sum of
the 877,982 alignment polytopes. The vertices of the genome
alignment polytope correspond to optimal summaries of
whole genome alignments.

We computed the genome alignment polytope for the 2d
model. Remarkably, this convex polygon, which is the
Minkowski sum of close to one million small polygons as in
Figure 1, was found to have only 1,183 vertices. Moreover, of
the 1,183 vertices of the genome alignment polytope, only 838
correspond to biologically reasonable parameters (X , 0, 2S
, X). The finding that there are so few vertices constitutes a
striking experimental validation of Elizalde’s Few Inference
Functions Theorem [11] in the context of real biological data.

The Jukes–Cantor distance function JC of D. melanogaster
and D. pseudoobscura is a piecewise constant function on the
(X,S)-plane. Indeed, JC is constant on the cones in the normal
fan of the genome alignment polygon. Note that JC is
undefined when (X,S) is perpendicular to one of the 1,183
edges of the genome alignment polygon. For such (X,S), the
Jukes–Cantor distance function jumps between its values on
the two adjacent cones in the normal fan.

The graph of the Jukes–Cantor distance function is shown
in Figure 4. The function ranges in value from 0.1253 to

0.2853, is monotonically decreasing as a function of S, and
monotonically increasing as a function of X. We found it
interesting that at the line X ¼ S, there is a large ‘‘Jukes–
Cantor jump’’ where the value of the function increases from
0.1683 to 0.2225.
The Jukes–Cantor distance function is a new tool for

parametric reconstruction of phylogenetic trees. Instead of
estimating a single distance between each pair of genomes in
a multiple species phylogenetic reconstruction, one can now
evaluate the Jukes–Cantor function at vertices of the
Minkowski sum of the whole genome alignment polytopes.
These can be used for parametric phylogenetic reconstruc-
tion using distance-based methods such as neighbor joining.

Discussion

The summary of a pair of aligned sequences is a list of
numbers that determine the score for a scoring scheme. The
alignment polytope is a geometric representation of the
summaries of all alignments. It is an organizing tool for
working with all alignments through their summaries. We
view the Needleman–Wunsch algorithm as a fast subroutine
for finding vertices of the alignment polytope. The con-
struction of alignment polytopes is useful for biological
studies based on sequence alignments where the conclusions
depend on parameter choices.
We have highlighted three biological applications of our

parametric alignments, namely the problem of parameter
selection for sequence alignment, functional element conserva-
tion, and estimation of evolutionary rate parameters. In each
case, ourperspective suggestsnewdirections for further research.
Alignment polytopes offer a systematic approach to solving

the parameter selection problem. Although this paper did not

Figure 4. The Jukes–Cantor Distance Function of Two Drosophila Genomes

DOI: 10.1371/journal.pcbi.0020073.g004
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address statistical aspects of parameter selection, we wish to
emphasize that the vertices of the polytopes represent
maximum a posteriori estimates of alignments for PHMMs.
Our polytopes provide a setting for developing statistically
sound methods for parameter selection that are not depend-
ent on pre-existing alignments.

Our results on cis-regulatory elements show that they may
be significantly more conserved than previously thought, and
suggest that, in contrast to the analysis of ultra-conserved
elements, sequence alignment procedures can be crucial in
the analysis of certain functional elements. The ongoing
Drosophila genome projects (consisting of sequencing 12
genomes of related species) offer an extraordinary oppor-
tunity for extending our study and further exploring cis-
regulatory element conservation. This leads to the question of
multiple alignment, which we have not addressed in this
paper, but which we believe presents a formidable and
important challenge in biological sequence analysis. In
particular, it will be interesting to explore the geometric
point of view we have proposed and to develop parametric
algorithms for multiple sequence alignment.

The Jukes–Cantor distance function, computed here for
the first time, will be important for determining the robust-
ness of evolutionary studies based on sequence alignments.
Estimates of the neutral rate of evolution, which are crucial
for comparative genomics studies, can hopefully be improved
and further developed using our mathematical tools. The
Jukes–Cantor distance function opens up the possibility of
parametric distance–based phylogenetic reconstruction. An
immediate next step is the extension of our results to other
phylogenetic models.

The construction of millions of alignment polytopes from
two Drosophila genomes has revealed mathematical insights
that should be explored further. For example, we observed
empirically that alignment polytopes have few facets.
Although we have not explored the combinatorial structure
of alignment polytopes in this paper, this offers a promising

direction for improving our parametric alignment algorithms
and is an interesting direction for future research.

Materials and Methods

The data analyzed are the genome sequences of D. melanogaster
(April 2004 BDGP release 4) and D. pseudoobscura (August 2003 freeze
1).

Gene annotations for identifying exons were based on reference
gene sets and ab initio predictions. For D. melanogaster, we used Flybase
[2], SNAP, genscan, geneid, and RefSeq. Twinscan, SNAP, genscan,
geneid, and xenoRefSeq (mRNAs from other species) were used for D.
pseudoobscura. Annotations were obtained from the UCSC genome
browser, except for SNAP which we ran ourselves.

MUMmer version 3.18 [23] was used to obtain potential non-
coding anchors (20 bp exact matches). MUMmer was also run on
orthologous segments determined by MERCATOR to identify �10 bp
exact matches to refine the orthology map.

The Beneath–Beyond and polytope propagation algorithms were
implemented in Cþþ. Source code and binaries are available at http://
bio.math.berkeley.edu/parametric/.

The BLASTZ alignment was obtained from the UCSC genome
browser. The ‘‘net’’ and ‘‘chain’’ tracks were used to determine the
best alignment for each interval in D. melanogaster. The resulting
alignment blocks were compared with our constraints.

The transcription factor binding sites used in the cis-regulatory
element study were obtained at http://www.flyreg.org. 16 sites were
excluded because of segment pairs containing Ns.

Computations were carried out on an 18-node (36 CPU at 2.3 GhZ
each) cluster. Each node had 2 Gb RAM.

The alignment polytopes, software, and supplementary material
can be downloaded at http://bio.math.berkeley.edu/parametric/.
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