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g Radiologia, Azienda Ospedaliera Universitaria Policlinico di Monserrato, Italy 
h Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran 
i Department of Radiology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Computed tomography 
Deep learning 
Electronic health records 
Prognosis 

A B S T R A C T   

Purpose: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by 
coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient 
stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict 
severity outcomes, combining patients’ electronic health records (EHR), which included vital signs and labo-
ratory data, with deep learning- and CT-based severity prediction. 
Method: We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two 
biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After 
obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 
and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. 
Results: For the deep learning model, the correlation coefficient of the network prediction and manual seg-
mentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final 
prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and 
INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood 
cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen 
predictor in one cohort. 

Abbreviations: EHR, Electronic health records; COVID-19, Coronavirus disease of 2019; TOR, Total opacity ratio; CR, Consolidation ratio; GLM, Generalized linear 
model; WBC, White blood cell; PLT, Platelet; SpO2, Oxygen saturation; RT-PCR, Reverse-transcription polymerase chain reaction; MV, Mechanical ventilation; ICU, 
Intensive care unit; CT, Computed tomography; GGO, Ground-glass opacity; IRB, Institutional Review Board; GPU, Graphics processing unit; HU, Hounsfield unit; 
ESR, Erythrocyte sedimentation rate; AUC, Area under the curve; CI, Confidence interval; Hgb, Hemoglobin; MODS, Multiple Organ Dysfunction Score; SOFA, 
Sequential Organ Failure Assessment; LDH, Lactate dehydrogenase; hs-CRP, High-sensitivity C-reactive protein. 
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Conclusion: The developed deep learning method can segment lung infection regions. Prognosis results indicated 
that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our 
prognosis model.   

1. Introduction 

Since its outbreak in November 2019, coronavirus disease of 2019 
(COVID-19) has become a global pandemic due to its high contagious-
ness and lack of specific antiviral treatments or vaccines so far [1]. 
Reverse-transcription polymerase chain reaction (RT-PCR) [2,3] assay is 
currently the mainstay for the diagnosis of COVID-19 pneumonia. While 
early diagnosis is the key to initiate patient isolation and contact tracing 
to reduce its spread, assessment and prediction of the severity of 
COVID-19 pneumonia is important to initiate supportive treatment, 
project need for hospital admission and anticipate the use of mechanical 
ventilation (MV) and transition to intensive care unit (ICU). Computed 
tomography (CT) provides important information in COVID-19 pneu-
monia, especially for patients with moderate to severe disease as well as 
those with worsening cardiopulmonary status. CT helps evaluate the 
infection severity based on presence, extent, and type of pulmonary 
opacities such as ground-glass opacity (GGO), consolidation, and 
crazy-paving patterns [4–6]. Radiologists can grade the imaging severity 
of pulmonary opacities using a point-based scoring system [7,8]. How-
ever, such a scoring system is labor-intensive and can be 
time-consuming. 

Recently deep learning has been widely applied to various medical 
imaging applications. As for COVID-19, there are several reports on 
utilizing deep learning for accurate differentiation of COVID-19 from 
other lung diseases and segmenting the opacity regions [9–16]. At the 
current resource-limited situation, prognosis prediction for COVID-19 is 
of paramount importance for patient management and decision making, 
e.g. MV usage and ICU admission. Several studies have explored the role 
of derived CT biomarkers for prognosis, alone [8,17] or combined with 
electronic health records (EHR) [18,19], all based on datasets from one 
institution or country. Considering the differences in medical resources 
and public health strategies [20,21], it is unclear if the risk factors 
identified would be the same for different regions. 

In this work, we explored the risk factors for COVID-19 prognosis 
based on datasets from multiple institutions across the world. We first 
developed a deep learning-based CT segmentation network using data-
sets from different countries. CT-based biomarkers, total opacity ratio 
(TOR), and consolidation ratio (CR) were derived based on the network 
output. The CT biomarkers were used together with the EHR data for 
prognosis analysis to identify potential predictors for patient severity 
outcomes. 

Contributions of this work include two aspects: (1) deep learning- 
based CT image segmentation for COVID-19 pneumonia was devel-
oped and validated based on datasets from different institutions; (2) 
COVID-19 patient prognosis analysis was conducted based on datasets 
from multiple cohorts using both CT-derived biomarkers and EHR data. 

2. Materials and methods 

2.1. Datasets 

This study was approved by the respective Institutional Review 
Boards (IRBs) and informed consent forms were waived due to the 
retrospective nature of this study. The whole dataset consisted of 369 
non-contrast chest CT examinations of patients with RT-PCR assay 
positive COVID-19 pneumonia scanned between January 1, 2020 and 
March 30, 2020, from five hospitals across the world. Of these, manual 
segmentation of all regions with pulmonary opacities related to COVID- 
19 pneumonia was available for 87/146 chest CTs from INSTITUTE-1, 
25/102 chest CTs from INSTITUTE-2, 25/75 chest CTs from 

INSTITUTE-3, 8/8 chest CTs from INSTITUTE-4, and 14/14 chest CTs 
from INSTITUTE-5. The manually segmented CT datasets were used 
during network training and testing. Datasets from INSTITUTE-4 and 
INSTITUTE-5 do not contain EHRs, but only CT images, thus not 
included in the prognosis analysis but only CT segmentation-model 
development. For patients with multiple CT scans, we only included 
the first CT scan in this study. 

The chest CT examinations were acquired on multidetector-row 
scanners (6–256 slices) from three CT vendors (GE Healthcare, Wau-
kesha, US; Philips Healthcare, Eindhoven, Netherlands; Siemens 
Healthineers, Forchheim, Germany). All chest CT images were resam-
pled to 5 mm section thickness and 256 × 256 resolution in the trans-
verse plane. All datasets were initially graded for the type of pulmonary 
opacities by two fellowship-trained thoracic subspecialty radiologists 
(XX and XXX with 16 and 13 years of clinical experience in thoracic 
imaging), who supervised the annotation of each opacity by two post- 
doctoral research fellows (with 1–2 years of experience in chest CT 
research). These manually segmented opacity regions were used as 
ground truth during network training and testing. For the datasets with 
EHR, detailed summaries are presented in Table 1. A flowchart of the 
work is also given in Fig. 1 for better understanding of the data orga-
nization and processing. 

2.2. CT image segmentation : neural network details 

The network structure used in this work was based on a dense 3D 
network structure, which can fully extract features from input images 
because of better information propagation enabled by dense connections 
[22]. The Diagram of the network structure is shown in Fig. A.1. It is 
composed of an encoder path to extract contextual features and a 
decoder path to recover the image details, which contains the dense 
blocks as well as transition-down and transition-up modules. Each 
convolutional kernel has the size of 3 × 3 × 3. Transition-down module 
composes by a 1 × 1 × 1 convolution with stride 2 at X, Y axis which 
results in 1/2 spatial resolution reduction on the length and width of the 
input feature maps. It contains in-total 9 dense blocks, 4 transition-down 
and 4 transition-up modules. The last layer is a 1 × 1 × 1 convolution 
followed by the sigmoid activation function. The total number of 
trainable parameters for the network is 5.5 million. 

To let the network focus on regions inside the lung, a lung mask was 
generated using a pretrained U-Net [23]. The network inputs were 3D 
CT images inside the lung mask and the outputs were the probability 
maps of the opacity regions inside the lung. The soft Dice [24], defined 
as 

Table 1 
Summary of the datasets with electronic health record (EHR) information from 
three different institutes, which were used for prognosis study in this work. SpO2 
= peripheral oxygen saturation; WBC = white blood cell; PLT = platelet.   

INSTITUTE-1 INSTITUTE-2 INSTITUTE-3 

Patients with 
EHR 

146 102 58 

Age (years) 60 ± 16 (21− 100) 58 ± 18 (21− 95) 68 ± 16 (30− 95) 
SpO2 91 ± 5 (66− 100) 95 ± 6 (60− 100) 96 ± 3 (86− 100) 
WBC 6551 ± 3177 

(2100− 27300) 
6268 ± 2609 
(2080− 15000) 

7915 ± 5253 
(470− 31670) 

PLT 188,363 ± 69,617 
(42000− 453000) 

240,765 ± 104,762 
(82000− 678000) 

211,345 ± 91,156 
(80000− 587000) 

MV/ICU/death 31 10 29 
Death 21 6 18  
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was utilized as the objective function, where p is the predicted proba-
bility map and g is the binary ground truth. The soft Dice is an 
approximation of the Dice coefficient, which can directly use the 
outputted probability map without pre-defining the threshold. During 
testing, we used a threshold of 0.5 to generate the binary segmentation 
mask to calculate the Dice coefficient. The network was implemented 
based on TensorFlow 1.14 [25]. The Adam optimizer [26] was used 
during network training to optimize the soft-dice objective function. 

During training and testing, we used 3D patches as the network input 
due to the graphics processing unit (GPU) memory limit. The final patch 
size was 256 × 256 × 32. The sliding window was set to be 16 along the 
axial direction to generate the 3D patches. During training, the batch 
size was set to 1 due to the GPU memory limit. If a larger GPU memory is 
available, the batch size can be further increased to improve the network 
performance. Finally, one network was trained on the INSTITUTE-1 
cohort (64 datasets for training, 23 datasets for validation, 77 datasets 
for testing), to generate the segmented regions of pulmonary opacities 
on the other cohorts. To obtain regions with abnormal pulmonary 
opacities on the INSTITUTE-1 cohort, another network was trained by 
combining other cohorts and then tested on INSTITUTE-1 (58 datasets 
for training, 14 datasets for validation, 87 datasets for testing). The 
training epoch number was 200. 

2.3. CT image segmentation : biomarker derivations 

The segmentation network output regions of pulmonary opacities 
(inclusive of all opacities such as ground glass, consolidation, mixed and 
crazy paving patterns). After obtaining the regions of pulmonary opac-
ities, a threshold of -200 Hounsfield unit (HU) [27] was used to 
demarcate the consolidation regions inside each pulmonary opacity. 
Signs of consolidation regions can indicate advanced or more severe 
disease forms. Both the consolidation regions and the 
pulmonary-opacity regions are useful for CT biomarker derivations. In 

our study, two biomarkers were extracted from the CT images based on 
the network output: TOR, which was defined as the volume of 
pulmonary-opacity regions divided by the total lung volume; and CR, 
which was defined as the volume of consolidated regions divided by the 
total lung volume. For prognosis and survival analysis, both the TOR and 
CR derived from the CT images were tested as potential predictors. Note 
that all TOR and CR were calculated based on the network prediction 
and no TOR and CR were based on manual segmentations. 

2.4. Prognosis analysis: data organization 

After obtaining TOR and CR, further prognosis analysis was con-
ducted on datasets from three institutions: INSTITUTE-1, INSTITUTE-2, 
and INSTITUTE-3. The EHR included patients’ demographics (age), vital 
signs (temperature and peripheral oxygen saturation [SpO2]), and lab 
tests. The lab tests available from INSTITUTE-1 are platelet (PLT), white 
blood cell (WBC), lymphocyte percentage (Lymph%), erythrocyte sedi-
mentation rate (ESR), lactate dehydrogenase (LDH) and C-reactive 
protein (CRP). The lab tests available from INSTITUTE-2 are PLT, WBC, 
Lymph%, LDH, hemoglobin (Hgb), procalcitonin (PCT), aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), creatinine 
(Cr), estimated glomerular filtration rate (eGFR), sodium (Na), potas-
sium (K), total bilirubin (TB), alkaline phosphatase (ALP), albumin 
(ALB) and blood urea nitrogen (BUN). The lab tests available from 
INSTITUTE-3 are PLT, WBC, Lymph%, LDH, Hgb, PCT, AST, ALT, Cr, 
eGFR, Na, K, CRP, Glucose and Neutrophil. Detailed EHR summaries are 
shown in Table 1. The correlation between TOR computed from CT 
images and EHR is shown in supplementary Table A.1. It should also be 
noted that the EHR data came from different timepoints: it represented 
the last measurement before the CT scan in INSTITUTE-3 but on- 
admission measurement in INSTITUTE-1 and INSTITUTE-2. 

For both Institute 1 and Institute 2, the final adverse outcome events 
were ICU admission or death. For Institute 3, the final-outcome event 
was MV usage or death. In Institute 3, the concept of ICU admission was 
obscure as some medical units and post-operation suites were also uti-
lized for intensive care due to ICU shortage. The clinical decision of 
mechanical ventilation usage in Institute 3 is similar to ICU admissions. 
Thus we used MV usage or death in Institute 3 as outcome events to 

Fig. 1. Flowchart of the whole study. A 
dense 3D network was firstly trained 
with manual segmentation annotations 
as ground truth to predict the TOR. CR 
was then derived from the segmented 
results by thresholding at -200HU. The 
trained network was then used to pro-
cess the CT images with EHR from 
INSTITUTE-1,2,3 to generate the corre-
sponding TOR and CR biomarkers. At 
last, the TOR and CR biomarkers were 
combined with EHR. GLM and feature 
selection were used at INSTITUTE-1,2,3 
independently to predict adverse 
outcome events as demonstrated in the 
figure. Cross validation (CV) was 
implemented using different number of 
folds at each site due to the different 
number of available datasets. Note that 
the three sites used the same vital sign 
variables but different lab tests. 
CR = consolidation ratio; TOR = total 
opacity ratio; GLM: generalized linear 
model; EHR: electronic health records; 
ICU: intensive care unit; CV: cross 
validation.   
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European Journal of Radiology 139 (2021) 109583

4

match with ICU admissions or death in Institutes 1 and 2. 

2.5. Prognosis analysis: model construction 

As for model construction, the generalized linear model (GLM) was 
used for the model analysis as the predictors employed in the analysis 
were continuous variables. The GLM model was constructed using the 
‘glm’ function in R. For each model, the optimal cutoff was calculated 
based on Youden’s index (sensitivity + specificity - 1) and the corre-
sponding sensitivity and specificity was obtained. The AUC values based 
on cross-validations were used to determine the variables ultimately 
used or discarded in the final models. AUC along with the 95 % AUC 
confidence interval (CI) were calculated based on 10,000 stratified 
bootstrap replicates. The p-value of the Z-statistics in each GLM model 
can be used to examine the relative importance of each chosen variable. 
For the dataset from each institute, we first used CT biomarkers, de-
mographics and vital signs (e.g. age, patient’s temperature, SpO2, TOR 
and CR) as potential predictors and obtained the model with the best 
AUC, which was considered as the basic model (model #1). Predictors 
from lab tests, e.g. platelet (PLT) count and white blood cell (WBC) 
count, were added to the basic model and the model with the best AUC 
was considered as the final model (model #2). To make full of the 
datasets, 5-fold, 4-fold and 4-fold stratified cross-validations were used 
for the INSTITUTE-1, INSTITUTE-2, and INSTITUTE-3 cohorts, respec-
tively. The reason why different numbers of folds were used is due to the 
difference in total number of datasets from each institution. 

For INSTITUTE-1 dataset, information regarding the adverse 
outcome (death or discharge) and the total in-hospitalization days are 
available, which enables further survival analysis. The plot of the 
Kaplan–Meier estimator was performed for the group with predicted 
ICU-or-death = 1 and the group with predicted ICU-or-death = 0 to 
show the survival probability difference, which can test the effectiveness 
of the constructed prognosis models. To find out which predictor is 

important for patients’ survival, the Cox Proportional-Hazards regres-
sion model was used to evaluate the predictors (age, SpO2, WBC, PLT, 
Erythrocyte sedimentation rate (ESR), TOR, CR). The hazard ratio plots 
were calculated to indicate the importance of different predictors. 

3. Results 

3.1. CT image segmentation results 

Fig. 2(A, B, C) shows three network segmentation examples, which 
demonstrates the feasibility of deep learning-based CT image segmen-
tation. The mean Dice value was 0.641, 0.713 and 0.657 for datasets 
from INSTITUTE-1, INSTITUTE-2, and INSTITUTE-3, respectively. For 
each cohort, the predicted TOR versus the TOR calculated from anno-
tation for all lung lobes are shown in Fig. 2(B, C, D). The Spearman 
correlation coefficient was 0.755, 0.919, and 0.824 for INSTITUTE-1, 
INSTITUTE-2, and INSTITUTE-3, respectively. In clinical practice, 
TOR can be discretized to different categories to evaluate the severity of 
COVID. Here we discretized TOR into four categories (<5%, 5–25 %, 
25–50 %, >50 %) and used multi-class accuracy (correct predictions / 
total predictions) to evaluate performance of the trained segmentation 
network. The final four-class prediction accuracy was 0.731, 0.832, 
0.827 for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3, respectively. 
Results based on these quantitative measures demonstrated that the 
deep learning model generalized well across different sites. 

Fig. 3 shows the boxplot of the predicted TOR for each lung lobe 
based on all 369 CT datasets. The left and right lower lobes had higher 
TOR compared to others, consistent with the expected pattern of COVID- 
19 on chest CT. Fig. 4 shows the relationship between the predicted TOR 
and time since symptom onset based on INSTITUTE-2. A drop in TOR 
after 10 days of symptom onset in all lung lobes was consistent with 
improving pneumonia. However, the lack of clear trends of TOR in the 
early phase of infection (0–10 days) may indicate variations and/or 

Fig. 2. Results of the CT segmentation network. (A,B,C) Three segmentation results overlayered on an axial slice. Blue curves indicate the manual segmentation 
contour, and red curves are the network predicted contour. (D, E, F) The predicted TOR versus the annotated TOR curves based on datasets from (D) INSTITUTE- 
1cohort, (E) INSTITUTE-2 cohort and (F) INSTITUTE-3 cohort. TOR = total opacity ratio. 
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unpredictability in disease progression within the assessed patient 
population. 

3.2. Prognosis results 

As for prognosis, ROC curves of model #1 and model #2 for 
INSTITUTE-1, INSTITUTE-2, and INSTITUTE-3 are shown in Fig. 5. For 
INSTITUTE-1. Optimal model #1 is based on age, SpO2 and CR. AUC(95 

% CI) = 0.80(0.70, 0.88). The optimal cutoff is 0.16. The corresponding 
sensitivity and specificity is 0.81 and 0.68, respectively. Optimal model 
#2 is based on Age, SpO2, CR and PLT. AUC(95 % CI) = 0.85(0.77, 
0.92). The optimal cutoff is 0.19. The corresponding sensitivity and 
specificity is 0.84 and 0.77, respectively. For INSTITUTE-2, optimal 
model #1 is based on CR. AUC(95 % CI) = 0.88(0.75, 0.97). The optimal 
cutoff is 0.05. The corresponding sensitivity and specificity is 0.90 and 
0.83, respectively. Optimal model #2 is based on CR and WBC. AUC(95 

Fig. 3. (A) The boxplot quantification of all the lung lobes. X-axis stands for different lung lobes and y-axis stands for the pulmonary opacity ratio of the corre-
sponding lung lobe. (B) The probability density of volume of pulmonary opacities for different lung lobes. X-axis stands for the pulmonary opacity ratio of the 
corresponding lung lobe and y-axis stands for the infection-ratio distribution probability density of the corresponding lung lobe. LUL = left upper lobe; LLL = left 
lower lobe; RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe; Whole = whole lung region. 

Fig. 4. Progression of regions with pulmonary opacities with symptom-onset days for the five lung lobes and the whole lung region. For each subplot, the x-axis 
stands for the days between symptom onset and the CT scan date and the y-axis stands for the pulmonary opacities ratio of the corresponding lung region. LUL = left 
upper lobe; LLL = left lower lobe; RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe; Whole = whole lung region. 
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Fig. 5. ROC of the best predictors for the three cohorts: INSTITUTE-1, INSTITUTE-2, and INSTITUTE-3. Model #1 is the basic model constructed based on CT 
biomarkers, demographics, and vital signs. Model #2 is the final model constructed with data in Model #1 and additional lab test values. Detailed p-value statistics 
for each variable in each model are shown in Table A.2 to check the importance of each variable in the prognosis model. (A) Results from cohort INSTITUTE-1. 
Optimal model #1 is based on age, SpO2 and CR. AUC(95 % CI) = 0.80(0.70, 0.88). Optimal model #2 is based on Age, SpO2, CR and PLT. AUC(95 % CI) =
0.85(0.77, 0.92). (B) Results from cohort INSTITUTE-2. Optimal model #1 is based on CR. AUC(95 % CI) = 0.88(0.75, 0.97). Optimal model #2 is based on CR and 
WBC. AUC(95 % CI) = 0.93(0.87, 0.98). (C) Results from cohort INSTITUTE-3. Optimal model #1 is based on Age and TOR. AUC(95 % CI) = 0.78(0.65, 0.89). 
Optimal model #2 is based on Age, TOR, PLT, WBC and Hgb. AUC(95 % CI) = 0.86(0.75, 0.94). CR = consolidation ratio; TOR = total opacity ratio; SpO2 = pe-
ripheral oxygen saturation; WBC = white blood cell; PLT = platelet; ESR = erythrocyte sedimentation rate; Hgb = hemoglobin; CI = confidence interval. 

Fig. 6. Box and Whisker plot of (A) age; (B) SpO2, (C) TOR, (D) CR, and (E) WBC, in the three cohorts. For each sub-figure, the left, middle and right columns stand 
for the plot from the INSTITUTE-1cohort, INSTITUTE-2 cohort, and INSTITUTE-3 cohort, respectively. The red boxes are the patient group with non-severe outcomes 
and the blue boxes are patients with severe outcomes (MV/ICU/Death). The Wilcoxon signed-rank test was performed between the patient group with non-severe 
outcome and the patient group with severe outcomes. Correspondingly, *, **, and ns, located at the top of each bar plot, represents p-value<0.05, p-value <0.01, and 
non-significant, respectively. WBC = white blood cell; SpO2 = peripheral oxygen saturation; TOR = total opacity ratio; CR = consolidation ratio. 
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% CI) = 0.93(0.87, 0.98). The optimal cutoff is 0.07. The corresponding 
sensitivity and specificity is 0.90 and 0.87, respectively. For INSTITUTE- 
3, optimal model #1 is based on Age and TOR. AUC(95 % CI) = 0.78 
(0.65, 0.89). The optimal cutoff is 0.58. The corresponding sensitivity 
and specificity is 0.66 and 0.81, respectively. Optimal model #2 is based 
on Age, TOR, PLT, WBC and Hgb. AUC(95 % CI) = 0.86(0.75, 0.94). The 
optimal cutoff is 0.35. The corresponding sensitivity and specificity is 
0.90 and 0.70, respectively. 

During cross-validation, each data fold will have one constructed 
GLM model. The p-values of the Z-statistics for each variable in each 
constructed GLM model are shown in supplementary Table A.2. For all 
three data cohorts, AUC ≥ 0.85 was achieved in the final models. For all 
three cohorts, the final models always had better AUC compared to the 
basic models, demonstrating the usefulness of lab tests in prognosis 
prediction. Either TOR or CR’s existence in all three final models 
demonstrated CT’s consistent prediction power of adverse disease out-
comes for the assessed patient population. Among demographics fea-
tures, age was an important component for both INSTITUTE-1 and 
INSTITUTE-3, but not a final predictor for INSTITUTE-2. It was also 
observed that SpO2 was an important factor in INSTITUTE-1, but not in 
the other two. Fig. 5 also indicates that WBC and PLT were chosen 
predictors in two of the three cohorts; hemoglobin (Hgb) was the chosen 
predictor in one of the two cohorts with this measure. 

Fig. 6 summarizes the distribution of age, SpO2, TOR, CR, and WBC 
in patients with severe and non-severe disease in the three cohorts. No 
significant difference was found in patient age between the two groups 
in INSTITUTE-2 (P-value = 0.096). Neither it was found on SpO2 in 
INSTITUTE-3 (P-value = 0.471). This might explain why age and SpO2 
were not predictors for model #1 in INSTITUTE-2 and INSTITUTE-3, 
respectively. As for the laboratory tests, no significant difference was 
found in INSTITUTE-1 regarding WBC (P-value = 0.341). This might 
explain why WBC was not a predictor for model #2 in INSTITUTE-1. 
From the correlation between TOR and EHR data shown in Table A.1, 
we can notice that TOR had a moderate negative correlation (-0.477) 
with SpO2 in INSTITUTE-2, which might explain why SpO2 was not a 
chosen predictor in INSTITUTE-2. Significant difference was found in 
TOR and CR for all three cohorts (P-value < 0.004), which might justify 
why CT derived biomarkers (TOR or CR) were predictors in both models 
#1 and #2. 

We also studied the risk factors related to patients’ survival time 

based on datasets from INSTITUTE-1 where the time points of mortality/ 
discharge were available. Fig. 7(A) shows the plot of the Kaplan-Meier 
estimator for the group with predicted ICU-or-death = 1 and the 
group with predicted ICU-or-death = 0 based on the optimized model 
#2. This plot shows distinguishable survival probabilities for these two 
groups. Fig. 7(B) presents the hazard ratio plot of different risks based on 
the Cox proportional-hazards model. The most important risk factors of 
mortality were age (P-value = 0.003), SpO2 (P-value <0.001) and CR (P- 
value = 0.017). TOR and laboratory tests (such as WBC, PLT, and ESR) 
were not significant factors based on the hazard ratio plot. 

4. Discussion 

There are various studies focusing on opacity-region segmentation 
from the COVID-19 CT datasets. Huang et al. [12] have developed a CT 
segmentation network in order to perform serial quantitative CT 
assessment of COVID-19. To make the network training more efficient, 
Shan et al. have devised a human-in-the-loop strategy to reduce the 
manual labelling efforts [28]. Chaganti et al. [27] have designed a deep 
learning pipeline to perform semantic segmentation and various severity 
measures together. Fan et al. [29] has developed a semi-supervised 
approach to alleviate the shortage of labelled data. To overcome the 
pitfalls of noisy labels, Wang et al. [30] have developed a noise-robust 
segmentation network through the usage of a novel Dice loss and an 
adaptive self-ensembling training framework. Wu et al. [31] have 
developed a weakly supervised network based on hybrid labels to 
segment both opacity and consolidation regions from COVID-19 CT 
datasets. Amyar et al. [16] used the multi-task loss to improve the seg-
mentation of infection regions in COVID-19 CT images. In this work, we 
developed a 3D dense network for CT image segmentation based on 
datasets from five institutes across the world. The dense network 
structure improved the segmentation performance over traditional UNet 
by reducing the number of training parameters [32]. Two biomarkers, 
characterizing the opacities and consolidations, were derived from the 
network output. In addition, we further investigated the role of 
CT-derived biomarkers and EHRs (vital signs and laboratory tests) for 
prognosis analysis based on datasets from three institutes of different 
countries, which were not conducted in previous CT-segmentation 
studies and are major contributions of this work. It was demonstrated 
that the biomarkers derived from the network segmentation imposed 

Fig. 7. Survival analysis based on the INSTITUTE-1 cohort. (A) The plot of the Kaplan-Meier estimator for the group with predicted-ICU-or-death = 1 and the group 
with predicted-ICU-or-death = 0. The prediction model is based on model #2 with AUC plot shown in Fig. 4(A). The cutoff threshold was set to 0.649, calculated 
based on R function ‘optimalCutoff’ with the default optimization criterion ‘misclasserror’. (B) The hazard ratio plot regarding predictors: Age, SpO2, TOR, CR, PLT, 
ESR, and WBC. PLT = platelet; WBC = white blood cell; SpO2 = peripheral oxygen saturation; ESR = erythrocyte sedimentation rate; TOR = total opacity ratio; 
CR = consolidation ratio. 
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significant impact on predicting adverse outcomes for COVID-19 pa-
tients at three different sites (INSTITUTE-1,2,3), which indicated the 
prognostic values of CT-derived biomarkers for COVID-19 patients. In 
this work, we only used the soft Dice coefficient as the training loss to get 
the total infection regions and a simple thresholding method to calculate 
the consolidation regions. In the future, it can be combined with the 
aforementioned prior arts for more precise segmentation. In addition, 
for our datasets, when GGOs were manually segmented, the nodules 
were not considered as nodules only show up in small number of data-
sets. Thus our network cannot perform nodule segmentation. This is one 
limitation of our current datasets. Multi-class segmentation, including 
both GGO and nodules, deserves further investigations. We also noticed 
that the Dice coefficients from our CT segmentation network (0.641, 
0.713 and 0.657) are lower compared to other segmentation tasks. Po-
tential explanations for the low Dice coefficients is the variaty of manual 
labels by different radiologists and the small size of opacity regions in 
some datasets. If the prognosis model shows that the CT biomarkers 
derived from a simple network, which does achieve the best Dice co-
efficients, can work, it means CT derived biomarkers are useful for 
prognosis. Our prognosis results show that CT biomarkers are important 
for prognosis model construction. Thus, the relative low Dice co-
efficients do not invalidate our prognosis analysis. 

Based on the prognosis analysis results in Figs. 5 and 7, CT derived 
biomarkers (TOR or CR), WBC and PLT were statistically significant 
predictors of adverse patient outcome. These findings are consistent 
with some recent risk-factor studies. Recent studies have suggested an 
association between CT severity scores generated from subjective eval-
uation of radiologists and mortality from COVID-19 pneumonia [8,17]. 
Prior publications suggested that a lower PLT count correlated with 
worse patient conditions such as higher Multiple Organ Dysfunction 
Score (MODS) [33,34] and Sequential Organ Failure Assessment (SOFA) 
score, known risk factors of COVID-19 mortality [35]. Abnormal WBC 
count is also observed in other COVID-19 datasets [35,38]. Previous 
studies [18,35–42] have also reported other laboratory tests as risk 
factors for adverse outcomes of COVID-19 pneumonia, including lactate 
dehydrogenase (LDH), lymphocyte count, and high-sensitivity C-reac-
tive protein (hs-CRP). However, these factors were not significant pre-
dictors for prognosis based on our datasets. In [43], CT images and 
laboratory tests were combined for the prognosis analysis, which used 
datasets from only one country. It showed that combining CT and lab 
tests can help improve the prognostic accuracy, indicating Albumin and 
C-reactive protein as important risk factors. These laboratory tests were 
not present in our prognosis models based on our datasets. The differ-
ence between our prognosis model and the prior investigations stated 
above might be due to difference in treatments, sample sizes, mea-
surement time, or population, which deserves further investigations. 

Our current study has several limitations. Due to the small sample 
size of the ICU patients in INSTITUTE-2 (10 out of 102), it is difficult to 
conclude that age and SpO2 were not risk factors for these patients. In 
addition, the EHR data came from different timepoints: it represented 
the last measurement before the CT scan in INSTITUTE-3 but on- 
admission measurement in INSTITUTE-1 and INSTITUTE-2. The hospi-
talized patients were more likely to be on supplemental oxygen therapy 
in INSTITUTE-3, which can explain the insignificant difference of SpO2 
between the two groups as shown in Fig. 6. We also want to point out 
that the percentage of CT opacity regions to the whole lung depends on 
the timepoint when the CT scan was performed. For our prognosis 
model, the timepoint when the CT scan was performed was not 
considered in our prognosis model, which is one limitation of our study 
and other studies which use CT opacity as a biomarker without 
considering the time course. Currently Chest X-ray is widely used for 
pre-screening and multiple timepoints of CXR are available. As the 
specificity of CXR is lower than CT regarding COVID-19, performance of 
biomarkers derived from CXR compared to CT is unknown. Conducting 
prognosis analysis based on CXR and EHRs is one of our future di-
rections. Finally, in this work the prognosis model was constructed for 

each institute individually, without building a unified prognosis model 
for all institutes. Reasons for not building a united model is due to 
different treatment policies among the institutes and also the differences 
of measurement time. Pursuing a united prognosis model is one of our 
future works. 

5. Conclusion 

In conclusion, based on datasets from multiple institutions across the 
three continents, we have developed a generalizable deep learning 
model to segment opacity regions based on CT images from COVID-19 
patients. Prognosis analysis was conducted using the derived CT bio-
markers and EHR data. Results indicated that age, SpO2, CT-derived 
biomarkers, PLT, and WBC were the most important prognostic pre-
dictors of COVID-19 pneumonia in our prognosis models. 
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