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Abstract

Studies of complex disorders benefit from integrative analyses of multiple omics data. Yet,

sample mix-ups frequently occur in multi-omics studies, weakening statistical power and

risking false findings. Accurately aligning sample information, genotype, and corresponding

omics data is critical for integrative analyses. We developed DRAMS (https://github.com/Yi-

Jiang/DRAMS) to Detect and Re-Align Mixed-up Samples to address the sample mix-up

problem. It uses a logistic regression model followed by a modified topological sorting algo-

rithm to identify the potential true IDs based on data relationships of multi-omics. According

to tests using simulated data, the more types of omics data used or the smaller the propor-

tion of mix-ups, the better that DRAMS performs. Applying DRAMS to real data from the

PsychENCODE BrainGVEX project, we detected and corrected 201 (12.5% of total data

generated) mix-ups. Of the 21 mix-ups involving errors of racial identity, DRAMS re-

assigned all data to the correct racial group in the 1000 Genomes project. In doing so, quan-

titative trait loci (QTL) (FDR<0.01) increased by an average of 1.62-fold. The use of DRAMS

in multi-omics studies will strengthen statistical power of the study and improve quality of the

results. Even though very limited studies have multi-omics data in place, we expect such

data will increase quickly with the needs of DRAMS.

Author summary

Sample mix-up happens inevitably during sample collection, processing, and data man-

agement. It leads to reduced statistical power and sometimes false findings. It is of great

importance to correct mixed-up samples before conducting any downstream analyses.
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We developed DRAMS to detect and re-align mixed-up samples in multi-omics studies.

The basic idea of DRAMS is to align the data and labels for each sample leveraging the

genetic information of multi-omics data. DRAMS corrects sample IDs following a two-

step strategy. At first, it estimates pairwise genetic relatedness among all the data gener-

ated from all the individuals. Because the different data generated from the same individ-

ual should share the same genetics, we can group all the highly related data and consider

that the data from one group have only one potential ID. Then, we used a “majority vote”

strategy to infer the potential IDs for individuals in each group. Other information, such

as matching of genetics-based and reported sexes, omics priorority, etc., were also used to

identify the potential IDs. It has been proved that DRAMS performs very well in both sim-

ulation and PsychENCODE BrainGVEX multi-omics data.

This is a PLOS Computational Biology Methods paper.

Introduction

Investigation of complex traits and disorders can use multiple omics data to systematically

explore regulatory networks and causal relationships. Sample mix-ups can occur in omics

experiments during sample collection, handling, genotyping, and data management. As the

number of datasets to be integrated increases, the likelihood of error also multiplies. Sample

mix-ups reduce statistical power and generate false findings. Not only is the detection and re-

alignment of errors in data identifications (IDs) critical to ensuring accurate findings in inte-

grative studies, such corrections can increase statistical power thus the number of positive

findings [1].

For multi-omics data, the sample re-alignment procedure can be generally divided into two

steps: first, to estimate genetic relatedness among the data of different omics and group

together all the data of the same individual; then, to assign potential IDs for each data group. It

is well-known that genetic information from the same individual should be identical regardless

of the omics from which it originated. Using genotype data as a mediator, data originated

from the same individual can be grouped together.

Several tools have been developed to estimate genetic relatedness for multi-omics data in

many different ways, such as genotype concordance [2, 3], correlation of different quantifica-

tions [1, 2], correlation of variant allele fractions [4], concordance of sequencing reads [4], etc.
The various methods made it possible to compare different data types, such as DNA sequenc-

ing, RNA sequencing, SNP array, etc. However, these tools mainly focused on implementing

the first step of sample re-alignment, that is, to estimate genetic relatedness among multi-

omics data. None of the existing tools has a systematic solution on determining the potential

IDs for each data.

It is certain that, after grouping the highly related data, some data ID can be empirically cor-

rected based on the “majority vote” strategy [1, 2, 5]. However, without a systematic solution,

it only works for small data of low-dimension, difficult to scale up, and the results lack statis-

tics-based confidence. As multi-omics data of more data dimension are expected in the near

future, it is much more challenging to identify the potential ID. Especially when more than

one data are labeled by mistake for a single individual. Actually, taking full advantage of infor-

mation from data of more omics types makes data ID correction more accurate, turning a

challenge into an opportunity.
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Here, we described DRAMS, a tool to Detect and Re-Align Mixed-up Samples that lever-

ages sample relationships in multi-omics data by directly comparing genotype data. DRAMS

also uses a logistic regression model followed by a modified topological sorting algorithm to

systematically re-align misclassifications. This tool integrates sample relationships among dif-

ferent omics types, concordance rates of genetics-based sexes and reported sexes, etc. With

this design, DRAMS can be applied to as many omics types as possible. Using both simulated

data and real data, we proved the accuracy and power of DRAMS in studies involving multi-

omics data.

Results

Design of DRAMS

The goal of DRAMS is to detect and re-align mix-ups based on the grounds that all omics data

originating from the same individual should match genotypes. DRAMS operates on a two-step

process: first, we ensure that all omics data of the same samples were grouped together by their

genotypic relatedness; after that, we find out the potential true ID of each data group (Fig 1).

For the first step, we extracted highly related data pairs. To accomplish this, we called geno-

types from each omics dataset and estimated genetic relatedness among these data. After that,

we grouped the data according to the highly-related data pairs. A “group” was defined as a set

of data, in which each data was highly related to at least one of the other data. Based on the

grouping results, we can classify relationships of data into three types. The first type contains

Fig 1. Illustration of key steps. The workflow has two steps: 1) extracting highly related data pairs; and 2) assigning potential data IDs. For the first step, genotypes were

called for data from each omics types using GATK HaplotypeCaller. Contaminated data were checked and removed based on the VerifyBamID software and

heterozygous rates. DRAMS then estimated genetic relatedness among all available omics data by comparing genotypes using GCTA. Any omics type that contains

genetic information can be used here to call genotypes and compare genetic relatedness. Normally, the genetic relatedness scores for all data pairs were in bimodal

distribution. Highly related data pairs were extracted based on the distribution of relatedness scores and connected to create multiple groups. Based on the matching of

data IDs in each highly related data pair, we can classify the highly-related data pairs as “matched data pairs” and “mismatched data pairs”. We may also find some data

unrelated to any other data. For the second step, we visualized the groups into multiple independent sub networks. For each sub network, each node represents a data in

the group and each edge represents a highly-related data pair. The text in each node represents the data ID. Different colors represent different omics types. The parallel

line connects matched data; whereas, the singular line connects mismatched data. After applying a logistic regression model, DRAMS tool estimated switch directions

and probabilities for each mismatched data pair. The arrow denotes possible switch direction. The thickness of the line weight correlates to the degree of switch

probability. The final IDs for the data in each group can be determined by sorting the nodes.

https://doi.org/10.1371/journal.pcbi.1007522.g001
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highly related data pairs that have the same individual IDs (matched pairs). These are the least

likely to be mis-assigned. The second type contains highly related data pairs with different

individual IDs (mismatched pairs), in which some individual IDs may have been swapped.

We also have some data that are unrelated to any other. We put them into the third type,

which will be discarded since they are unassignable.

For the second step, we connect all the highly related data pairs and produce multiple inde-

pendent groups. Each node within a group represents one data point with each edge connect-

ing a highly related data pair. Then, we use a multi-step, combined knowledge-based and

statistical approach to search for the potential IDs in each of the groups, which contains both

matched and mismatched data pairs. To estimate which data ID from the mismatched data

pair was more likely a correct ID, we first use a logistic regression model. The model estimates

the direction and probability based on three pieces of information: 1) data relationships

among multiple omics types–data matching a greater number of omics sets are more likely to

represent the true ID than those matching only a few; 2) when the reported sex of the data

agrees with the genetics-based sex, it is more likely to be accurate than not; 3) user-defined pri-

ority of omics data: the user’s confidence in the correctness of each omics type is documented

as ranks. We manually identified 44 high-confidence mismatched data pairs with well-defined

switch directions from the PsychENCODE BrainGVEX project[6] and used them to train the

logistic regression model and establish parameters. (Methods). In the last step, we determine

the final ID for all omics data points within each group. We sort all data points in each group

using a modified topological sorting algorithm that is based on the switch probabilities

obtained from the logistic regression above (Methods). The data ID with the highest value in

each group will be selected as the final ID. In this study, we used simulation data and the Psy-

chENCODE BrainGVEX data to evaluate the performance of DRAMS.

Performance of DRAMS using simulation data

To test the performance of DRAMS on correcting data IDs, we generated multiple highly

related data pair datasets with a few samples (ranging from 5% to 30%) being randomly shuf-

fled to simulate sample mix up. The variable parameters for the simulation data include a

range of sample sizes, numbers of omics types, and percentages of mix-ups (Methods). The

stringent mode of DRAMS was used. In the stringent mode, we discarded the data groups with

less than three data or with no shared IDs (i.e. all data IDs in a group are different), as they are

almost unlikely to be corrected. We found that when a larger proportion of samples are mixed

up, fewer samples can be successfully corrected (Fig 2, S3 Table). Taking datasets with five

omics types and a sample size of 300 as examples, when 5% of the samples are mis-assigned, all

samples can be successfully corrected; when 30% of the samples are mis-assigned we can suc-

cessfully correct an average of 91.5% (SD: 2.30%) of errors, with an average of 0.481% (SD:

0.734%) of overcorrected items (Fig 2C).

The number of omics types involved also greatly influences the performance of DRAMS.

The more omics types we have, the better the chance that we can recover the true identity of

each erroneous data. Taking datasets with a sample size of 300 and 15% of mixed-up samples

as examples, if we have three omics types (the minimum number of omics types required for

DRAMS input), an average of 72.2% (SD: 4.62%) of mix-ups can be successfully corrected,

with an average of 0.0207% (SD: 0.146%) of overcorrected items (Fig 2A). If six omics types

are used, an average of 99.6% (SD: 0.815%) mix-ups can be successfully corrected, with an

average of 0.119% (SD: 0.479%) of overcorrected iterms (Fig 2D).

Sample size is also important to the performance of DRAMS. Yet, sample size has no signif-

icant influence on DRAMS performance when proportions of sample mix-ups and number of
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omics used remain consistent (Pearson correlation between sample size and average propor-

tions of successfully corrected mix-ups: -0.0105; P value: 0.901). However, larger sample sizes

seem to stabilize correction results. As sample size increases, the standard deviation of the pro-

portions of successfully corrected mix-ups decreased (Pearson correlation: -0.395; P value:

9.50 × 10−7).

Performance of DRAMS using real data from the PsychENCODE

BrainGVEX project

Data summary. The PsychENCODE BrainGVEX project[6] generated six types of omics

data (S1 Table), including low-depth Whole Genome Sequencing (WGS), RNA sequencing

(RNA-Seq), Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq),

Ribosome Sequencing (Ribo-Seq), and SNP array data from two platforms, including Affyme-

trix 5.0 450K (Affymetrix) and Psych v1.1 beadchips (PsychChip). We called a total of

19,242,755 SNPs from WGS data on autosomes, 17,786,350 SNPs from RNA-Seq data,

10,571,742 SNPs from ATAC-Seq data, 156,354 SNPs from Ribo-Seq data, 10,891,109 SNPs

from Affymetrix data, and 13,589,867 SNPs from PsychChip data. We used two methods to

Fig 2. Performance of DRAMS in simulation data. We simulated sample mix-ups and used DRAMS to correct data IDs. The simulation data includes a range of

sample sizes (50, 100, 150, 200, 250, and 300, each with 50% females and 50% males) and a range of omics types (3, 4, 5, and 6 for figure a, b, c, and d, respectively). To

simulate sample mix-ups, we randomly shuffled a gradient proportion of data for each omics type: 5%, 10%, 15%, 20%, 25%, and 30%. The simulation process was

repeated 100 times. For each repeat, we used DRAMS (the stringent mode) to correct mix-ups. The colored violin plots show the proportion of mix-ups successfully

corrected (different colors indicate different sample sizes). The grey violin plots show the proportion of mix-ups overcorrected (simulations of different sample sizes

were combined). The process of generating simulation data was described in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007522.g002
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check sample contamination: using VerifyBamID[7], and calculating heterozygous rates (S2

Fig). We defined the samples with both FREEMIX >0.3 and heterozygous rates >0.3 as con-

taminated samples. We removed the sample “2015–916” in WGS from the subsequent analyses

for being contaminated.

Check sample alignment based on genetics-based sex. We checked sample alignment by

comparing genetics-based sexes with reported sexes for data of WGS, PsychChip, ATAC-Seq,

and RNA-Seq. Based on X chromosome heterozygosity and Y chromosome call rate, we calcu-

lated an F-value (A Plink-derived metric to distinguish males and females. Details in Methods)

for each data in each omics type. Then, the genetics-based sexes were inferred according to the

distribution of F-values (called SNP-inferred sexes). By comparing reported sex with SNP-

inferred sex, we identified a total of 74 data with mismatched sexes and 1174 data with

matched sexes, indicating that some samples might have been mixed-up (Table 1). For the 426

samples in RNA-Seq, only three samples were identified as having mismatched sexes, indicat-

ing that this RNA-Seq data may have an overall good quality in terms of sample matching. For

Ribo-Seq data, we did not estimate SNP-inferred sexes as the threshold to separate males and

females, since Ribo-Seq data cannot be defined based on the distribution of F-values. Neither

did we estimate SNP-inferred sexes for Affymetrix 5.0 SNP array data since no genotype on

sex chromosomes were available. As complementary evidence, we also used XIST gene expres-

sion level (XIST-inferred sexes) to infer genetics-based sexes for RNA-Seq and Ribo-Seq data

(Methods).

Detect and correct data IDs. We calculated genetic relatedness scores among all the data

in the six omics types using GCTA[3]. Based on the distribution of genetic relatedness scores,

we extracted the highly related data pairs using a threshold of 0.65 (S3 Fig). We identified a

total of 1971 matched pairs and 518 mismatched pairs (Fig 3). We also found eight data that

were not related to any other data, including three ATAC-Seq data, four Ribo-Seq data, and

one Affymetrix data (S4 Table).

Of the 518 mismatched data pairs, 44 pairs have certain switch directions. We used these to

train the logistic regression model (Method). For the remaining 474 mismatched data pairs,

we used the logistic regression model to predict switch directions and probabilities. Because

WGS and PsychChip data were processed with the same sources of DNA, we considered them

as one omics type in the regression step. Similarly, we considered ATAC-Seq and Ribo-Seq as

one omics type in the regression, as they were processed from the same original tissues. Based

on the proportion of samples with concordant SNP-inferred sex and reported sex (Table 1), as

well as on our prior knowledge about the data processing of each omics type, we assigned the

Table 1. Summary of samples and sample corrections in BrainGVEX.

Data type Number of

samples

Number of

contaminated

samples

Number of

sex-

matched

samples�

Number of

sex-

mismatched

samples

Number of

samples missing

sex information

Proportion of

sex-matched

samples

Number of

samples

switched IDs

Number of

samples

unrelated to

any other

Number of

Sex-mismatched

samples after

correcting IDs

WGS 285 1 256 24 5 0.914 54 (19.0%) 0 0

PsychChip 263 0 244 19 0 0.928 43 (16.3%) 0 0

Affymetrix 137 0 - - - - 0 1 -

ATAC-Seq 295 0 260 28 7 0.903 55 (18.6%) 3 15

RNA-Seq 426 0 414 3 9 0.993 3 (0.7%) 0 3

Ribo-Seq 197 0 - - - - 50 (25.4%) 4 -

Total 1603 1 1174 74 21 - 201 (12.5%) 8 18

Note: “Number of sex-matched samples” indicates the number of samples with the same reported sex and SNP-inferred sex.

https://doi.org/10.1371/journal.pcbi.1007522.t001
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omics priority as RNA-Seq> Affymetrix > WGS & PsychChip > ATAC-Seq & Ribo-Seq.

After using the logistic regression to predict the switch directions and probabilities for the 474

mismatched data pairs, we connected all highly related data pairs to create groups of paired

data. Then, we used the modified topological sorting algorithm to sort the nodes in each group

and picked the node with the highest score as the final ID for all data in each group. In the

end, we corrected 201 (12.5%) IDs for data of the six omics types (Table 1, S5 Table).

After correcting data IDs, eighteen data still have mismatched SNP-inferred sexes and

reported sexes, including 15 ATAC-Seq data and three RNA-Seq data (S4 Fig). For ATAC-Seq,

mismatches are not unexpected since accurately inferring genetics-based sex for some samples

is difficult due to their low sequencing coverage in X and Y chromosomes. For RNA-Seq, we

found that the XIST-inferred sexes were all consistent with reported sexes for all the samples

(S5 Fig), indicating that all the samples in RNA-Seq might have been assigned with their true

IDs. As we found three samples with mismatched SNP-inferred sexes and reported sexes, we

inferred that it may be inaccurate to estimate genetics-based sexes based on the genotypes

called from RNA-Seq data. For Ribo-Seq, both XIST-inferred sexes and F-values reported

sexes were more inconsistent than RNA-Seq or DNA-based data. This may suggest that nei-

ther sex chromosome genotypes nor XIST gene expression works well to infer genetics-based

sexes for Ribo-Seq data.

Validate data ID corrections by race group assignment. To confirm that the 201 data

IDs were correctly assigned, we used race as an independent validation. We performed Princi-

pal Component Analysis (PCA) on data of the four major racial groups, European, Asian, Afri-

can, and African American from the 1000 Genomes Project (1000G)[8] (S2 Table) and our

Fig 3. Summary of highly related data pairs. Summary of highly related data pairs among the six omics types. A highly related data pair

was defined as a data pair with genetic relatedness score> 0.65. M: Matched pairs (highly related data pairs that have the same individual

IDs), Mis: Mismatched pairs (highly related data pairs with different individual IDs).

https://doi.org/10.1371/journal.pcbi.1007522.g003
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BrainGVEX data. PCA plotted the 1000G and BrainGVEX data into four racial groups. Before

correcting data IDs, twenty-one data were classified in wrong racial groups. After correcting

data IDs, all the data have concordant races with 1000G (S5 Table). For WGS, PsychChip,

ATAC-Seq, and Ribo-Seq data that have race-switched data IDs, all were switched back into

the correct PCA groups, indicating that those samples were likely to have been mislabeled and

successfully corrected by DRAMS (Fig 4).

Increased number of cis-QTLs after correcting data IDs. We mapped four sets of cis-

QTLs based on different data combinations (WGS with RNA-Seq, WGS with Ribo-Seq, Psy-

chChip with RNA-Seq, and PsychChip with Ribo-Seq) for BrainGVEX data before and after

correcting data IDs using DRAMS. After correcting data IDs, although the sample sizes were

reduced slightly due to the removal of a few unresolved samples, the numbers of cis-QTLs

increased by an average of 1.62-fold for the FDR<0.01 cutoff and average 1.54-fold for the

FDR<0.05 (Table 2). We also tested the proportion of novel and discarded eQTLs replicated

in the Genotype-Tissue Expression (GTEx) project [9] (Table 2). Around 50% of the novel

eQTLs can be replicated in GTEx (denoted by π1). For the discarded eQTLs, only around 20%

can be replicated. This relative stability clearly demonstrated the power and importance of cor-

recting data IDs in QTL mapping.

Sensitivity and specificity in extracting highly related data pairs

To determine the minimum number of SNPs needed to accurately identify highly related data

pairs from all random pairs, we randomly selected eight subsets of SNPs numbered from 200

to 10,000 from the BrainGVEX data and re-calculated pair-wise genetic relatedness scores.

Five types of omics data were used for this estimation, including WGS, PsychChip, ATAC-Seq,

RNA-Seq, and Ribo-Seq. Only the samples with fully matched data IDs among all omics types

were used.

Since both the WGS and the PsychChip platforms cover most of the common SNPs in

the whole genome, we were able to successfully identify all the highly related data pairs

without any false positives, using as few as 200 common SNPs (MAF > 0.1) (S6 Table, S6 Fig).

When comparing DNA-based genotypes with data from other platforms, such as RNA-Seq,

Ribo-Seq, or ATAC-Seq, we could capture only a small proportion of genotyped loci ranging

from 74% to 85%, due to the platforms’ limited coverage of genomic regions. To ensure that

enough genotypes are compared, at least 1000 SNP loci should be used to estimate genetic

relatedness.

The comparison of data from RNA-Seq, Ribo-Seq, or ATAC-Seq can be problematic since

each platform has somewhat different priorities for capturing various genomic regions.

Because of this, we found that fewer genotyped loci could be compared, undoubtedly reducing

sensitivity and specificity. For example, for the comparison between RNA-Seq and ATAC-Seq

data, the proportion of shared SNPs range from 51% to 55%. Even when 1000 common SNPs

were used, nine false positive pairs and three false negative pairs were still found (sensitivity:

0.9796; specificity: 0.9996). We recommend using 2000 or more common SNPs to estimate

genetic relatedness.

We also did the same analysis using rare SNVs (MAF < 0.1). Rare SNVs are less powerful

to distinguish highly related data pairs from random pairs than common SNPs (S7 Table, S7

Fig). It is difficult to identify all highly related data pairs even when 10,000 rare SNVs were

used. However, rare SNVs have good specificity. When 1000 rare SNVs were used, only two

false positives for WGS versus ATAC-Seq (specificity: 0.9999), and five false positives for

RNA-Seq versus ATAC-Seq (specificity: 0.9998) were found. No false positives were found for

all the other comparisons.
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Fig 4. Validation of cross-races switched data. PCA results for BrainGVEX samples (grey dots) and 1000G samples (colored dots) are shown. All data with switched

races are marked with their original IDs and new IDs, as well as the corresponding race. The correspondence between BrainGVEX and 1000G races are shown in S2

Table. PCA results for BrainGVEX (a) WGS, (b) PsychChip, (c) ATAC-Seq, and (d) Ribo-Seq samples are shown. RNA-Seq and Affymetrix data are not shown as there

is no data with switched races. Proportions of switched races data per dataset: WGS: 0.12; PsychChip: 0.12; ATAC-Seq: 0.19; Ribo-Seq: 0.21. CAUC: Caucasian, HiSP:

Spanish, AA: African American, AS: Asian American, CEU: Utah Residents with Northern and Western European Ancestry, ASW: African Ancestry in Southwest US,

CHB: Han Chinese in Beijing, China, YRI: Yoruba in Ibadan, Nigeria.

https://doi.org/10.1371/journal.pcbi.1007522.g004
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Discussion

To meet the demand for reducing the influence of sample mix-ups on multi-omics integrative

studies, we developed a tool DRAMS to detect and correct mixed-up data IDs. The principle of

DRAMS is that genotypes of all omics data assayed on the same individuals should be identical.

We directly call genotypes and estimate pair-wise genetic relatedness by calculating the geno-

type concordance rates among all data to be checked. Therefore, any omics type, as long as it

contains genotype information, could be used for DRAMS correction.

DRAMS groups the data potentially originating from the same individual together and

determines the potential IDs for data within each group. The group size is influenced by the

number of omics types. Having more omics types bolstered the information available to

unlock the potential IDs. However, the increase also results in greater complexity. DRAMS

used a logistic regression model followed by a modified topological network sorting algorithm

to systematically integrate the genetic relationships, sex concordance, and omics priority to

determine the potential ID for each data. The tool performs well in both simulation data and

BrainGVEX data. With this design, DRAMS can be applied to an unlimited number of omics

data. According to our simulation data, DRAMS performs better as more omics types are

included. This is a major advancement of our framework that outperformed existing tools.

Since sex plays such an essential role in verifying data ID, we naturally chose to employ sex

information in the design of DRAMS to increase reliability. When applying DRAMS to

Table 2. Increased number of cis-QTLs after correcting data IDs.

QTL type Category Before

correcting

IDs

After

correcting

IDs

Fold

change

Novel QTLs after correcting IDs (π1

in GTEx �)

Discarded QTLs after correcting IDs

(π1 in GTEx)

WGS vs. RNA-Seq Sample size 278 273 - - -

#QTLs

(FDR<0.01)

57,209 96,242 1.68 43,266 (0.608) 4,233 (0.246)

#QTLs

(FDR<0.05)

90,231 147,942 1.64 66,993 (0.475) 9,282 (0.213)

WGS vs. Ribo-Seq Sample size 191 187 - - -

#QTLs

(FDR<0.01)

18,178 31,345 1.72 - -

#QTLs

(FDR<0.05)

30,641 48,306 1.58 - -

PsychChip vs.

RNA-Seq

Sample size 259 253 - - -

#QTLs

(FDR<0.01)

48,742 76,995 1.58 31,801 (0.638) 3,548 (0.581)

#QTLs

(FDR<0.05)

77,925 117,711 1.51 49,682 (0.519) 9,896 (0.246)

PsychChip vs. Ribo-

Seq

Sample size 177 172 - - -

#QTLs

(FDR<0.01)

15,028 20,447 1.36 - -

#QTLs

(FDR<0.05)

26,350 32,209 1.22 - -

Total #QTLs

(FDR<0.01)

139,157 225,029 1.62 59,399 17,020

#QTLs

(FDR<0.05)

225,147 346,168 1.54 95,495 34,684

Note: Only chromosome 1 was used to save computing time.

� π1 was estimated using the “qvalue” package in R.

https://doi.org/10.1371/journal.pcbi.1007522.t002
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BrainGVEX data, we used two strategies; we inferred genetics-based sexes from sex chromo-

some genotypes (SNP-inferred sex) and alternatively, from XIST gene expression (XIST-

inferred sex). When applying DRAMS to RNA-Seq data, all data had consistent XIST-inferred

sexes and reported sexes after correcting the data IDs. However, three out of 426 data had

inconsistent SNP-inferred sexes and reported sexes. For Ribo-Seq data, as XIST is a non-cod-

ing RNA, it’s not accurate to estimate genetics-based sex according to XIST expression. Also,

due to the low coverage for Ribo-Seq data, estimating genetics-based sex according to sex

chromosome genotypes is not confident. Therefore, it is reasonable that we did not see an

obvious consistency among XIST-inferred sexes, SNP-inferred sexes, and reported sexes.

We used ethnic information as a validation step for BrainGVEX data ID correction. After

correcting data IDs, all of the samples grouped into the correct race with other 1000G refer-

ence samples. Although matched race does not necessarily mean correct data ID, it is strong

evidence to prove that the data IDs were switched to the correct directions for the mismatched

data pairs.

We identified more QTLs after data ID correction. Although this is not direct proof for cor-

rect data ID assignment either, it is likely the results of better alignment of different omics

types, and consequently largely increased statistical power for QTL analyses.

The threshold to extract highly related data pairs should be selected very carefully. A loose

threshold can lead to a large proportion of overcorrection (S8 Table). For data of related indi-

viduals such as family data, it is possible that the related individual pairs have the relatedness

score > 0.65. For this situation, we recommend to use a stringent threshold to extract highly

related data pairs using GCTA or NGSCheckMate. For GCTA, we recommend to eyeball the

distribution of genetic relatedness scores and choose a higher threshold. For NGSCheckMate,

the tool provided a “-f” parameter that defines highly related sample pairs in a stringent mode,

which will reduce the probability of mislabeling among relatives. However, even in stringent

mode, it is still possible that some related individuals be identified as the same individual. In

other words, DRAMS need to be used with great caution when processing data from family

members. That will be a major challenge for algorithm, particularly on data with less usable

genotypes or of more noise.

We used the BrainGVEX data to assess the minimum number of SNPs needed to identify

highly related data pairs. We found that common SNPs have greater power in distinguishing

highly related data pairs from random pairs. Nonetheless, rare SNVs are also useful as they are

unlikely to produce false positive findings. In addition, we also found that when comparing

data from different platforms (which cover different genomic regions), a smaller proportion of

genotyped loci could be compared between different platforms, indicating that additional

SNPs should be used. Based on the BrainGVEX data, we recommend using 2000 or more com-

mon SNPs to extract highly related data pairs for most platforms. Nonetheless, since the geno-

type qualities of different platforms may differ substantially, we recommend including as

many variants as possible, even rare variants, to fortify the sensitivity and specificity of the

DRAMS tool.

Matching omics data is only the first step in the process. Assigning the correct data ID, typi-

cally associated with sample demographic information and phenotypic data, is another impor-

tant step. Conceivably, some analyses are more sensitive to sample information, covariates

(sex, diagnosis, etc.) than others. Mis-assigned sample information severely affects some analy-

ses, such as differential gene expression and case-control comparison. DRAMS can correct

mix-ups and identify correct labels and associated sample information, before conducting the

integrative analyses.

Currently, only a few projects have produced multi-omics data, like the data generated in

Drs. Gilad and Pritchard’s lab[10], data from GTEx[9], and ROSMAP[11, 12]. As more large-
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scale multi-omics data will be generated in the near future to address problems of regulatory

networks and causal relationships, we expect that DRAMS will be helpful for those studies.

Materials and methods

Sample resources

A total of 440 individuals from the PsychENCODE BrainGVEX study[6] with six types of

omics data were used to validate data IDs and assign the potential IDs. BrainGVEX was part of

the PsychENCODE project focusing on gene expression regulation in human brain FC region

(Frontal Cortex). The samples include 420 Caucasians, 2 Hispanic, 1 African American, 3

Asian American, and 14 unknown (S1 Table). The six omics types included 1) 285 samples

(176 males, 106 females, and 3 unknown-sex samples) of low-depth Whole Genome Sequenc-

ing (WGS, average depth: 5×) data; 2) 426 samples (274 males, 152 females) of RNA-Seq data;

3) 295 samples (180 males, 112 females, and 3 unknown-sex samples) of Assay for Transpo-

sase-Accessible Chromatin using Sequencing (ATAC-Seq) data,; 4) 197 samples (122 males, 70

females, and 5 unknown-sex samples) of Ribosome Sequencing (Ribo-Seq) data; and, SNP

array data from two platforms, including 5) 137 samples (92 males, 45 females) of Affymetrix

5.0 450K (Affymetrix) data; and, 6) 263 samples (163 males, 100 females) of Psych v1.1 bead-

chips (PsychChip) data.

Genotype calling from data of each omics type

We used the same pipeline to call genotypes for all sequencing data. For each dataset in

FASTQ format, all reads were mapped to the human reference genome (hg19) using BWA

[13] after sequencing adapters and low-quality bases were removed. PCR duplications were

removed using the MarkDuplicates package in Picard tools (http://broadinstitute.github.io/

picard/). Then, GATK IndelRealigner and BaseRecalibrator were used to recalibrate the map-

ping quality of the reads [14]. For each omics type, genotypes were called using GATK Haplo-

typeCaller for all samples jointly. Each set of omics data were processed separately.

Estimation of sample contamination

Two methods were used to check sample contamination. One is VerifyBamID[7], which

because it requires both BAM files and VCF files as input, can only be applied to sequencing

data. The results include a parameter “FREEMIX” (0–1 scale), which indicates the proportion

of non-reference bases observed in reference sites. This parameter can be used as an indicator

of sample contamination. As an alternate method, we wrote a Linux script to directly calculate

the heterozygous rate based on genotypes. This ran faster than the VerifyBamID approach. We

defined the samples with FREEMIX >0.3 in VerifyBamID and defined heterozygous rates

>0.3 as contaminated samples, which were removed from subsequent analyses. Only heterozy-

gous rates were calculated for PsychChip and Affymetrix samples, as they are not supported by

VerifyBamID.

Infer genetics-based sexes

We used the Plink software (“—check-sex” module in “ycount” mode) to calculate F-values for

data of WGS, PsychChip, ATAC-Seq, RNA-Seq, and Ribo-Seq [15]. This method is mainly

based on the X chromosome heterozygosity. It also uses the Y chromosome call rate to

improve the accuracy of sex estimates. Basically, the F-values were in bi-modal distribution.

Based on the distribution, we were able to select a threshold for each omics type and infer

sexes (SNP-inferred sexes) for each data. The data with F-value larger than the threshold were
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classified as males, while the others were classified as females. We did not infer SNP-inferred

sexes for Ribo-Seq data since an obvious bi-modal distribution of F-values was not apparent.

For RNA-Seq and Ribo-Seq data, we also inferred sexes based on XIST (X-inactive specific

transcript) gene expression levels (XIST-inferred sex). XIST is a noncoding RNA that is only

expressed in cells containing at least two X chromosomes [16]. Normally, the XIST gene is

only expressed in female samples. In this study, we considered samples with XIST expression

larger than 2 (TPM, Transcripts Per Kilobase Million) as females.

We compared the reported sex and genetics-based sex for each data in each omics type and

calculated the sex concordance rate for each omics type. Samples with unknown SNP-inferred

sexes were not included when calculating the sex concordance rate. The sex concordance rate

can represent a parameter indicating omics priority in the logistic regression model (See “Esti-

mate switch directions and probabilities for mismatched data pairs”).

Estimate genetic relatedness and extract highly-related data pairs

Two tools were used to estimate genetic relatedness among data of multiple omics types and

extract highly-related data pairs: GCTA[3] and NGSCheckMate[4]. For GCTA, GRM module

was used. Basically, the genetic relatedness scores are distributed bimodally, so that one peak

with higher scores indicates highly-related data pairs while the other peak indicates random

(unrelated) data pairs. In this way, one can “eyeball” the distribution to determine the thresh-

olds of genetic relatedness scores between every two omics datasets (Fig 1). Using that method,

we applied a threshold of 0.65 for our BrainGVEX data and extracted highly related data pairs

in different omics types. For NGSCheckMate, we ran the software in VCF mode with an “-f”

parameter to enact a strict VAF correlation filter. We calculated the concordance rates of the

two tools based on BrainGVEX data.

Sensitivity and specificity in extracting highly related data pairs

To determine the minimum number of variants required to extract highly related data pairs

from all combination of data pairs, we re-calculated genetic relatedness scores using the

BrainGVEX data based on subsampled SNPs. Data from five omics types were used, including

WGS, PsychChip, ATAC-Seq, RNA-Seq, and Ribo-Seq. We used only the samples that fully

matched in all the five omics types. For comparisons between each two omics types, we ran-

domly selected 200, 400, 600, 800, 1000, 2000, 5000, and 10,000 SNPs that were called by both

omics types and calculated pair-wise genetic relatedness scores using GCTA. The data pairs

with genetic relatedness scores larger than 0.65 were classified as highly related data pairs and

those pairs with smaller scores were classified as unrelated data pairs. For each comparison, we

calculated the true positive rate and false negative rate. We did the same analysis for common

(MAF>0.1) and for rare (MAF<0.1) variants.

Estimate switch directions and probabilities for mismatched data pairs

To estimate the possible switch directions and the probabilities for a mismatched data pair, the

key point must be focusing on determining which data are more likely to bear the true ID. We

used a logistic regression model (Formula 1) to compare the two data presented in each mis-

matched data pair and to estimate the possible switch direction and its probability (Fig 1).

Assuming the mismatched data pair “A” and “B”, if “B” is more likely to have the true ID, then

the appropriate switch direction is from “A” to “B”. Three parameters (x1, x2, and x3, values

range from 0 to 1) were used in this model. The first parameter, x1, indicates which data

matched with more data in other omics types (Formula 2). The second parameter, x2, indicates

which data are more likely to have correct reported sex (Formula 3); and the third, x3, is a
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user-defined parameter indicating the rank of omics priority. If two or more omics types were

processed under the same condition or process, these omics types may have the same sample

mis-labeling, a user could combine these omics types into one type in the regression. If x3 is

not specified, the rank of omics priority will be defined based on the proportion of data that

have matched reported sex and genetics-based sex for each omics type (Formula 4).

ln
p

1 � p

� �

¼ b0 þ b1x1 þ b2x2 þ b3x3 ð1Þ

x1 ¼
nb � na

N � 2
ð2Þ

x2 ¼ Sb � Sa ð3Þ

x3 ¼ Pb � Pa ð4Þ

In formula 2, N is the total number of omics types; and correspondingly, na and nb are the

number of matched data from other omics types for data “A” and “B”, respectively. In formula

3, Sa and Sb indicate the sex matching level for data “A” and “B”, respectively. Taking Sa as an

example, it indicates 1) whether the reported sex and genetics-based sex in data “A” are

matched, and 2) if assigning ID “A” to data “B”, do the reported sex of data “A” and the genet-

ics-based sex of data “B” match? We assign a score 0.5 for each of the two conditions. In for-

mula 4, Pa and Pb represent the proportion of data with matched reported sex and genetics-

based sex for data “A” and “B”, respectively.

A set of hand-picked high-confidence mismatched data pairs with well-defined switch

directions were used as a training set for the logistic regression model. The directions of the

high-confidence mismatched data pairs were determined based on sample relationships and

sex matching. We connected all the highly related data pairs among multiple omics types and

created multiple groups. We extracted the high-confidence mismatched data pairs based on

the following conditions: 1) If only one data had a different ID, which needs to be corrected,

from the others in the group; 2) If the reported sex and genetics-based sex were matched after

correcting that ID based on other data in the group.

After training, the values for β0, β1, β2, and β3 were defined. Then, the model was used to

predict switch directions and probabilities for the rest of the data. For the results, if p> 0.5,

the switch direction will be from “A” to “B”; conversely, if p < 0.5, the switch direction will be

from “B” to “A”; and, if p = 0.5, the switch direction will be uncertain. The values of p for both

directions (p> 0.5, p< 0.5) were normalized (with a range from 0 to 1 respectively) to indi-

cate the probabilities of switch directions.

A modified topological sorting algorithm to determine the potential IDs

We connected all highly related data pairs and generated multiple groups. In each group, each

data was represented by a node, and each data pair was represented by an edge. Based on the

logistic regression model results, the switch direction and probability for each mismatched

data pair corresponded to the direction and weight of each edge. For each matched data pair,

we did not assign a direction or weight for the edge. Since all the data presented in a group

were supposed to have one unique ID, we used a modified topological sorting algorithm to

sort all nodes in each group to determine the potential ID for each data.

The modified topological sorting algorithm was based on the indegrees and outdegrees

weighted by the switch probabilities which had been calculated in the logistic regression
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model. For each node in each group, we calculated the difference between weighted indegree

and weighted outdegree. Afterward, we sorted the nodes in each group based on the difference

between weighted indegrees and outdegrees. For each group, we used the data ID with the

highest priority as the final ID for all data presented in the group.

Simulation data

We generated simulation data to test the performance of DRAMS on correcting data IDs (S1

Fig). At first, we generate data IDs for different samples and omics. A range of sample sizes

(50, 100, 150, 200, 250, and 300) was used, with each dataset having 50% females and 50%

males. The number of omics types ranged from three to six. Then, we randomly shuffled parts

(5%, 10%, 15%, 20%, 25%, and 30%) of the data IDs. In total, we generated 144 simulated data-

sets (six sets of sample size × four sets of omics type × six proportions of mixed-up sets). In an

attempt to mimic reality, we randomly introduced mislabeled sexes for 2% of samples in our

simulation data. In addition, since samples are often swapped within the same batch in reality,

we divided the samples into several batches, with each batch containing 25 samples. The data

ID shuffling all occurred within batches. For each set of simulation data, we corrected data IDs

using DRAMS (stringent mode) and calculated the proportion of mix-ups being successfully

corrected or overcorrected. In stringent mode, we discarded the data groups with less than

three data or with no shared IDs (all data IDs in a group are different). We simulated the pro-

cess 100 times for each dataset.

Validate data ID corrections by racial assignment

To validate the tool, we started by using genotypes that shared loci in BrainGVEX and the

1000 Genomes project (1000G)[8]. For 1000G, we used only the following samples: ASW

(African Ancestry in Southwest US), CEU (Utah Residents with Northern and Western Euro-

pean Ancestry), CHB (Han Chinese in Beijing, China), and YRI (Yoruba in Ibadan, Nigeria).

We first removed genotypes with MAF < 0.01. Then, we used GCTA[3] to estimate genetic

relationships among individuals and performed PCA analysis for both BrainGVEX and 1000G

samples jointly. We used data from 1000G that were located in the same group as the refer-

ence, after which we compared the races of samples from BrainGVEX with the reference

before and after correcting data IDs. Since BrainGVEX and 1000G used different nomencla-

tures for races, we used analogical names or close races between BrainGVEX and 1000G to

align the data (S2 Table).

Detect QTLs before and after correcting mix-ups

We used FastQTL[17] to map QTL within the BrainGVEX samples both before and after cor-

recting data IDs. We defined the cis-QTL region as 1 million base pairs between the SNP

marker and the gene body. Since we intend to test whether the number of cis-QTLs increased,

only chromosome 1 was used to save computing time. R package “qvalue”[18] was used for

multiple tests. We tested four types of cis-QTLs calculations: WGS with RNA-Seq, WGS with

Ribo-Seq, PsychChip with RNA-Seq, and PsychChip with Ribo-Seq. For RNA-Seq and Ribo-

Seq samples, we used log2 transformed CPM quantification data calculated by VOOM[19].

We selected 30 hidden factors as covariates using the PEER software[20] for RNA-Seq and

Ribo-Seq samples. As one or multiple of the hidden factors estimated by PEER were signifi-

cantly associated with known covariates (age of death, diagnosis, brain bank, ethnicity, and

sex) (S8 Fig), we only included the 30 PEER factors in QTL analyses. We used two cutoffs

(FDR< 0.05, FDR< 0.01) for the cis-QTL results.
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Code availability

The code of DRAMS was implemented in Python3 and deposited in GitHub (https://github.

com/Yi-Jiang/DRAMS). We released the data preprocessing codes, including genotype calling,

sample contamination checking, genetics-based sex inference, genetic relatedness score calcu-

lation, and extracting highly related data pairs. We also provided a guideline for using Cytos-

cape to visualize sample relationships within networks [21].

Computational requirement and timing for 200 samples with 6 omics data

Step 1, map reads to reference genome (FASTQ to BAM, for one sample, 4Gb data size): 4

CPU, 15G memory, 1.5 hours.

Step 2, call genotypes (BAM to VCF, for one sample, 4Gb data size): 12 CPU, 20G memory, 7

hours.

Step 3, infer genetics-based sexes (for one sample): 1 CPU, 1G memory, 1 minute.

Step 4, calculate genetic relatedness scores: 1 CPU, 1G memory, 10 minutes.

Step 5, correct data IDs: 1 CPU, 1G memory, 5 minutes.

Supporting information

S1 Fig. A flowchart of testing DRAMS in simulation data. Simulation data were generated

to test the performance of DRAMS. Step 2 to step 4 were repeated four times.

(TIF)

S2 Fig. Heterozygous proportion and VerifyBamID results implied possible contaminated

samples. Two methods (Heterozygous proportion and VerifyBamID) were used to estimate

sample contamination for WGS, ATAC-Seq, RNA-Seq, and Ribo-Seq data. For VerifyBamID

results, “FREEMIX” (0–1 scale) was used to indicate possible sample contamination. For Psy-

chChip and Affymetrix samples, we calculated only heterozygous proportions.

(TIF)

S3 Fig. Distribution of genetic relatedness scores among omics types. Genetic relatedness

scores were calculated by GCTA.

(TIF)

S4 Fig. Increased concordance of reported sex and genetics-based sex in corrected data

IDs. Genetics-based sexes were inferred using Plink. Larger F-value indicated that the sample

is more likely to be male. Ribo-Seq and Affymetrix samples were not shown since we were not

able to infer the genetics-based sexes.

(TIF)

S5 Fig. Comparison of genetics-based sexes inferred from sex chromosome genotypes and

XIST expression. For sex chromosomes-inferred sexes, larger F-value indicates that the sam-

ple is more likely to be male. For XIST expression-inferred sex, the samples with XIST expres-

sion larger than zero are more likely to be female. The reported sexes were based on samples

before ID correction.

(TIF)

S6 Fig. Genetic relatedness scores calculated using subsampled common SNPs. Genetic

relatedness scores were calculated based on common SNPs (MAF>0.1) randomly selected

PLOS COMPUTATIONAL BIOLOGY A tool to detect and re-align mixed-up samples

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007522 April 13, 2020 16 / 19

https://github.com/Yi-Jiang/DRAMS
https://github.com/Yi-Jiang/DRAMS
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007522.s006
https://doi.org/10.1371/journal.pcbi.1007522


from BrainGVEX data. Only the samples that matched well among all omics types were used.

We only showed a subset of randomly selected mismatched data pairs according to the num-

ber of matched data pairs.

(TIF)

S7 Fig. Sample relatedness scores calculated using subsampled rare SNVs. Genetic related-

ness scores were calculated based on randomly selected rare SNVs (MAF<0.1) from BrainG-

VEX data. Only the samples that matched well among all omics types were used. We only

showed a subset of randomly selected mismatched data pairs according to the number of

matched data pairs.

(TIF)

S8 Fig. Correlation between known covariates and PEER factors. Spearman correlation tests

were performed between PEER factors and ageDeath. One-way ANOVA tests were performed

between PEER factors and Diagnosis, BrainBank, Ethnicity, and Sex. P values were marked for

the cells with significant correlation (P value < 0.05).

(TIF)

S1 Table. Sample list in BrainGVEX. A total of 440 samples from BrainGVEX were used to

correct data IDs using our DRAMS. The number of data produced from different omics types

are shown for each sample.

(XLSX)

S2 Table. Correspondence between BrainGVEX and 1000G races.

(XLSX)

S3 Table. Proportion of successfully corrected mix-ups in simulation data.

(XLSX)

S4 Table. Highly related data pairs in BrainGVEX. Genetic relatedness scores were calcu-

lated using GCTA. The highly related data pairs were extracted using a 0.65 cutoff.

(XLSX)

S5 Table. Corrected sample IDs in BrainGVEX. We corrected a total of 201 sample IDs

using DRAMS. PCA was performed for both BrainGVEX samples and 1000G samples using

GCTA based on genetic relationships among the samples. The races in BrainGVEX samples

and corresponding groups of 1000G were compared. The PCA results were shown in Fig 3.

(XLSX)

S6 Table. Sensitivity and specificity in extracting highly related data pairs with subsampled

common variants. Only variants with MAF>0.1 were used. TP: true positive pairs, indicating

data pairs with genetic relatedness score > 0.65 and with the same ID. TN: true negative pairs,

indicating data pairs with genetic relatedness score< 0.65 and with different IDs. FP: false pos-

itive pairs, indicating data pairs with genetic relatedness score > 0.65 and with different IDs.

FN: false negative pairs, indicating data pairs with genetic relatedness score< 0.65 and with

the same ID.

(XLSX)

S7 Table. Sensitivity and specificity in extracting highly related data pairs with subsampled

rare variants. Only variants with MAF<0.1 were used.

(XLSX)

S8 Table. The effect of different genetic relatedness thresholds on the performance of

DRAMS. The PsychENCODE BrainGVEX data were used to assess the effect of different
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genetic relatedness thresholds on the performance of DRAMS. Only the samples with reported

sex and race information and genetics-based sexes were used (WGS: 280, PsychChip: 263,

RNA-Seq: 417, Ribo-Seq: 152, ATAC-Seq: 288). Gradient thresholds were used to extract

highly related data pairs.

(XLSX)

S9 Table. Comparison of GCTA and NGSCheckMate in estimating genetic relatedness.

(XLSX)

S1 Text. Comparison of GCTA and NGSCheckMate in estimating genetic relatedness.

(DOCX)
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