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BioCPPNet: automatic bioacoustic 
source separation with deep neural 
networks
Peter C. Bermant

We introduce the Bioacoustic Cocktail Party Problem Network (BioCPPNet), a lightweight, modular, 
and robust U-Net-based machine learning architecture optimized for bioacoustic source separation 
across diverse biological taxa. Employing learnable or handcrafted encoders, BioCPPNet operates 
directly on the raw acoustic mixture waveform containing overlapping vocalizations and separates the 
input waveform into estimates corresponding to the sources in the mixture. Predictions are compared 
to the reference ground truth waveforms by searching over the space of (output, target) source order 
permutations, and we train using an objective function motivated by perceptual audio quality. We 
apply BioCPPNet to several species with unique vocal behavior, including macaques, bottlenose 
dolphins, and Egyptian fruit bats, and we evaluate reconstruction quality of separated waveforms 
using the scale-invariant signal-to-distortion ratio (SI-SDR) and downstream identity classification 
accuracy. We consider mixtures with two or three concurrent conspecific vocalizers, and we examine 
separation performance in open and closed speaker scenarios. To our knowledge, this paper redefines 
the state-of-the-art in end-to-end single-channel bioacoustic source separation in a permutation-
invariant regime across a heterogeneous set of non-human species. This study serves as a major step 
toward the deployment of bioacoustic source separation systems for processing substantial volumes 
of previously unusable data containing overlapping bioacoustic signals.

Bioacoustic source separation, informally referred to as the “cocktail party problem” (CPP), encompasses the 
problem of detecting, recognizing, and extracting meaningful information from conspecific signaling interactions 
in the presence of concurrent vocalizers in a noisy social environment1. Automatic source separation functions to 
isolate individual speaker vocalizations from a recording with overlapping signals. While human speech separa-
tion is an active and well-studied area of work involving the recent emergence of supervised deep neural networks 
(DNNs) for speaker separation2–7, the bioacoustic CPP remains comparatively understudied8–11. Occurrence of 
overlapping acoustic mixtures in recordings is especially common and problematic in the non-human bioacoustic 
domain. For instance, 58% of recordings of African elephant (Loxodonta africana) vocalizations contained at 
least two concurrent signalers12; 16% of sperm whale (Physeter macrocephalus) codas were overlapped by codas 
generated by another whale, and 22% were followed by another coda within 2s13, which is similar to how gela-
das (Theropithecus gelada) synchronize the onsets of their vocalizations14; in the NIPS4Bplus richly annotated 
birdsong dataset15, of the duration of recordings with vocalizations, nearly 20% contain simultaneously active 
classes. With no formal method for isolating individual-specific calls, biologists are often forced to omit data 
containing overlapping calls produced by simultaneously signaling vocalizers. In this paper, we offer a lightweight 
and modular neural network (NN) that acts on raw waveforms directly to reconstruct sources from recordings 
containing signal mixtures. Our machine learning (ML) model, the Bioacoustic Cocktail Party Problem Network 
(BioCPPNet), serves as an effective end-to-end source separation system to extract source estimations from 
composite mixtures, and we optimize the architecture specifically to accommodate bioacoustic vocal diversity 
across a range of taxonomic groups, even in limited data regimes.

In the cases of human speech and music, acoustic constraints and underlying principles that can enable source 
separation are comparatively well-characterized. In human speech source separation, these include assump-
tions on the statistical properties of sources contained in speech mixtures, such as nonstationarity16, statistical 
independence17,18, and disjoint orthogonality19. Expressly, human speech separation models often operate under 
the approximately true assumption that the time-frequency representations (TFRs) of concurrent sources do not 
overlap too much (i.e., overlapping sources rarely excite the same time-frequency point), henceforth referred to 
as the DUET principle19. In music source separation, features such as regular harmonic structures, repetition, 
characteristic frequency contours, rates of pitch fluctuation, and the percussive or harmonic nature of different 
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instruments underlie the ability to separate mixed sources20. Similarly, bioacoustic source separation may exploit 
perceptual mechanisms including acoustic cues such as fundamental frequency, harmonicity, frequency separa-
tion, onset/offset asynchrony, and timbre, among others1. Further, the statistical condition of nonstationarity of 
sources in mixtures remains valid for bioacoustic vocalizations21–23. Finally, given that bioacoustic calls across 
multiple species exhibit individually-distinctive acoustic properties24–27, unique individual-specific spectrotem-
poral cues may functionally limit the extent of time-frequency overlap of mixed sources, in accordance with the 
DUET principle. Together, these assumptions, in principle, allow for the unmixing of bioacoustic mixtures into 
separated auditory streams.

Throughout the entire pipeline from data preprocessing to separator model evaluation, non-human bio-
acoustic source separation presents numerous challenges that complicate the problem relative to human speech 
or music separation. With non-human animals, technical and logistical difficulties associated with procuring 
bioacoustic data render it challenging to compile comparably-sized annotated datasets, and unique non-human 
vocal behavior demands differential treatment according to the species of interest. In the human speech domain, 
it is common practice to use large datasets of high-quality recordings downsampled to 8 kHz2 to minimize com-
putational costs and to train models on segments several seconds in duration. However, this approach to data 
preprocessing is not always feasible for non-human animals. For instance, while the fundamental frequency (F0) 
of macaque vocalizations is on the order of 0.1-1 kHz27, which suggests that they could be treated similarly as 
human speech in terms of downsampling to reduce computational costs, the mean maximum F0 of bottlenose 
dolphin (Tursiops truncatus) signature whistles can range from 9.3-27.3 kHz28, which means that with sampling 
rates of 96 kHz, even the lowest order overtones approach or exceed the native Nyquist frequency. This is further 
exacerbated in animals such as bats, which can emit broadband calls with dominant frequencies ranging from 
11-212 kHz29. Given the wide-ranging vocal behavior of non-human species, it is often infeasible to downsample 
recordings, resulting in long input sequences that pose a challenge to modern ML models. Though music source 
separation models such as Demucs30 have addressed higher sampling rates up to 44.1 kHz, the spectrotemporal 
parameters of non-human acoustic signals demand that we consider source separation with sampling rates up 
to 250kHz while still employing sufficiently long input sequences to reflect timescales related to the relevant 
biological behavior. The combination of relatively small datasets recorded with high sampling rates has significant 
implications for automatic bioacoustic source separation. In particular, time-domain separator NNs may strug-
gle to capture long term temporal dependencies in the input time series, and recurrent-based approaches are 
often prohibitively expensive in terms of memory and computational costs. Further, heavyweight models such 
as those used to address human speech separation may overfit small datasets, impairing the models’ capacities 
to generalize. With BioCPPNet, we construct a lightweight convolutional model both to efficiently separate long 
mixture waveform sequences and to minimize the risk of overfitting small bioacoustic datasets.

In general, two families of algorithms have been implemented to solve the human speech CPP. These include 
frequency masking approaches2,31 that operate on handcrafted TFR inputs generated by defining a function 
F : R

N → C
T×F that maps the N-sample acoustic waveform to a possibly complex-valued T-element tem-

poral sequence of F-dimensional spectral features; and time-domain methods3,5 that operate on raw acoustic 
waveforms with learnable encoders. While existing research32 has compared various options for the TFR input, 
frequency masking-based methods for human speech separation commonly implement the mel-scaled short-
time Fourier transform (STFT)-based spectrogram33 given its correspondence to human auditory processing 
and perception. In the bioacoustic regime, it remains unclear which TFRs may be optimal for ML applica-
tions. Though spectrograms or log-magnitude spectrograms are conventionally employed regardless of vocal 
characteristics, there exist numerous options for TFRs according to the vocal properties of the particular spe-
cies of interest. For example, the Hilbert Huang transform (HHT) may provide advantages over Fourier-based 
analysis for transient signals such as those produced by sperm whales34; wavelet transforms have been used for 
automated birdsong detection35; though not extensively implemented in the bioacoustic literature, invariant 
scattering representations36,37 provide yet another option for representing animals sounds. Further, there also 
exist learnable spectral feature representations generated using convolutional neural networks (CNNs) acting 
on raw waveforms3,38,39, but these fully learnable transforms remain unexplored in the bioacoustic domain. To 
address the fundamental bioacoustic representation problem, BioCPPNet provides a modular architecture to 
enable rapid experimentation using handcrafted or fully learnable encoders in combination with various fixed or 
learnable inverse transform decoders to recover the separated raw acoustic waveforms. In this study, we employ 
various STFT-based or learnable representations, but the architecture is compatible with other TFRs, which we 
defer to future studies.

Numerous additional factors further complicate the bioacoustic CPP. For instance, native environmental con-
ditions often include acoustic interferences and energetic maskings that impair the ability of animals to recognize 
and discriminate signals. These interferences can consist of spectrotemporally overlapping calls produced by 
heterospecific signalers, other sources of biotic and abiotic noise, and anthropogenic sounds1. With these chal-
lenges, it remains difficult to construct sufficiently large and suitably annotated datasets to enable the training 
of supervised learning algorithms with access to ground truth signals. Given this limited and noisy data regime, 
we design BioCPPNet as a less complex model than many existing human speech separation networks3–5, and 
we integrate fixed or learnable noise reduction into the model architecture. Further, compared to human speech 
separation applications, bioacoustic source separation models are more difficult to evaluate. While subjective 
assessment of the perceptual quality of human speech separation models can rely on panels of human listeners3, 
the human auditory system is often not well-suited for evaluating non-human vocalizations. This, in combination 
with the obscure interpretability of objective metrics such as the scale-invariant signal-to-distortion ratio (SI-
SDR)40 in the context of different species with different vocal behaviors, implies that the evaluation of bioacoustic 
source separation models could benefit from other metrics. Qualitatively, we assess the separation performance 
of BioCPPNet using visual representations of the acoustic data in the form of spectrograms, and we quantitatively 
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address the performance of BioCPPNet by considering downstream tasks. In particular, following the separation 
of the mixture into estimated source outputs, we feed the predictions into trained individual identity classifier 
models under the assumption that classification accuracy on downstream ML-based tasks serves as an objective 
proxy for the quality of reconstructed separated waveforms.

While the human speech and music separation problems are competitive areas of work, the bioacoustic CPP 
has received comparatively less attention, as current bioacoustic research often emphasizes other ML-based tasks 
such as automated detection and classification of bioacoustic sounds24,41,42. However, recent work has imple-
mented both semi-classical and deep ML-based approaches to address bioacoustic source separation, employing 
time domain and TFR-based algorithms. Fast fixed-point independent component analysis (FastICA), principal 
component analysis (PCA), and non-negative matrix factorization (NMF) have been used to separate mixtures 
of overlapping frog sounds9. Mixed signals of overlapping dolphin signature whistles were separated with the 
joint approximate diagonalization of eigenmatrix (JADE) algorithm8. Time-frequency masking was used to 
address humpback whale (Megaptera novaeangliae) song separation43. More contemporary approaches have 
made use of DNNs, but they remain limited in their scope. For instance, bi-direction long short-term memory 
(BLSTM) networks were implemented to separate overlapping bat echolocation and communication calls10. This 
separation of composite mixtures containing signals of disparate classes or natures is more analogous to human 
music instrument separation into predefined classes44; it treats the separation problem as a multi-class regression 
problem and thus avoids the fundamental permutation problem2 of the CPP in which the source estimate chan-
nel order is arbitrary, potentially yielding conflicting gradients during training45. Other DNN-based approaches 
have adopted multi-step schemes to predict source number and to extract mask estimates using a segmentation-
based approach to bat call separation optimized for fundamental frequency contours11; however, the omission of 
higher-order harmonics presents a dilemma since in biological systems, the inharmonic mistuning of spectral 
components may serve as an important acoustic cue for overcoming the CPP46; further, this bounding box-based 
approach performs best on signals containing low-to-moderate spectrotemporal overlap, which means they may 
be limited in their generalizability or practical implementation.

BioCPPNet represents a complete state-of-the-art permutation-invariant bioacoustic source separation pipe-
line across multiple species characterized by differential vocal behavior. The model is specifically designed to 
address key challenges of bioacoustic data. Explicitly, in formulating BioCPPNet, we construct the network as 
a significantly lighter weight and less complex model than existing human speech and music source separation 
models to avert overfitting small bioacoustic datasets. We use a fully convolutional architecture to efficiently pro-
cess acoustic data recorded with sampling rates exceeding those conventionally employed in the human speech 
and music separation literature; this enables BioCPPNet to model source separation across multiple species with 
wide-ranging vocal behavior while circumventing the Shannon-Nyquist aliasing problem associated with down-
sampling. Additionally, the BioCPPNet architecture includes a modular on-the-fly TFR encoder, which enables 
optimization of the representation of input audio signals to address the fundamental representation problem 
of bioacoustic data (i.e. to determine which TFRs to employ in an application of ML techniques to the acoustic 
behavior of a given species), and the network incorporates fixed or learnable denoising to eliminate abiotic, 
anthropogenic, and other environmental noise and interference that may be present in bioacoustic recordings. 
We train the model using an objective loss function related to the perceptual audio quality of the reconstructed 
signals to emphasize acoustic cues such as harmonicity that might play a role in how the animal brain mediates 
the bioacoustic CPP1. We apply BioCPPNet to a diverse set of non-human species, including rhesus macaques 
(Macaca mulatta), bottlenose dolphins, and Egyptian fruit bats (Rousettus aegyptiacus). The multidisciplinary 
approach requires that we integrate a range of fields of study, which means the scope of our treatment is neces-
sarily broad. We advocate future studies to expand on our work.

Methods
Our novel approach to bioacoustic source separation involves an end-to-end pipeline consisting of multiple dis-
crete steps, including (1) synthesizing a dataset, (2) developing and training a separator network to disentangle 
the input mixture, and (3) constructing and training a classifier model to employ as a downstream evaluation task. 
This workflow requires few hyperparameter modifications to account for unique vocal behavior across different 
biological taxa but is otherwise general and makes no species-level assumptions about the spectrotemporal struc-
ture of the source calls. We develop a complete framework for bioacoustic source separation in a permutation-
invariant mode using overlapping waveforms drawn from the same class of signals. We apply BioCPPNet to 
macaques, dolphins, and Egyptian fruit bats, and we consider two or three concurrent “speakers”. Note that we 
henceforth refer to non-human animal signalers as “speakers” for consistency with the human speech separation 
literature2. We address both the closed speaker regime in which the training and evaluation data subsets contain 
calls produced by individuals drawn from the same distribution as well the open speaker regime in which the 
model is tested on calls generated by individuals not present in the training dataset.

Bioacoustic data.  We investigate a set of species with dissimilar vocal behaviors in terms of spectral and 
temporal properties. We apply BioCPPNet to a macaque coo call dataset47 consisting of 7285 coos produced 
by 8 unique individuals; a bottlenose dolphin signature whistle dataset26 comprised of 400 signature whistles 
generated by 20 individuals, of which we randomly select 8 for the purposes of this study; and an Egyptian fruit 
bat vocalization dataset48 containing a heterogeneous distribution of individuals, call types, and call contexts. In 
the case of the bat dataset, we extract the data (31399 calls) corresponding to the 15 most heavily represented 
individual bats, reserving 12 individuals (27586 calls) to address the closed speaker regime and the remaining 3 
individuals (3813 calls) to evaluate model performance in the open speaker scenario.
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Datasets.  The mixture dataset is generated from a species-specific corpus of bioacoustic recordings contain-
ing signals annotated according to the known identity of the signaller. Motivated by WSJ0-2mix2, a preeminent 
reference dataset used for human single-channel acoustic source separation, we adopt a similar approach of con-
structing bioacoustic datasets by temporally overlapping and summing ground truth individual-specific signals 
to enable supervised training of our model. For macaques and dolphins, the mixture waveforms contain discrete 
source calls that overlap in the time domain, by design. For bats, mixtures are constructed by adding signal 
streams, each of which may exhibit one or more temporally separated sequential vocal elements. In all cases, the 
mixtures operate under the assumption that, without loss of generality, the constituent sources vary in the degree 
of spectral overlap due to differential spectrotemporal properties of sources, in accordance with the DUET prin-
ciple (i.e, the mixtures contain approximately disjoint sources that rarely coincide in dominant frequency)19. The 
resultant dataset consists of an input array of the composite mixture waveforms, a target array containing the 
separated ground truth waveforms corresponding to the respective mixtures, and a class label array denoting 
the identities of the vocalizing animals responsible for generating the signals. In the case of macaques, we here 
consider closed speaker set mixtures of two and three simultaneous speakers, but our method is functionally not 
limited in the number of sources (N) it can handle. For dolphins, we consider the closed speaker regime with two 
overlapping calls, and for bats, we consider the closed and open speaker scenarios with two sources.

We first extract the labeled waveforms either by truncating or zero-padding the waveforms to ensure that all 
the samples are of fixed duration. We select the number of frames either by computing the mean plus three-sigma 
of the durations of the calls contained in the corpus from which we draw the signals, by selecting the maxi-
mum duration of all calls, or by choosing a fixed value. For macaques, dolphins, and bats, we use 23156 frames 
(0.95s), 290680 frames (3.03s), and 250000 frames (1.0s), respectively. We then randomly select vocalizations 
from N different speakers drawn from the distribution of individuals used in the study (8 macaques, 8 dolphins, 
12 bats for the closed speaker regime, 3 bats for the open speaker regime) and mix them additively, ensuring 
to randomly shift the overlaps to simulate a more plausible scenario and to provide for asynchronicity of start 
times, an important acoustic cue that has been suggested as a mechanism with which the animal brain can solve 
the CPP1. Despite higher computational and memory costs, we opt to use native sampling rates, since certain 
animal vocalizations may reach frequencies near the native Nyquist frequency. With this in mind, however, our 
method does provide for resampling when the vocalizations of the particular species of interest are amenable 
to downsampling. Explicitly, for the three species we consider including macaques, dolphins, and bats, we use 
sampling rates of 24414 Hz, 96 kHz, and 250 kHz, respectively. For the closed speaker regime, the training and 
evaluation subsets contain calls produced by the same distribution of individuals to ensure a closed speaker 
set. We segment the original nonoverlapping vocalizations into 80/20 training/validation subsets. We generate 
the mixture training waveforms using 80% of the calls, and we construct the mixture validation subset using 
the remaining 20% of calls held out from the training data. In the case of overlapping bat calls (for which the 
corpus of bioacoustic recordings contains O (10 hours) of data as opposed to O (10−1 hours) for macaques and 
dolphins), we also address the open speaker source separation problem by constructing a further testing data 
subset of mixtures of calls of additional vocalizers not contained in the training distribution. For macaques, we 
construct a training data subset comprised of 12k samples and a validation subset with 3k samples, all of which 
contain calls drawn from 8 animals. For dolphins, we randomly select 8 individuals and construct training/
validations subsets with 8k and 2k samples, respectively. For bats, we select 15 individuals, randomly reserving 
12 for the closed speaker problem and the remaining 3 for the open speaker situation. We train the bat separa-
tor model on 24k mixtures. We evaluate performance in both the closed and open speaker scenarios using data 
subsets consisting of 6k mixtures containing unseen vocalizations produced by the appropriate distribution of 
individuals according to the regime under consideration. We repeat the bat training using a larger mixture dataset 
(denoted by +) containing 72k samples. We here report validation metrics to ensure that we are evaluating model 
performance on unseen mixtures of unseen calls in the closed speaker regime and on unseen mixtures of unseen 
calls of unseen individuals in the open speaker regime.

For the downstream classification task, we extract vocalizations annotated according to the individual identity, 
and we segment the calls into an 80/20 training/testing split to ensure that we are evaluating model performance 
on unseen calls. For both the training and evaluation data subsets, we employ an augmentation scheme in which 
we apply random temporal shifts to call onsets to better reflect more plausible real-world scenarios.

Classification models.  In an effort to provide a more physically interpretable evaluation metric to sup-
plement the commonly-implemented SI-SDR used in human speech separation studies, we develop CNN-
based classifier models to label the individual identity of the separated vocalizations as a downstream task. This 
requires training classification networks to predict the speaker class label of the original unmixed waveforms. 
For each species we consider, we design and train custom simple and lightweight CNN-based architectures 
largely motivated by previous work24, tailored to accommodate the unique vocal behavior of the given species.

The first layer in the model is an optional high pass filter constructed using a nontrainable 1D convolution 
(Conv1D) layer with frozen weights determined by a windowed sinc function49,50 to eliminate low-frequency 
background noise. We omit this computationally intensive layer for macaques and Egyptian fruit bats, but we 
implement a high pass filter for the dolphin dataset, selecting an arbitrary cutoff frequency of 4.7 kHz and tran-
sition bandwidth 0.08 to remove background without impinging on the region of support for dolphin whistles. 
After the optional filter is an encoder layer to compute on-the-fly feature extraction. We experimented with a 
fully learnable free Conv1D filterbank, a spectrogram, and a log-magnitude spectrogram and observed optimal 
performance using a non-decibel (dB)-scaled STFT layer computed with a nfft window width, a hop window 
shift, and a Hann window where nfft and hop are species-dependent variables. For macaques, we select nfft=1024 
and hop=64 corresponding to temporal scales on the order of 40ms and frequency resolutions on the order of 
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20 Hz. We choose nfft=1024 and hop=256 for dolphins and nfft=2048 and hop=512 for bats, corresponding to 
temporal resolutions of ~ 10 ms and ~  8 ms and frequency resolutions of ~ 90 Hz and ~ 120 Hz, respectively.

Following the built-in feature engineering, the architecture includes 4 convolutional blocks, which consist of 
two sequential 2D convolution (Conv2D) layers with leaky ReLU activation and a max pooling layer with pool 
size 4. Next is a dense fully connected layer with leaky ReLU activation followed by another linear layer with 
log softmax activation to output the V log probabilities (i.e. confidences) where V is the number of individual 
vocalizers used in the study (8, 8, 12 for macaques, dolphins, and bats, respectively). We also include dropout 
regularization with p=0.25 for the macaque classifier and p=0.5 for the dolphin and bat classifiers to address 
potential overfitting. With these architectures, the macaque, dolphin, and bat classifier models have 230k, 279k, 
and 247k trainable parameters, respectively.

For all species, we minimize the negative log-likelihood objective loss function using the Adam optimizer51 
with learning rate lr = 3e−4. For macaques, dolphins, and bats, respectively, we train for 100, 50, and 100 epochs 
with batch sizes 32, 8, and 8. We serialize the model after each epoch and select the top-performing models. We 
opt not to carry out hyperparameter optimization since the classification task is of secondary importance and 
is used solely as a downstream task.

Separation models.  BioCPPNet (Fig. 1) is a lightweight and modular architecture with a modifiable rep-
resentation encoder, a 2D U-Net core, and an inverse transform decoder, which acts directly on raw audio via 

Figure 1.   (a) Schematic overview of the BioCPPNet pipeline. Source vocalization waveforms are overlapped in 
time and mixed additively. BioCPPNet operates on the mixture waveform, yielding predictions for the separated 
waveforms, which are compared to the source ground truths, up to a permutation. The estimated waveforms 
are classified by the identity classification model24 (ID) to compute the downstream classification accuracy 
metric. (b) Block diagram of the BioCPPNet architecture. The input mixture waveform is transformed to a 
learnable or handcrafted representation (Rep), which then passes through a 2-dimensional U-Net52 composed of 
a contracting encoder path and an expanding decoder path with skip connnections. The encoder path consists 
of sequential downsampling convolutional blocks, each of which is constructed using two convolutional layers 
(Conv2D) with leaky ReLU activation and batch normalization (BatchNorm) followed by a max pooling. The 
decoder path employs upsampling convolutional blocks, consisting of an upsampling and skip connection 
concatenation followed again by the Conv2D layers with leaky ReLU and BatchNorm. The U-Net predicts masks 
(Mask 0 and Mask 1), the number of which is determined by the number of sources (N), that are multiplicatively 
applied to the original mixture representation. The predicted time-frequency representations of the separated 
waveforms are inverted with learnable or handcrafted inverse transforms (iRep) to output raw waveforms. All 
schematic diagrams were created using Affinity Designer (version 1.8.1) https://​affin​ity.​serif.​com/​en-​us/​desig​
ner/.

https://affinity.serif.com/en-us/designer/
https://affinity.serif.com/en-us/designer/
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on-the-fly learnable or handcrafted transforms. The structure of the network is designed to provide for extensive 
experimentation, optimization, and enhancement across a range of species with variable vocal behavior. We 
construct and train a separation model for each species and each number N of sources contained in the input 
mixture.

Model architecture.  As with the classifier model, the network’s encoder consists of a feature engineering block, 
the initial layer of which is an optional high pass filter. This is followed by the representation transform, which 
includes several options including the Conv1D free encoder, the STFT filterbank, and the log-magnitude (dB) 
STFT filterbank. We choose the same kernel size (nfft) and stride (hop) parameters defined in the classifier 
model. Sequentially following the feature extraction encoder is a 2D U-Net core. This architecture consists of 
B (4 for macaques, 3 for dolphins, and 4 for bats) downsampling convolutional blocks, a middle convolutional 
block, and B upsampling convolutional blocks. The downsampling blocks consist of two 2D convolutional layers 
with filter number that increases with model depth with leaky ReLU activation followed by a max pooling with 
pool size 2, 6, and 3 for macaques, dolphins, and bats. The middle block contains two 2D convolutional layers 
with leaky ReLU activation. The upsampling blocks include an upsampling using the bilinear algorithm and a 
scale factor corresponding to the pool size used during downsampling, followed by skip connections in which 
the corresponding levels of the contracting and expanding paths are concatenated before passing through two 
2D convolutional layers with leaky ReLU activation. All convolutional layers in the downsampling, middle, and 
upsampling blocks include batch normalization after the activation function to stabilize and expedite training 
and to promote regularization. Though our default implementation is phase-unaware, we also offer the option 
for a parallel U-Net pathway working directly on phase information, which has been shown to improve perfor-
mance in other applications53–55. The final layer in the U-Net core is a 2D convolutional layer with N channels, 
which are then split prior to entering the inverse transform decoder. For the inverse transform, we again pro-
vide numerous choices including a free filterbank decoder based on a 1D convolutional transpose (ConvTrans-
pose1D) layer, an iSTFT layer, an iSTFT layer accepting dB-scaled inputs, and a multi-head convolutional neural 
network (MCNN) for fast spectrogram inversion56. In detail, the U-Net returns N masks that are then multiplied 
by the original encoded representation of the mixture waveform. The separated representations are then passed 
into the inverse transform layer in order to yield the raw waveforms corresponding to the model’s predictions for 
the separated vocalizations. We initialize all trainable weights using the Xavier uniform initialization. In the case 
of macaques, we experiment across all combinations of representation encoders and inverse transform decod-
ers, and we find optimal performance using the handcrafted non-dB STFT/iSTFT layers operating in the time-
frequency domain. Since the model with the fully learnable Conv1D-based encoder/decoder uniquely operates 
in the time domain, we report evaluation metrics for this model, as well. For dolphins and bats, we here report 
metrics using exclusively the non-dB STFT/iSTFT technique.

BioCPPNet (Fig. 1) is designed as a lightweight fully convolutional model in order to efficiently process large 
amounts of bioacoustic data sampled at high sampling rates while simultaneously minimizing computational 
costs and limitations and the likelihood of overfitting. For the macaque separators, the networks consist of 1.2M 
parameters (for the STFT, iSTFT combination), 2.5M parameters (for the STFT, iSTFT combination with parallel 
phase pathway), or 2.8M parameters (for the Conv1D free filterbanks). For the dolphin separator (Fig. 2), the 
model has 304k parameters, while the bat separator model has 1.2M parameters. This is to be contrasted with 
the comparatively heavyweight default implementations of models commonly used in human speech separation 
problems, such as Conv-TasNet3, which has 5.1M parameters; DPTNet4 with 2.7M parameters; or Wavesplit5 with 
29M parameters. Regardless of the lower complexity of BioCPPNet, the model achieves comparable performance 

Figure 2.   Schematic diagram demonstrating the application of BioCPPNet to dolphin signature whistles using 
handcrafted STFT-based encoders and decoders. The source waveforms produced by N speakers of unique 
identity (e.g. T. truncatus 0 and T. truncatus 1) are overlapped in time, summed, and transformed to time-
frequency space using an STFT layer, resulting in the mixture time-frequency representation (Mixture TFR). 
The U-Net predicts masks (Mask 0 and Mask 1) that are applied to the mixture representation. The separated 
spectrogram estimations (TFR 0 and TFR 1) are inverted using an iSTFT layer to yield the model’s predictions 
for the separated raw waveforms, which are compared to the ground truth waveforms and classified according to 
predicted identity using the classification model.
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or even outperforms reference human speech separator models while still being lightweight enough to train on 
a single NVIDIA P100 GPU.

Model training objective.  The model training objective aims to optimize the reconstruction of separated wave-
forms from the aggregated composite input signal. We adopt a permutation-invariant training (PIT)57 scheme 
in which the model’s predicted outputs are compared with the ground truth sources by searching over the space 
of permutations of source orderings. This fundamental property of our training objective reflects that the order 
of estimations and their corresponding labels from a mixture waveform is not expressly germane to the task of 
acoustic source separation, i.e. separation is a set prediction problem independent of speaker identity ordering5.

Source separation involves training a separator model f to reconstruct the source single-channel waveforms 
given a mixture x =

∑N
i=1 s

i of N sources, where each source signal si for i ∈ [1,N] is a real-valued continuous 
vector with fixed length T, i.e., si ∈ R

1×T . The model outputs the predicted waveforms {ŝi}Ni=1 where ∀i, ŝi = f i(x) , 
and a loss function is evaluated by comparing the predictions to the ground truth sources {si}Ni=1 up to a permuta-
tion. Explicitly, we consider a permutation-invariant objective function5,

Here, ℓ(·, ·) represents the loss function computed on an (output, target) pair, σ indicates a permutation, and SN 
is the space of permutations. In certain scenarios, we include the L2 regularization term,

where βj represent the model parameters, P denotes the model complexity, and � is a hyperparameter empiri-
cally selected to minimize overfitting (i.e. enhance convergence of training and evaluation losses and metrics).

For the single-channel loss function ℓ , we consider a linear combination of several loss terms that compute 
the error in estimated waveform reconstructions {ŝi}Ni=1 relative to the ground truth waveforms {si}Ni=1.

•	 L1 Loss 

 This represents the absolute error on raw time domain waveforms.
•	 STFT L1 Loss 

 This term functions to minimize absolute error on time-frequency space representations. Empirically, the 
inclusion of this contribution enhances the reconstruction of signal harmonicity.

•	 Spectral Convergence Loss 

 where || · ||F denotes the Frobenius norm over time and frequency. This term emphasizes high-magnitude 
spectral components56.

We also experimented with additional terms including L1 loss on log-magnitude spectrograms to address spec-
tral valleys and negative SI-SDR (nSI-SDR), but the inclusion of these contributions did not yield empirical 
improvements in results.

For macaques, we modify the training algorithm according to the representation transform and inverse 
transform built into the model. For the model with the fully learnable Conv1D encoder and decoder, we train 
using the AdamW58 optimizer with a learning rate 3e-4 and batch size 16 for 100 epochs. In order to stabilize 
training and avoid local minima when using handcrafted STFT and iSTFT filterbanks, we initially begin training 
the models for 3 epochs with batch size 16 using stochastic gradient descent (SGD) with Nesterov momentum 
0.6 and learning rate 1e-3 before switching to the AdamW optimizer until reaching 100 epochs.

For dolphins, we provide the model with the original mixture as input, but we use high pass-filtered source 
waveforms as the target, which means the separation model must additionally learn to denoise the input. We 
again initialize training with 3 epochs and batch size 8 using SGD with Nesterov momentum 0.6 and learning 
rate 1e-3 before switching to the AdamW optimizer with learning rate 3e-4 for the remaining 97 epochs. We 
use a similar training scheme for bats, initially training with SGD for 3 epochs before employing the optimizer 
switcher callback to switch to AdamW and to complete 100 epochs.

Model evaluation metrics.  We consider the reconstruction performance by computing evaluation metrics using 
an expression given by5,

where m(·, ·) is the single-channel evaluation metric computed on permutations of (output, target) pairs.

L (ŝ, s) = min
σ∈SN

1

N

N∑

i=1

ℓ(ŝσ(i), si) where ∀i, ŝi = f i(x)

L  → L + �

P∑

j=1

β2
j

|ŝσ(i) − si|

|STFT(ŝσ(i))− STFT(si)|

||STFT(ŝσ(i))− STFT(si)||F/||STFT(s
i)||F

M(ŝ, s) = max
σ∈SN

1

N

N∑

i=1

m(ŝσ(i), si) where ∀i, ŝi = f i(x)
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Specifically, we implement two evaluation metrics to assess reconstruction quality, including (1) SI-SDR 
and (2) downstream classification accuracy. We consider the signal-to-distortion ratio (SDR)2, defined as the 
negative log squared error normalized by reference signal energy5. However, as is commonly implemented in 
the human speech separation literature, we instead compute the scale-invariant SDR (SI-SDR), which disregards 
prediction scale by searching over gains5,40. Explicitly, SI-SDR(ŝ, s) = −10 log10(|ŝ − s|2)+ 10 log10(|αs|

2) for 
optimal scaling factor α = ŝT s/|s|2.

Additionally, to provide a physically interpretable metric, we evaluate the performance of the trained classifier 
models in labeling separated waveforms according to the predicted identity of the vocalizer. This metric assumes 
that the classification accuracy on a downstream task reflects the fidelity of the estimated signal relative to the 
ground truth source and thus serves as a proxy for reconstruction quality.

Results
We here report the validation metrics for the classifier and separator models. For the closed speaker separation 
task, we report both the maximal SI-SDR and classification accuracies since it remains unclear which metric 
reflects optimal performance of the separator model. Finally, we evaluate an open speaker bat separator model 
using a dataset containing vocalizations produced by individuals not contained in the training distribution. The 
results are summarized in Table 1 and visualized in Fig. 3. Supplementary visualizations and audio samples are 
included in our GitHub repository https://​github.​com/​earth​speci​es/​cockt​ail-​party-​probl​em.

Classification models.  The macaque classifier model attains an accuracy of 99.3% (where chance level 
was 12.5%, i.e. 1 out of 8) for the 8 vocalizing animals used in this study, which represents a state-of-the-art 
improvement over the existing literature27. The dolphin classifier model achieves 99.4% accuracy (where chance 
level was 12.5%, i.e. 1 out of 8) in classifying signature whistles produced by 8 individuals, again reinforcing the 
individually distinctive characteristics of dolphin signature whistles26. The Egyptian fruit bat classifier network 
yields 79.7% accuracy (where chance level was 8.3%, i.e. 1 out of 12) in labeling the identity of 12 bats, supporting 
previous studies demonstrating individual-level specificity of everyday bat vocalizations25.

Separation models.  For the macaque separation task, we here detail the results for the fully learnable 
Conv1D-based model as well as the top-performing non-dB STFT-based model. We also consider mixtures of 2 
or 3 overlapping speakers. For the baseline model using the fully learnable Conv1D encoder/decoder, the model 
yields an SI-SDR of 24.5 and a downstream classification accuracy of 86.4%. We experiment across combinations 
of (Conv1D, STFT, dB-scaled STFT) encoders and (Conv1D, iSTFT, dB-scaled iSTFT, MCNN) decoders. We 
observe that the handcrafted (STFT, iSTFT) encoder/decoder combination results in the highest fidelity recon-
structions, as assessed using SI-SDR and downstream classification accuracy, with respective (SI-SDR, accuracy) 
metrics of (26.1, 93.7%). Including the parallel phase pathway does not yield robust performance benefits, in 
contrast with results from other experimental studies53. We note that, even though our model is significantly 
less complex and computationally expensive, it outperforms Conv-TasNet, a pioneering human speech separa-
tion model, which attains a maximal evaluation metric pair of (23.8, 85.1%). Training an STFT/iSTFT model 
with N=3 yields evaluation metrics of (16.9, 86.5%). For both the dolphin separation and bat separation tasks, 
we report the results using exclusively the fixed STFT encoder and iSTFT decoder rather than carrying out an 
ablation study across various TFRs and inverses. The dolphin separator yields metrics of (15.5, 99.9%) and the 
bat model achieves (9.7, 57.5%). To address the open speaker bat source separation problem, we evaluate the 
bat model on (1) the training subset, (2) the closed speaker testing subset, and (3) the open speaker testing sub-
set, yielding respective SI-SDR metrics of 9.9, 9.7, 10.0. This finding demonstrates that even in the absence of 
individually recognizable acoustic cues, BioCPPNet generalizes to overlapping waveforms produced by unseen 
vocalizers not contained in the training subset. We repeat the bat source separation problem using the larger 
72k-sample training dataset (+) and observe maximal metrics of (10.3, 58.6%) in the closed speaker regime. For 

Table 1.   Summary of experiments implemented in this study organized according to species, number 
of speakers, open/closed speaker regime, and model architecture. STFT represents the model with STFT 
encoder and iSTFT decoder, and Conv1D represents the fully time domain model with Conv1D encoder and 
ConvTranspose1D decoder. The + denotes the expanded training dataset. We report SI-SDR with ( � ) and 
without improvement over input SI-SDR averaged over mixtures.

Objective Model SI-SDR � SI-SDR Accuracy (%)

Macaque
2SpeakerClosed

STFT 26.1 26.1 93.7

Conv1D 24.5 24.5 86.4

Conv-TasNet 23.8 23.8 85.1

3SpeakerClosed STFT 16.9 22.0 86.5

Dolphin 2SpeakerClosed STFT 15.5 17.3 99.9

Bat

2SpeakerClosed

STFT

9.7 9.7 57.5

2SpeakerOpen 10.0 10.0 –

2SpeakerClosed + 10.3 10.3 58.6

2SpeakerOpen + 10.4 10.4 –

https://github.com/earthspecies/cocktail-party-problem
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Figure 3.   Visualizations of the mixture separations for (a, b) macaques, (c, d) bottlenose dolphins, and (e, f) 
Egyptian fruit bats. The separation of three overlapping macaque vocalizations is demonstrated in (g, h). For 
each subfigure (a–h), the top row of subplots represents the ground truth source signals, and the bottom row 
shows the model reconstructions.
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the open speaker regime, the respective training, closed speaker testing, and open speaker testing SI-SDRs are 
10.6, 10.3, 10.4, indicating that training on more samples improves bat separator model performance. In Table 1, 
we include the SI-SDR with improvement ( � SI-SDR), i.e. the metric obtained using the model output minus the 
metric averaged over input mixtures.

Discussion
This work proposes BioCPPNet, a complete supervised end-to-end bioacoustic source separation framework 
designed to accommodate multiple species with diverse vocal behavior. We apply our model to a heterogeneous 
set of non-human organisms including macaques, bottlenose dolphins, and Egyptian fruit bats, and we demon-
strate that our models yield high-quality reconstructions of sources given mixture inputs, as assessed objectively 
using the SI-SDR metric in combination with downstream classification accuracy and qualitatively by inspecting 
visual representations of the output audio.

In auditory scene analysis in the context of bioacoustic communication, the signal receiver performs two 
elementary tasks. The receiver must (1) perceptually group sequences of temporally separated signal units and 
(2) integrate simultaneous harmonic (or quasi-harmonic) sounds produced by a given signaller, often in the 
presence of interfering biotic and abiotic sounds1. By considering the general mixing procedure (e.g. overlapping 
single discrete signal units for macaques and dolphins vs. overlapping sequences of one or more signal elements 
for bats), we observe that BioCPPNet enables both simultaneous integration and sequential integration59 of 
bioacoustic scenes. For macaques and dolphins, the BioCPPNet framework addresses simultaneous integration 
and segregation of temporally overlapping signals since the mixtures contain discrete harmonic signals that, 
by construction, coincide in the time domain as depicted in Fig. 3a–d; specifically, in separating mixtures, the 
model integrates simultaneous sounds (e.g. harmonics) and segregates them from those produced by concurrent 
signallers1. For bats, our findings imply that BioCPPNet further generalizes to allow for sequential integration (i.e. 
integration of sequences of temporally spaced vocal elements produced by an individual vocalizer and segrega-
tion from overlapping or interspersed sounds generated by other vocalizers1). In this case, mixture inputs are 
formed by mixing streams of call elements generated by N individual signallers and thus may include multiple 
source-specific vocal units that vary in the extent of temporal overlap with other sources as shown in Fig. 3e–f. 
To unmix these mixtures, the model groups temporally separated signal elements produced by an individual 
animal and segregates them from overlapping or alternating units generated by another.

We evaluate the performance of BioCPPNet across different numbers (N) of concurrent signallers (2 or 3 
macaques, 2 dolphins, 2 bats). We note a decrease in SI-SDR and accuracy with increasing N. Though a visual 
assessment of model feature maps and activations60 may provide insight into this limitation of the model, the 
inclusion of additional speakers yields greater time-frequency overlap as demonstrated in Fig. 3h, in conflict 
with the DUET principle.

While BioCPPNet performs best in the closed speaker regime in which testing subsets are drawn from the 
same distribution of individuals as the training subset, our results suggest that BioCPPNet can generalize to the 
open speaker problem given sufficient quantities of data; for instance, we find that BioCPPNet and the Conv-
TasNet reference model struggle in the open speaker regime when tested on macaques (for which we possess 
fewer than 45 minutes of highly stereotyped calls) and bottlenose dolphins (for which the dataset is comprised 
of fewer than 15 minutes of signature whistles). However, when evaluated on bat data containing several hours 
of varied bat vocalizations, our model yields comparable results in both the open and closed speaker cases. This 
finding highlights the need for larger datasets to facilitate the development of novel ML-based technologies for 
bioacoustic source separation applications.

We suggest further experimental setups to expand on our results. While we implement our methods using 
both fully learnable and STFT-based handcrafted encoder and decoder filterbanks, future directions can include 
modifications to the TFR encoder and the inverse transform decoder to assess the performance of other learnable, 
handcrafted, and/or parameterized features. To our knowledge, there exists no landscape analysis of TFRs for 
bioacoustic data, so additional studies aiming to enhance separation performance by varying the representation 
encoder and the inverse transform decoder could provide important insight into optimizing the representation 
of bioacoustic signals. Additionally, though we implement a learnable signal filtering mechanism in the case of 
bottlenose dolphin whistles, our results could benefit from additional denoising or enhancement algorithms61–64; 
as in Fig. 3b and d, noisy artifact is not always attributed to the original source, which means that targeting and 
removing noise in the spectral zone of support for a given set of vocalizations could improve the separation 
performance of BioCPPNet. Further, our study addresses separation of conspecific sources and focuses on a 
set of allopatric species with differential vocal behavior spanning several characteristic frequency scales; future 
directions should extend the BioCPPNet framework to formulate a more general model of multi-species source 
separation that considers spectrotemporally mixed conspecific and heterospecific signallers vocalizing in a noisy 
environment.

Finally, while our implementation uses a supervised training scheme relying on synthesized mixtures and 
access to ground truth sources, the practical application of our methods could benefit from weakening the 
degree of supervision. Mixture invariant training (MixIT)65 represents an entirely unsupervised approach and 
requires only single-channel acoustic mixtures, though this technique may be limited in the bioacoustic domain 
as it necessitates large quantities of well-defined mixtures. Another unsupervised technique includes a Bayesian 
approach employing deep generative priors66–68, but this method may be limited to data within close bounds of 
the training sets since the distributions learned by acoustic deep generative models may not exhibit the right 
properties for probabilistic source separation69. We also suggest self-supervised pre-training24,70,71 on relevant 
proxy tasks to enhance performance, especially in the low-data bioacoustic domain. Future studies should address 
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unsupervised training criteria in an effort to apply deep ML-based models such as BioCPPNet to real-world 
bioacoustic mixtures.

The novel ML-based methods employed in this study provide an effective means for addressing the bioacous-
tic CPP, which can help to maximize the information extracted from bioacoustic recordings. Our framework 
represents an important step toward the realization of bioacoustic processing technologies capable of recovering 
large quantities of previously unusable data containing overlapping signals. Greater access to larger bioacoustic 
datasets can empower the scientific community to explore more areas of research, to confront increasingly 
complex research questions using deep ML approaches, and ultimately to design better-informed conservation 
and management strategies to protect the earth’s non-human animal species.

Data availability
The macaque coo dataset47 that supports the findings of this study is publicly available in Dryad with the identifier 
https://​doi.​org/​10.​5061/​dryad.​7f4p9, and the Egyptian fruit bat dataset48 used in this study is publicly available 
in Scientific Data with the identifier https://​doi.​org/​10.​1038/​sdata.​2017.​143. The bottlenose dolphin whistle data 
that support the findings of this study were provided by Laela Sayigh and Vincent Janik. Restrictions apply to 
the availability of these data, which were used under license for the current study and so are not publicly avail-
able. Data are, however, available from the author upon reasonable request and with permission of Laela Sayigh.

Code availability
The custom-written code for generating mixture datasets and constructing and training ML models is publicly 
available at our GitHub repository https://​github.​com/​earth​speci​es/​cockt​ail-​party-​probl​em.
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