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A passive brain–computer interface (BCI) based upon functional near-infrared
spectroscopy (fNIRS) brain signals is used for earlier detection of human drowsiness
during driving tasks. This BCI modality acquired hemodynamic signals of 13 healthy
subjects from the right dorsolateral prefrontal cortex (DPFC) of the brain. Drowsiness
activity is recorded using a continuous-wave fNIRS system and eight channels over
the right DPFC. During the experiment, sleep-deprived subjects drove a vehicle
in a driving simulator while their cerebral oxygen regulation (CORE) state was
continuously measured. Vector phase analysis (VPA) was used as a classifier to
detect drowsiness state along with sleep stage-based threshold criteria. Extensive
training and testing with various feature sets and classifiers are done to justify
the adaptation of threshold criteria for any subject without requiring recalibration.
Three statistical features (mean oxyhemoglobin, signal peak, and the sum of peaks)
along with six VPA features (trajectory slopes of VPA indices) were used. The
average accuracies for the five classifiers are 90.9% for discriminant analysis,
92.5% for support vector machines, 92.3% for nearest neighbors, 92.4% for both
decision trees, and ensembles over all subjects’ data. Trajectory slopes of CORE
vector magnitude and angle: m(|R|) and m(6 R) are the best-performing features,
along with ensemble classifier with the highest accuracy of 95.3% and minimum
computation time of 40 ms. The statistical significance of the results is validated
with a p-value of less than 0.05. The proposed passive BCI scheme demonstrates
a promising technique for online drowsiness detection using VPA along with sleep
stage classification.

Keywords: functional near-infrared spectroscopy, brain-computer interface, drowsiness detection, vector phase
analysis, cerebral oxygen regulation, sleep stages, multiclass classification, feature selection
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INTRODUCTION

Invasive and noninvasive techniques are used in brain–computer
interface (BCI) for the detection and measurement of brain
activities using different BCI modalities (Sun et al., 2020; Tortora
et al., 2020). Invasive BCI is based upon placing electrodes
inside the brain cortex under direct interaction with neurons
and hence requires complex surgery, medical conditions, and
greater risk of infections (Yoo et al., 2018; Alkawadri, 2019;
Romanelli et al., 2019). Nowadays, partially invasive techniques
like electrocorticography (ECoG) are more in use. In ECoG, the
electrode array is placed inside the skull and directly above the
cortex. It requires easier surgery, and medical conditions like the
infectious risk are very less (Romanelli et al., 2019). Furthermore,
it provides the best signal quality, and good temporal and spatial
resolution (Volkova et al., 2019). However, the availability of
subjects is still a difficult task for invasive BCI techniques.
Contrarily, noninvasive BCIs are more commonly used due
to no surgery requirements and the absence of medical risks
(Sosnik and Ben Zur, 2020).

Noninvasive BCIs use either electrophysiological signal
or hemodynamic response phenomenon-based modalities.
Electrophysiological BCI modalities are electroencephalography
(EEG), electrooculography (EOG), electrocardiography (ECG),
and electromyography (EMG), which record neuronal brain
activity, eye movement, heart rate, and muscle movement,
respectively (Turnip et al., 2011; Nicolas-Alonso and Gomez-Gil,
2012; Nguyen et al., 2017). Hemodynamic response-based
modalities use functional neuroimaging models like functional
near-infrared spectroscopy (fNIRS) and functional magnetic
resonance imaging (fMRI), which record brain activity from
changes in blood flow and blood oxygen levels in the active areas
due to neuronal firing (Ni et al., 2017; Lasek-Bal et al., 2018;
Yoo et al., 2018; Al-Zubaidi et al., 2019). Another functional BCI
modality is magnetoencephalography (MEG), which is based
upon recording the magnetic field in response to the electrical
activity of neurons at active regions of the brain (Welvaert and
Rosseel, 2014; Naseer and Hong, 2015). EEG and fNIRS BCIs
are more widely used in detecting brain activity due to their
low cost and better performance features (Borragan et al., 2018;
Wascher et al., 2018; Rupp et al., 2019). Hybrid BCIs are also
used, which include combinations of EEG, fNIRS, ECG, EOG,
EMG, or other techniques depending upon which activities are to
be recorded simultaneously for a specific task (Ahn et al., 2016;
Choi et al., 2017; Nguyen et al., 2017; Hong et al., 2018). Among
functional techniques, fNIRS is more safe, reliable, low-cost,
portable, and easy to set up and has a good spatial resolution
(Wolpaw et al., 2002; Ramadan and Vasilakos, 2017; Zhao et al.,
2018). It measures changes in concentration of oxygenated
hemoglobin (1HbO), deoxygenated hemoglobin (1HbR), total
hemoglobin or cerebral blood volume (1HbT), and cerebral
oxygen exchange (1COE) as a measure of brain activity in
active regions resulted from neuronal consumption of glucose,
measured by optical sensors using near-infrared light signals that
are directly introduced into the scalp, and hence, it is free from
noise and electrical interference (Tanveer et al., 2019; Wang et al.,
2019; Khan M.N.A. et al., 2020; Khan R.A. et al., 2020).

Brain activities are recorded and classified under active,
reactive, and passive states of BCI (Zander and Kothe, 2011).
Active BCI records brain activity generated due to intentional
actions like mental computation tasks, motor imagery, and
motion intents. Reactive BCI records brain activity produced in
response to some external stimuli like audio, video, touch, or
pain signal introduction (Hong and Khan, 2017; Khan and Hong,
2017; Khan M.J. et al., 2018). Active and reactive brain signals
can be more easily generated and detected, unlike passive brain
activities. Passive brain activities are produced unintentionally by
a human brain under certain body conditions like drowsiness,
sleep, fatigue, stress, loss of attention, or focus (Khan and
Hong, 2015; Tanveer et al., 2019; Dunbar et al., 2020). These
passive states imply very crucial effects when arising during high
attention-seeking tasks like vehicle driving. Drowsiness or sleep
during driving causes severe accidents worldwide (Philip and
Åkerstedt, 2006; Ismail et al., 2009). Conventional techniques
to detect drowsiness may include measuring the eye blink rate,
heart rate, or head movement with increased chances of false
detections. However, a passive BCI system is more preferred to
detect drowsiness conditions from brain signals, and an activity
can be well estimated earlier and in a precise manner. fNIRS-
based BCI is also used to detect brain states due to fatigue or
sleep loss (Ioannides, 2018). This activity is recorded from the
prefrontal cortex (PFC) and specifically from dorsolateral PFC
(DPFC) (Khan and Hong, 2015; Tanveer et al., 2019). Studies
have shown rapid and increased brain activity in the DPFC region
under brain state transitions from wakefulness to non-rapid eye
movement (NREM) sleep stages (Khan and Hong, 2015; Bernardi
et al., 2018). This results in increased concentrations of 1HbO
and decreases in 1COE, which indicates sleep as a refreshing
process (Khero et al., 2019; Oniz et al., 2019). During driving,
these rapid changeovers between sleep stages (as experienced
when a person is consistently nodding off) could be devastating
and must be recorded at an earlier stage to avoid life losses
(Fonseca et al., 2018; Dai et al., 2020).

This study investigates a novel drowsiness detection scheme
using hemodynamic activities of the brain with a passive BCI.
Hemodynamic brain signals are acquired from the right DPFC
using eight channels of the fNIRS system. All the hemodynamic
signals are plotted upon vector phase analysis (VPA) to get
the cerebral oxygen regulation (CORE) status of the brain.
Sleep stage-based threshold circles are employed on VPA, which
resulted from systematically proposed criteria. The criteria
deduce radii of sleep stage (N1, N2, and N3) threshold circles
from sample data of wakefulness (W) stage of the subject.
As CORE status is constantly monitored over VPA against
threshold circles, drowsiness activity is detected when the CORE
trajectory crosses threshold circles in specific octants of VPA.
The universality and validity of proposed threshold circle criteria
for any subject is the core and fundamental objective of this
work. The criteria of threshold circles are validated over fNIRS
data of 13 subjects. A total of nine features are used for training
and classification, out of which six features are extracted from
VPA and three statistical features from 1HbO signal. Five
machine learning classifiers [discriminant analysis (DA), support
vector machines (SVM), decision trees (DT), k-nearest neighbors
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(kNN), and ensembles] are used to classify the data of all the
subjects according to the proposed scheme. Slopes of CORE
vector magnitude and angle are the best feature pair along with
the SVM classifier to perform well overall.

MATERIALS AND METHODS

Subjects/Participants
To collect this drowsiness dataset (Khan and Hong, 2015;
Tanveer et al., 2019), 13 healthy male subjects (mean age:
28.5 ± 4.8 years) were recruited. Two of them were left-handed,
and all had normal or corrected-to-normal vision. Neither of
them was reported to have any psychiatric, visual, or neurological
disorder. All the participants willingly consented when details
about the experimental procedure were explained. The study
was reviewed and approved by Pusan National University
Institutional Review Board.

Experimental Procedure
The experiment was conducted in the morning before which
all subjects were sleep-deprived for 10 h the night before.
Participants were subjected to car driving in a simulated
environment with medium traffic and pedestrian density. Brain
signals for 5 min were collected for baseline adjustment during
initial driving trials for environment familiarization. Each subject
drove the car for almost 1 h in which fNIRS signals were collected
for 30 ± 5 min when they were visually observed to be near
drowsy. Biomarkers for the drowsy state were placed when a
change in facial expressions or eye closure was observed due to
sleep loss or fatigue. Subjects remained seated in comfortable
chairs and were asked to minimize head or muscle movements
to avoid motion-related artifacts in brain signals. Figure 1 shows
the flow diagram of the experimental procedure.

Sensor Configuration
Seven sources with 16 detectors of the near-infrared range
were used to make combinational pairs of 28 channels to
acquire fNIRS signals over various brain locations. Optodes for
these 28 channels were placed at PFC and DPFC according
to the international 10–20 system. The distance between
adjacent detectors was 3 cm, and the distance between source
and detector was 2.1 cm. These 28 channels were further
divided into three regions (A, B, and C). Region A comprises
channels 1–8, which were placed at the right DPFC as
shown in Figure 2. Channels 9–20 were regarded as region
B and placed at PFC. Channels 21–28 were placed at left
DPFC and specified as region C. Right DPFC (region A)
is proved to be more suitable and effective for drowsiness-
related activity detection (Khan and Hong, 2015; Tanveer et al.,
2019). In this research work, fNIRS data from channels 1–
8 (region A) are focused on sleep detection in online passive
BCI applications.

Signal Acquisition and Processing
A continuous-wave imaging system (DYNOT, NIRx Medical
Technologies, United States) was used for fNIRS brain signal

acquisition. Data were obtained at a sampling frequency
of 1.81 Hz with near-infrared lights of 760 and 830 nm
wavelengths. Motion-related and other artifacts were
removed from the acquired data by applying Gaussian
filters (Bhutta et al., 2014; Khan and Hong, 2015; Zafar
and Hong, 2018). Band rejection of ranges 0.3∼0.4, 1∼1.2,
and <0.01 Hz were used for respiration, heartbeat, and
Mayer-wave artifact removal, respectively. Oxygenated and
deoxygenated hemoglobin concentration changes (1HbO
and 1HbR, respectively) were obtained by converting
raw intensity values of two different wavelengths by
using modified Beer–Lambert law (MBLL). The MBLL is
stated as,

A (t;λ) = ln
(

Iin(λ)

Iout(t;λ)

)
=α (λ) × c (λ) × l

× d (λ)+ η (1)

[
1cHbO(t)
1cHbR(t)

]

=

[
αHbO(λ1) αHbR(λ1)

αHbO(λ2) αHbR(λ2)

]−1 [
1A (t;λ1)

1A (t;λ2)

]
1

l × d (λ)
(2)

where A is the absorbance of light (optical density), Iin is the
incident intensity of light, Iout is the detected density of light, α is
the specific extinction coefficient in µM−1 cm−1, c is the absorber
concentration in µM, l is the distance between the source and the
detector in cm, d is the differential path-length factor (DPF), and
η is the loss of light due to scattering.

Vector Phase Analysis
If the hemodynamic indicators of fNIRS signals (1HbO and
1HbR) are mapped as orthogonal axes in an orthogonal vector
coordinate plane, then they give rise to a very promising scheme
regarded as VPA method as shown in Figure 3. When this
orthogonal coordinate plane is rotated by an angle of π /4 rad
counterclockwise, then it adds up new useful components in this
vector plane: 1HbT and 1COE (due to neurovascular coupling)
(Yoshino and Kato, 2012; Hong and Naseer, 2016; Hong et al.,
2018; Zafar and Hong, 2018; Nazeer et al., 2020a). These indices
are defined as,

1HbT = 1HbO+1HbR (3)

1COE = 1HbR−1HbO (4)

The relationship among all these four hemodynamic indices is
given in the following mathematical notation.[

1HbO+1HbR
−1HbO+1HbR

]
=

[
1 1
−1 1

] [
1HbO
1HbR

]
=

[
1HbT
1COE

]
(5)

[
1HbO
1HbR

]
=

1
2

[
1 −1
1 1

] [
1HbT
1COE

]
(6)
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FIGURE 1 | Experimental setup and its flowchart for drowsiness detection.

FIGURE 2 | Optode placement at Region A (right dorsolateral prefrontal cortex), channels 1–8.
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FIGURE 3 | Vector phase diagram (Hong and Naseer, 2016).

Any point on this vector coordinate plane holds a value-based
upon four indices 1HbO, 1HbR, 1HbT , and 1COE; and
its distance from the origin specifies a vector R that reveals
information about CORE (Yoshino and Kato, 2012; Hong and
Naseer, 2016; Nazeer et al., 2020a). The magnitude |R| and angle
6 R of vector R are stated below.

|R| =
√(

1HbO
)2
+
(
1HbR

)2

=
1
√

2

√(
−1HbO+1HbR

)2
+
(
1HbO+1HbR

)2

=
1
√

2

√
(1COE)2

+
(
1HbT

)2 (7)

6 R = tan−1
(

1HbR
1HbO

)
= tan−1

(
1COE
1HbT

)
+

π

4
(8)

Based upon axes of this vector coordinate plane, it
is divided into eight octants, each of which represents
specific hemodynamic features of the fNIRS brain signal
as shown in Figure 3. These octants are referred to as
phases indicating oxygenated (oxic) and deoxygenated
(capnic) states of the brain. Increased and decreased blood
oxygenation refers to hyperoxic (HerOx) and hypoxic
(HyOx) states (Dart et al., 2017), while increased and
decreased blood deoxygenation refers to hypercapnic
(HerCap) and hypocapnic (HyCap) states of the brain,
respectively (Smith et al., 2017). All these CORE states and
hemodynamic signal features in these phases are tabulated
in Table 1.

Sleep Stage-Based Threshold Circles
Long sleep deprivation may cause brain sleep or hallucinations
while a person seems awake. In such cases, drowsiness can
instantly lead the human brain through various sleep stages
(Craik et al., 2019; Ko et al., 2020). Moreover, in such a condition
of drowsiness, if the brain is being forced to focus, then it
can result in frequent state changeovers between wakefulness
and sleep stages, for example, repetitively nodding off while
driving in a drowsy state. Drowsiness is interrelated with sleep
in terms of physical symptoms and effects on human brain
hemodynamics. Sleep stages are NREM sleep and rapid eye
movement (REM) sleep. NREM has further three stages: N1,
N2, and N3 representing light sleep, medium sleep, and deep
sleep, respectively (Ahn et al., 2016; Oniz et al., 2019). The sleep
cycle starts when wakefulness is followed by NREM stages and
REM sleep (Van Wyk et al., 2019; Chi et al., 2020). The main
feature of drowsiness is slow rolling eye movements (SREM),
which are associated with the N1 stage or light sleep. fNIRS
studies have investigated brain hemodynamics during various
sleep stages and discussed CORE dynamics related to sleep (Oniz
et al., 2019). It is conceived that there is a relationship between
hemodynamics of sleep stages and W. If CORE dynamics of
W is known, then CORE of sleep stages can be deduced
from it according to a somewhat fixed relationship as shown
in (10). Mean CORE status during W of any subject can be
accessed by collecting |R| of fNIRS brain signal for a specific

TABLE 1 | Characteristics of different phases in the vector phase diagram.

Phases 1HbO 1HbR 1HbT 1COE Condition CORE state Signal feature

1 Positive Positive Positive Negative 1HbO > 1HbR HerOx � HerCap Initial dip

2 Positive Positive Positive Positive 1HbO < 1HbR, 1HbT > 1COE HerOx � HerCap

3 Negative Positive Positive Positive 1HbT < 1COE HyOx � HerCap

4 Negative Positive Negative Positive HyOx � HerCap

5 Negative Negative Negative Positive 1HbO < 1HbR HyOx � HyCap

6 Negative Negative Negative Negative 1HbO > 1HbR, 1HbT < 1COE HyOx � HyCap Hemodynamic activity

7 Positive Negative Negative Negative 1HbT > 1COE HerOx � HyCap

8 Positive Negative Positive Negative 1HbT < 1COE HerOx � HyCap

CORE, cerebral oxygen regulation.
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duration and taking its mean. Mean |R| of NREM sleep stages
can be deduced from mean |R| of W stage according to the
following relationships.

|RK | =
1
n

n∑
i = 1

√(
1HbOK

)2
i +

(
1HbRK

)2
i , s.t.

K = [W N1 N2 N3] (9)

 |RN1|

|RN2|

|RN3|

 =
 0.8778

0.8077
0.6544

 × |RW | (10)

where |RK | represents |RW |,|RN1|,|RN2|,|RN3|,
which are the sample means of phase diagram
vectors’ magnitude for W, N1, N2, and N3, stages,
respectively; and n is the number of samples
used for mean values computation from the
respective sample spaces.

Eqs. (9, 10) give the radii of threshold circles for W and NREM
stages in the vector phase diagram as shown in Figure 4. These
threshold circles along with the VPA diagram are employed to
detect drowsiness activity when the fNIRS brain signal trajectory
follows a specific pattern according to CORE states. Eq. (9) is
evaluated for all eight channels of right DPFC for each subject

with sample space spanning over 5 min of W state. Once |RW | is
obtained, Eq. (10) is evaluated for all channels of each subject to
obtain |RN1|,|RN2|,|RN3 |.

Vector Phase Analysis Trajectory Pattern
for Drowsiness Detection
During wakefulness, focus/attention-seeking tasks, neurons
consume more glucose, resulting in increased 1COE, and the
brain experiences HerCap as well as HyOx CORE states (Skalski
and Dobrakowski, 2020; Tung et al., 2020). So the VPA trajectory
mostly remains in phases 3 and 4 of the vector phase diagram
(second quadrant). Loss of focus/attention or drowsiness results
in a decrease in mental activity, and hence, a decrease in 1COE is
observed. The brain experiences HerOx as well as HyCap CORE
states, and the VPA trajectory mostly remains in phases 7 and 8
of the vector phase diagram (fourth quadrant). It has been noted
that transitioning from wakefulness to sleep increases the oxygen
levels in the blood (Khero et al., 2019; Oniz et al., 2019), so 1HbO
rises as well as 1COE falls gradually. Eventually, the brain has
higher 1HbO and lower 1HbR levels by the end of sleep (Oniz
et al., 2019). The key to early detection of drowsiness activity is
to capture this CORE state transition from HyOx and HerCap to
HerOx and HyCap states (Chuang et al., 2018; Lin et al., 2020). At
each instance, CORE state points are plotted upon vector phase
diagram using Eqs. (7, 8), and a trajectory is obtained. To detect

FIGURE 4 | Threshold circles of wakefulness and non-rapid eye movement (NREM) sleep stages employed for drowsiness detection and sleep stage classification,
obtained from Eqs. (9, 10).
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drowsiness activity, an angle criterion and a magnitude criterion
for this trajectory are defined as shown below.

3
4
π <

(
6 R =

1
n

n∑
i = 1

(6 R)i

)
< 2π (11)

(
|R| =

1
n

n∑
i = 1

(|R|)i

)
> |RW | (12)

where n is the number of samples required to find the mean angle
and mean magnitude for the duration of 0–5 s time window,
which is reported to be the shortest to find the drowsiness activity
(Khan and Hong, 2015). It is to be noted that the angle criterion
is of primary importance here, and it must be satisfied before
the magnitude criterion holds. Drowsiness activity is successfully
detected when relationships (11) and (12) hold and the VPA
trajectory crosses the threshold circle of W state in phases 7 and
8 of the vector phase diagram as shown in the section “Results.”

Feature Space and Classification
To standardize the threshold circle criteria as a standard
framework for any subject to detect activity online,
comprehensive testing and validation are need (Koo and
Choi, 2020). So to further test and justify this criterion based
on sleep stages, multiclass classification is done with various
classifiers and different feature spaces (Kang et al., 2020; Sung
et al., 2020). As drowsiness detection is intended from VPA,
six features were selected by keeping in view the promising
information of vector phase diagram, which are trajectory
slopes of VPA indices and parameters; m(1HbO), m(1HbR),
m(1HbT), m(1COE), m( 6 R), and m(|R|). Other three statistical
features were extracted from 1HbO time signal, namely, signal
mean (M), signal peak (P), and the sum of peaks (SoP), which
were reported to be the best suitable features of fNIRS signal for
binary class classification of drowsiness activity (Khan and Hong,
2015; Tanveer et al., 2019; Nazeer et al., 2020a). All features were
computed for the 0–5 s time window for all subjects according to
the following relations.

m(1Xk) =
XN − X1

length(k)
, s.t. k = 1, . . . , N (13)

Mk =
1
N

N∑
i = 1

1HbOi (14)

where k is the sample vector for 0–5 s time window with N as
the last sample in it, X is the variable for six parameters of the
vector phase diagram and m(1X) is slope or gradient of these
parameters over k, and Mk is the mean value of 1HbO in k.
P was calculated as the maximum value of local maximums of
1HbO in k by using max and findpeaks functions of MATLAB 9.5
(MathWorks, United States). SoP was computed as a summation
of local maximums calculated above.

After feature extraction, feature scaling was done in the range
[a b]=[−1 1] for all features by using min–max normalization

as stated below.

Y
′

= a+
Y −min (Y)

max (Y)−min (Y)

(
b− a

)
(15)

where Y is original value and Y
′

is rescaled/normalized value of
the feature in the said range.

These rescaled features are further employed in multiclass
classifiers for training and testing the dataset using DT, DA, SVM,
kNN (Zhu et al., 2019; Ali and Park, 2020; Kim et al., 2020; Li
et al., 2020), and ensemble classifiers. For better classification
of samples in the respective classes, the value of k is set to 1
in the kNN classifier. To cater to the nonlinearity with SVM
classifier, fine Gaussian SVM is used with radial basis function
kernel and c=0.5. The dataset comprises all observations from
all channels of region A for all subjects. For training and testing
of the data and to analyze the performance of all classifiers,
10-fold cross-validation is used to find an optimal separation
between W, N1, N2, and N3 stages in this four-class classification
problem. The multiclass classification performance evaluation
is validated with the help of the confusion matrix, receiver
operating characteristic (ROC) curves, and their area under the
curve (AUC). The parameters true-positive rate (TPR), false-
negative rate (FNR), true-negative rate (TNR), false-positive rate
(FPR), positive predictive value (PPV), and false discovery rate
(FDR) are calculated to find out sensitivity, miss rate, specificity,
fall-out, and precision using following equations, respectively.

TPR =
TP

TP + FN
= 1− FNR (16)

FNR =
FN

FN + TP
= 1− TPR (17)

TNR =
TN

TN + FP
= 1− FPR (18)

FPR =
FP

FP + TN
= 1− TNR (19)

PPV =
TP

TP + FP
= 1− FDR (20)

FDR =
FP

FP + TP
= 1− PPV (21)

RESULTS

This study proposes a novel online classification technique for the
early detection of driver drowsiness using VPA. The outermost
threshold circle is based on the mean CORE vector magnitude
of the wakefulness state |RW |, which can vary subject-wise and
can be deduced from initial baseline data. For this purpose, five
trials per subject were performed at different time instants, where
each trial period was 5 min followed by significant rest time to
avoid fatigue effect. While inner threshold circles are based on
mean CORE vector magnitude of NREM sleep stages N1, N2, and
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FIGURE 5 | Vector phase analysis (VPA) trajectories of all channels (Subject 1) obtained by plotting Eqs. (7, 8) at the drowsiness stage. The shaded boxes show the
active detection channels in which trajectory has crossed the W threshold circle in the fourth quadrant according to the magnitude and angle criterion.

FIGURE 6 | Vector phase analysis (VPA) trajectories of various subjects at an active channel (Channel 8) showing drowsiness activity detection, located at F8
electrode position of the 10–20 system.
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N3,
(
|RN1|,|RN2|,|RN3|

)
and are dependent upon the W circle

according to a fixed relationship as in Eq. (10). CORE state points
based upon 1HbO and 1HbR are continuously being plotted
over vector phase diagram, and a continuous VPA trajectory is
obtained as shown in Figure 5. Drowsiness activity is detected
when the VPA trajectory crosses the W state threshold circle in
phases 7 and 8 of the vector phase diagram according to the
criterion of Eqs. (11, 12), showing a decrease in 1COE, which
is an indicator of transition from W to NREM sleep. Trajectory
computation and its slope assessment are done over a margin
of 5 s to avoid false detection through this scheme. The results
obtained using the proposed scheme for all the channels of region
A of Subject 1 are shown in Figure 5. The active channels are
highlighted with shaded boxes in which a trajectory crosses the
threshold circles in the fourth quadrant of the phase diagram,
indicating drowsiness activity detection.

The active channels and consequently the precise brain
region for drowsiness detection can be identified using this
proposed novel scheme. Upon further assessment of active

channels for all the subjects, Channel 8 turns out to be
the most active channel among all and is situated near
the F8 electrode position according to the 10–20 system.
Figure 6 shows the successful drowsiness detection on Channel
8 of various subjects. It is to be noted that trajectory
patterns are not the same as the active channel of different
subjects. Trajectories could follow any path, but they must
satisfy the proposed angle and magnitude criterion. Real-time
signals of 1HbO and 1HbR could be used according to the
proposed scheme to detect drowsiness online as soon as the
onset of activity.

The computation of sleep stage thresholds for any subject
requires extensive system training and time-taking assessment
each time. To avoid this need for retraining and reassessment,
a universally applicable criterion is easier to follow each time
for any subject with minimum system training requirements.
In this study, such a criterion is proposed, which is universally
applicable to any subject by only requiring baseline or reference
data of wakefulness or resting state. The applicability of sleep
stage-based threshold circle criteria for any subject needed

FIGURE 7 | Thirty-six 4-class feature spaces combining all features [six vector phase analysis (VPA) and three statistical] for separating the W, N1, N2, and N3
stages represented by pink, blue, red, and black colored data points, respectively.
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extensive validation, which makes it a standard scheme in online
detection systems.

For this purpose, multiple classifiers were trained and tested
for all possible combinations of two features. Figure 7 presents
36 two-dimensional feature spaces for all feature combinations
calculated for the 0–5 s time window over all 13 subjects. It
can be observed that m(1HbR) vs. m(1HbO), m(|R|) vs. m(6 R)
and [m(1HbT), m(1COE), P] vs. m(|R|) provide the best data
separation between sleep stages. Table 2 shows the classification
accuracies obtained with all possible binary pairs of features
using best-performing classifiers among the five mentioned
above. So the above-mentioned feature combinations resulted in
90% classification accuracy, while all other pairs resulted in an
accuracy of 70% and above, except only three pairs between 65
and 70%. Table 2 further supports confidence in using features
based on all six VPA indices for sleep stage classification.

Table 3 shows subject-wise classification accuracies obtained
with the best-performing feature combination and classifier. It
has been observed that the m( 6 R), m(|R|) pair performed the best
for 11 subjects out of 13, with an almost 85% success rate. For two
subjects, m(1HbO), m(1HbR) performed well comparatively
but without significant improvement in the accuracy. So it can
be deduced that trajectory gradients of CORE vector angle and
magnitude are optimal VPA features for sleep stage classification,
as they resulted in more than 90% accuracy for all subjects. Hence,
drowsiness activity can be obtained by observing which phase the
VPA trajectory lies in and what its distance is from the vector
phase diagram’s origin. By constantly observing the relevant
change in these two aspects, drowsiness activity can be detected.

Table 4 compares the percentage accuracy and computation
time for cross-validated multiclass classifiers. It is noted that all
the classifiers other than DA performed well with less variance
accuracy among them but significant differences in computation
time. SVM has the highest accuracy, but its computation time
almost doubled as compared with that of DT and kNN classifiers.
Ensemble classifier is chosen as the best-performing classifier
because it has the least computation time and its accuracy is
almost the same as that of SVM. Student’s t-test method is applied
for the comparison of ensemble classifier’s accuracy with other
classifier accuracies. Results show the p-value of less than 0.05
for all tests, which validated the statistical significance of the
hypothesis made over outperforming ensemble classifier. Only
the best-performing feature set “m(6 R) and m(|R|)” is used for
classification accuracies obtained in Table 4.

Figure 8 presents average classification accuracies obtained
with all five classifiers for all subjects. Variance in accuracy
values due to the usage of multiple VPA feature combinations
is showed by error bars against each classifier. Here, DA and
SVM showed maximum and minimum sensitivity to change of
features, respectively. The length of variance bounds shows the
standard deviation (SD) of accuracy from the mean value. The
SD is the highest in DA, which shows that accuracy changes
significantly if the feature set changes, while SD for SVM is the
lowest, which shows that accuracy is minimally affected when
different feature sets are used for classification.

Figure 9 illustrates classification performance measures in
terms of confusion/error matrix, ROC curves, and AUC. The

TABLE 2 | Percentage accuracies obtained by combinations of two features
(0–5 s window, all subjects, kNN classifier).

Features m(1HbR) m(6 R) m(
∣∣R∣∣) m(1HbT) m(1COE) M P SoP

m(1HbO) 90.0 88.4 89.9 89.9 89.9 75.1 74.9 74.9

m(1HbR) – 88.3 89.9 89.8 89.9 84.1 81.3 79.6

m(6 R) – – 90.0 84.7 88.0 74.7 70.3 68.3

m(|R|) – – – 90.0 90.0 89.8 90.0 89.8

m(1HbT) – – – – 89.9 76.5 70.4 69.0

m(1COE) – – – – – 85.8 83.7 82.1

M – – – – – – 71.8 71.4

P – – – – – – – 65.5

TABLE 3 | Best classification accuracies in brain region A (all channels, 0–5 s
window, SVM classifier).

Subject Accuracy (%) Feature set

1 93.4 m(6 R), m(|R|)

2 91.4 m(1HbO), m(1HbR)

3 95.4 m(6 R), m(|R|)

4 93.2 m(6 R), m(|R|)

5 92.7 All six VPA features

6 93.4 m(1HbO), m(1HbR)

7 93.9 m(6 R), m(|R|)

8 90.5 m(6 R), m(|R|)

9 95.3 m(6 R), m(|R|)

10 91.0 All six VPA features

11 93.4 m(6 R), m(|R|)

12 91.5 m(6 R), m(|R|)

13 92.4 m(6 R), m(|R|)

Mean 92.9 m(6 R) and m(|R|) performed well overall

SVM, support vector machine; VPA, vector phase analysis.

ensemble classifier performed very well with an accuracy of 94.1%
and AUC near 1 for all classes with a cross-validated classification
model. Hence, these results increase the confidence in using the
proposed criterion for any subject with minimum setup time.

DISCUSSION

In previous studies related to passive BCI systems, 0–5 and 0–1 s
time windows were used to classify the loss of attention/vigilance
from fNIRS brain signals with off-line classification techniques
(Khan and Hong, 2015; Tanveer et al., 2019). However, less focus
is given to real-time or online detection of passive brain states
using fNIRS signals for real-life/practical applications. Studies
have shown an increase in 1HbO levels in the DPFC region of the
brain when passive states are overcoming focus during attention-
demanding tasks (Khan and Hong, 2015; Tanveer et al., 2019).
An increase in 1HbO and a decrease in 1COE is also observed,
as sleep is overcoming consciousness (Khero et al., 2019; Oniz
et al., 2019). So the results of this study are consistent with the
literature and support the hypothesis presented. Here, the trends
of the brain’s CORE state are monitored from wakefulness to
sleep, which gives a new scheme for the detection of drowsiness
or sleep. The spatial resolution is also increased for the detection
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TABLE 4 | Performance comparison of five classifiers: accuracy (%)/computation time (s).

Subject Decision trees Discriminant analysis Support vector machine Nearest neighbor Ensembles

1 94.4/0.102 92.0/0.151 92.8/0.208 93.0/0.138 93.4/0.057

2 91.0/0.105 89.6/0.154 90.5/0.207 91.6/0.135 91.1/0.045

3 94.7/0.091 94.5/0.140 94.6/0.200 94.4/0.131 95.3/0.040

4 93.6/0.100 89.0/0.141 91.9/0.203 91.3/0.130 93.0/0.042

5 91.8/0.105 89.5/0.145 92.2/0.211 92.5/0.134 92.2/0.041

6 92.3/0.102 92.7/0.146 93.1/0.212 92.6/0.130 92.9/0.039

7 93.5/0.103 93.8/0.141 93.4/0.218 94.3/0.140 93.7/0.044

8 89.2/0.102 88.7/0.142 91.0/0.212 88.9/0.131 89.4/0.049

9 92.6/0.109 91.0/0.140 94.0/0.223 95.4/0.133 94.1/0.046

10 89.0/0.106 90.8/0.146 90.5/0.213 89.4/0.138 88.8/0.042

11 93.6/0.107 91.7/0.146 93.1/0.203 93.6/0.124 93.1/0.041

12 92.4/0.097 87.3/0.135 92.2/0.204 91.0/0.129 92.1/0.041

13 92.4/0.100 91.3/0.140 92.8/0.203 92.0/0.132 92.2/0.041

Mean 92.4/0.102 90.9/0.144 92.5/0.209 92.3/0.133 92.4/0.044

FIGURE 8 | Average classification accuracies with variance bounds obtained by using different vector phase analysis (VPA) feature pairs.

of passive activity from the right DPFC with Channel 8 (near F8
electrode position) being the most active as shown in the results.

VPA for fNIRS signals is widely used for the classification
of active mental tasks (Hong and Khan, 2017; Khan and
Hong, 2017; Zafar and Hong, 2018; Khan M.N.A. et al.,
2020); however, less focus is observed on the use of VPA for
classifying passive brain activities (Yoshino et al., 2013). This
study focused on using the VPA for drowsiness classification
while reducing the chances of false detection. Various statistical
features like mean, slope, kurtosis, skewness, signal peak,
and the sum of peaks of 1HbO/1HbR signals (Khan and
Hong, 2015; Naseer et al., 2016a; Hong et al., 2018; Khan
R.A. et al., 2018; Nazeer et al., 2020a), as well as automatic

feature extraction using deep learning networks (Khan R.A.
et al., 2018; Tanveer et al., 2019; Wang et al., 2020), are
previously used for classification of active as well as passive
brain activities. VPA-based features like cerebral blood volume
(1CBV), 1COE and others are also used for active BCIs
(Naseer et al., 2016b; Nazeer et al., 2020a,b). The best-performing
statistical features (mean, peak, and the sum of peaks of
1HbO) (Khan and Hong, 2015; Noori et al., 2017; Qureshi
et al., 2017) along with VPA features are extensively tested
in this study. Special focus is given to VPA-based features to
prove the effective utilization of VPA for passive tasks. The
classification results have shown confidence in using slopes of
VPA indices as features. To avoid false detection, trends of
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FIGURE 9 | Classification performance measures [Subject 9, all channels, m(|R|) vs. m(6 R) feature set, ensemble classifier]: (A) Confusion matrix with the number
of observations at diagonal and off-diagonal entries, true-positive rate (TPR), and false-negative rate (FNR) at the right columns, and positive predictive value (PPV)
and false discovery rate (FDR) at the bottom rows. (B) Multiclass receiver operating characteristic (ROC) curves and area under the curve (AUC) for all sleep stages.

trajectories are captured over a sample space of 5 s instead
of using instantaneous values of hemodynamic signals as
features. So the slopes of 1HbO, 1HbR, 1HbT, 1COE, |R|, 6 R
trajectories are true representative of changing brain state from
wakefulness to drowsiness. The change in the trend of these
factors checked against threshold criteria supports the earlier and
actual estimation of drowsiness activity.

Threshold circles obtained by EEG response, the onset
of tasks, resting state, baseline data, etc., are plotted upon
VPA for the hemodynamic response, initial dip, activity
detection, etc., in various fNIRS- and EEG-fNIRS-based hybrid
BCI studies (Zafar and Hong, 2017; Hong et al., 2018;
Khan M.J. et al., 2018; Nazeer et al., 2020a). This study
employed threshold circles based upon sleep stages, which
are not used before for fNIRS studies, up to the best
knowledge of the authors. The novelty lies in proposing a
uniform criterion that is readily applicable to any subject
without requiring recalibration or extensive setup time. This
feature increases the utility of this BCI scheme for practical
applications and products.

General trends of the hemodynamic response of the brain
during the transition from wakefulness to sleep have been
investigated in fNIRS- and EEG-based BCI studies (Oniz et al.,
2019). It intuits the use of hemodynamic response for sleep stage
classification. The proposed threshold criteria are validated over
the 13 subjects’ data with various feature sets and classifiers for
multiclass classification. Results and performance measures of
this tetra-class classification problem support the claim of this
study for the wide applicability of proposed threshold criteria.
Classification accuracy is more than 88.7% for all subjects, which
is well above the chance rate (25%) for four-class classification
and also more than 60% confidence level required for BCI utility

(Asgher et al., 2020; Huang et al., 2020; Lindig-Leon et al.,
2020). Adaptation of the system to any new subject requires only
baseline data of wakefulness state, and other thresholds will be
measured as proposed. This BCI scheme is promising for online
detection systems.

CONCLUSION

This study investigates the feasibility of the fNIRS-based passive
BCI scheme for the detection of driver’s drowsiness and sleep
stage classification. VPA along with fixed threshold circles is used
for the online classification of this passive activity. Threshold
circle criteria are based upon the CORE state of wakefulness
and NREM sleep stages of any subject. The CORE trajectory,
which is based upon both 1HbO and 1HbR indicators, is plotted
upon VPA in real-time. The decision of drowsiness detection
has occurred when the CORE trajectory crosses the threshold
circles in the fourth quadrant of the vector phase diagram.
To further validate the wide applicability of threshold circle
criteria, extensive testing is done using various feature sets and
classifiers over a dataset of 13 subjects. Results indicate that slopes
of CORE vector angle and magnitude trajectories “m( 6 R) and
m(|R|)” are the best-suited features for drowsiness detection. The
SVM classifier performed well overall with a mean classification
accuracy of 92.5%, while the ensemble classifier took a minimum
computation time of 44 ms for this four-class classification
problem. Classification performance measures indicate that sleep
stage-based threshold circle criteria are universally applicable for
any subject with minimum setup time. Channel selection shows
that the right DPFC is the more active region of the brain for
drowsiness detection during driving tasks. This study validates
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a potential BCI scheme for real-time detection of passive brain
responses for practical applications.
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