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Angiotensin converting enzyme 2 
is a novel target of the γ‑secretase 
complex
Alberto Bartolomé1, Jiani Liang1, Pengfei Wang2, David D. Ho2 & Utpal B. Pajvani1*

Angiotensin converting enzyme 2 (ACE2) is a key regulator of the renin-angiotensin system, but 
also the functional receptor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
Based on structural similarity with other γ-secretase (γS) targets, we hypothesized that ACE2 may 
be affected by γS proteolytic activity. We found that after ectodomain shedding, ACE2 is targeted 
for intramembrane proteolysis by γS, releasing a soluble ACE2 C-terminal fragment. Consistently, 
chemical or genetic inhibition of γS results in the accumulation of a membrane-bound fragment of 
ectodomain-deficient ACE2. Although chemical inhibition of γS does not alter SARS-CoV-2 cell entry, 
these data point to a novel pathway for cellular ACE2 trafficking.

Angiotensin converting enzyme 2 (ACE2) is a membrane-anchored ectoenzyme that processes Angiotensin II 
to Angiotensin 1–7, but also mediates the entry of three different coronavirus strains by means of binding the 
viral spike (S) protein: NL631, SARS-CoV2 and SARS-CoV-23. S-protein binding to ACE2 triggers membrane 
fusion and viral entry, but only after S-protein priming by Transmembrane protease serine 2 (TMPRSS2)3,4, 
which also cleaves the ectodomain of ACE25. ACE2 cleavage, or shedding, can additionally be induced by the 
disintegrin and metallopeptidase domain 17 (ADAM17)6, which was found to compete with TMPRSS25. In this 
regard, there are conflicting reports of ADAM17-mediated shedding affecting SARS-CoV entry5,7. Viral infec-
tion has also been shown to trigger ACE2 endocytosis8, leading to reduced cell surface expression of ACE29. 
Intriguingly, ACE2 is seen as a “double-edged sword”10. While high expression of the receptor enables viral 
infection, some of the deleterious effects associated with COVID-19 are attributed to loss of ACE2-mediated 
cardiovascular protection, due to cell surface downregulation11. In the current COVID-19 pandemic, there has 
been great interest in novel therapeutics that modulate ACE2, either to prevent SARS-CoV-2 entry12 or to target 
the renin-angiotensin system imbalance associated with severe disease11. Ideally, novel ACE2-focused therapies 
should be able to disentangle these two faces of the receptor.

The gamma-secretase (γS) protein complex, composed of a Presenilin 1/2 aspartyl protease catalytic core with 
regulatory (Aph-1a or -1b), enhancer (PEN2) and targeting (Nicastrin) subunits, is the prototype intramembrane-
cleaving protease (I-CLiP). I-CLiP proteases introduce a water molecule into the hydrophobic environment of 
the lipid bilayer for peptide bond hydrolysis within the transmembrane domain. γS targets are typically single-
pass, type I transmembrane proteins with large ectodomains and C-terminal intracellular domains (ICD). γS 
substrates first undergo ectodomain shedding at the cell surface, rendering a membrane-bound protein stub that 
is targeted by γS for intramembrane proteolysis. The released soluble ICD tends to be rapidly degraded by the 
proteasome, but in some cases, such as the Notch family of cell surface receptors13 and the amyloid β precursor 
protein (APP)14, the ICD has signaling activity. For example, Notch ICD binds a Mastermind/Rbpj complex to 
activate transcription of canonical Notch target genes15. But in addition to Notch and APP, dozens of other puta-
tive γS targets have been identified16, not determined by an amino acid consensus sequence, but rather specific 
transmembrane conformational structure and accessibility17,18. Validation of novel γS targets is hindered by the 
lack of clear-cut common features and ectodomain shedding requirements.

Based on structural similarity of ACE2 to known γS targets, we hypothesized that γS regulates intramem-
brane cleavage of ACE2 and may impact SARS-CoV-2 biology. Here we report that ACE2 undergoes TMPRSS2/
ADAM17-dependent γS cleavage, resulting in a short-lived ACE2-ICD. Genetic or chemical inhibition of γS 
prevents ACE2-ICD generation, leading to accumulation of a membrane-bound ACE2 lacking the ectodomain. 
However, we show using a pseudovirus system that γS inhibition does not impact SARS-CoV-2 cellular entry.
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Results
ACE2 ectodomain shedding is required for γS cleavage.  Consistent with other confirmed γS tar-
gets (i.e. APP14, Notch13 and Jagged119), ACE2 has a large ectodomain that can be processed by a sheddase 
(ADAM17/TMPRSS2)5,6 and a single transmembrane domain (Fig. 1A). Based on this structural similarity, we 
hypothesized that after ectodomain shedding, the resultant protein (ACE2ΔE) may represent a novel γS target. 
To test this hypothesis, we expressed ACE2 tagged at its C-terminus in 293 T cells, and triggered ectodomain 
shedding by either TMPRSS2 co-expression, or PMA-induced activation of endogenous sheddases20. In the 
presence of TMPRSS2, we observed a 15 kDa C-terminal ACE2 fragment which accumulated in the presence of 
a γS inhibitor (GSI), dibenzazepine (DBZ) (Fig. 1B). PMA treatment rendered a 18 kDa C-terminal fragment, 
consistent with the expected size after ADAM17-mediated ACE2 cleavage6. Similar to TMPRSS2 co-expression, 
this longer form of ACE2ΔE also accumulated in DBZ treated cells (Fig. 1C). Intriguingly, we observed ACE2ΔE 
accumulation even in unstimulated cells expressing ACE2 (Fig. 1B,C), suggesting endogenous ectodomain shed-
ding followed by γS cleavage is part of the normal turnover of ACE2. We also used a chemically distinct GSI 
(Compound E) (Fig. 1D), that confirmed that ACE2ΔE is targeted by γS.

Most γS-liberated target protein ICDs are extremely labile and rapidly degraded in the proteasome16. As the 
cytoplasmic portion of ACE2 is too small for conventional SDS-PAGE, we generated a C-terminal ACE2-GFP 
fusion protein to detect ACE2-ICD production. We repeated the above experiments using this novel construct 
and found that TMPRS2 co-expression or PMA treatment provoked ectodomain shedding and ACE2ΔE-GFP 
accumulation with DBZ treatment (Fig. 1E,F). As hypothesized, we also observed ACE2-ICD-GFP only after 
proteasome inhibition (Fig. 1E,F).

Based on these pharmacologic data, we next hypothesized that ACE2ΔE and γS would physically interact. To 
test this, we performed co-immunoprecipitation of endogenous γS with C-terminally tagged ACE2, and observed 
association with both Nicastrin and Presenilin1 with ACE2ΔE but not full-length ACE2, consistent with other 
bona fide γS targets18. γS-ACE2ΔE interaction did not change in the presence of DBZ (Fig. 1G). In sum, these 
data establish ACE2 as a novel γS target.

ACE2 cleavage‑dependent localization is altered in γS‑deficient cells.  To determine cellular 
ramifications of γS-mediated ACE2 cleavage, we next evaluated ACE2 processing in Nicastrin knockout (Ncstn 
KO)21 or Presenilin1/2 double knockout (Psen1/2 dKO) MEFs22, both of which have disrupted γS activity. Con-
sistent with GSI treatment, these γS-deficient cell lines displayed ACE2ΔE accumulation, accentuated by co-
expression of TMPRSS2 (Fig. 2A). In this experimental paradigm, the C-terminus of ACE2 is primarily localized 
to the membrane but appeared diffusely cytoplasmic with TMPRSS2 expression in control cells (Fig. 2B and 
2C, top panels). In γS-deficient cells however, ACE2 remained membrane-associated even in the presence of 
TMPRSS2 (Fig. 2B,C, bottom panels). We reproduced these results using a C-terminal ACE2-GFP fusion pro-
tein (Fig. 2D), and with DBZ treatment of γS in control cells (Fig. 2E). These results indicate that γS is required 
for the release of a soluble C-terminal ACE2 fragment from cell membranes.

Endogenous ACE2 cleavage is regulated by γS.  293 T and MEFs do not express significant levels of 
endogenous ACE2. To confirm the physiologic relevance of γS-mediated ACE2 cleavage, we used two well-char-
acterized ACE2-positive cell lines that allow SARS-CoV-2 infection and replication, Caco-2 and VeroE6. Using 
an antibody that recognizes the C-terminal region of ACE2, we observed accumulation of endogenous ACE2ΔE 
with GSI treatment in both cell lines (Fig. 3A–C). These data confirmed results from ectopic ACE2 expression, 
using endogenous ACE2 and TMPRSS2/ADAM17 (in Caco-2 cells) or ADAM17 alone (in VeroE6), leading to 
the expected ACE2ΔE product of ADAM17-mediated cleavage. We next took advantage of this system to test 
whether longer ACE2ΔE half-life or impaired production of ACE2-ICD may produce negative feedback on 
this pathway in these cells. This hypothesis was based on nuclear localization and transcriptional activity of the 
C-terminal fragment of the related protein, ACE23,24. However, we did not observe nuclear ACE2 or differences 
in expression of ACE2, TMPRSS2 or ADAM17 in DBZ-treated VeroE6 or Caco-2 cells (Fig. 3D,E). These data 
render unlikely the possibility that ACE2-ICD mediates feedback inhibition on ACE2 gene expression.

γS inhibition does not alter SARS‑CoV‑2 S‑protein‑mediated cell entry.  As genetic or pharma-
cologic γS inhibition affected ACE2 cleavage and subcellular localization, we hypothesized that GSI may reduce 

Figure 1.   ACE2 is targeted by γS after ectodomain shedding. (A) Schematic and scaled representation of 
γS targets JAGGED1 or NOTCH1, with ACE2, ACE2-C9 and ACE2-GFP. Domains and regions targeted by 
sheddases are depicted. Predicted molecular weight of ACE2ΔE after TMPRSS2/ADAM17-mediated cleavage is 
shown. (B) Western blots from 293 T cells transfected with ACE2-C9 with or without TMPRSS2, then treated 
with DBZ (dibenzazepine 100 nM) ( +), or DMSO (−). Mobility consistent with full length (FL) and ACE2 
lacking its ectodomain (ACE2ΔE) indicated. ACE2ΔE generated in the absence of TMPRSS2 has a higher 
molecular weight, which corresponds to ADAM17-mediated shedding. (C) Western blots from 293 T cells 
transfected with ACE2-C9 with or without PMA (200 nM, 15 h) treatment. (D) Western blots from 293 T cells 
transfected with ACE-C9, with or without TMPRSS2, or treated with PMA, with or without two γS inhibitors 
[DBZ (dibenzazepine, 100 nM) or CmpE (compound E, 40 nM)]. (E) Western blots from 293 T cells transfected 
with ACE2-GFP, with or without TMPRSS2, then treated with DBZ and/or MG132 (1 µM, 15 h). (F) Western 
blots from 293 T cells transfected with ACE2-GFP, with or without PMA, DBZ and/or MG132. (G) Western 
blots from immunoprecipitates derived from 293 T cells transfected with ACE2-C9, with or without TMPRSS2, 
then treated with DBZ. Data is representative of 2–3 independent experiments.
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SARS-CoV-2 cell entry and replication. To test this potential, we utilized SARS-CoV-2 S-protein pseudotyped 
with VSV and tested a wide range of DBZ concentrations (0.3 nM–1 µM). In comparison to a potent S-protein 
neutralizing antibody, used as a positive control25, DBZ did not affect SARS-CoV-2 S-protein mediated viral 
entry in VeroE6 or in Caco-2 cells (Fig. 4). These results indicate that although γS is necessary for ACE2 intracel-
lular processing, blocking γS does not affect viral entry.

Discussion
ACE2 has recently caught the attention of the research community because of its role as the functional recep-
tor of SARS-CoV-23. Here we have characterized ACE2 as a novel target of γS (Fig. 5). Similar to other known 
targets16–18, ectodomain shedding prompts γS-mediated intramembrane cleavage to release soluble ACE2-ICD. 
Some ICDs (i.e. Notch) generated by γS are transcriptionally active, but a functional role of many others remains 
elusive16. γS has also been dubbed as the “proteasome of the membrane”26. Our finding that ACE2-ICD is rapidly 
cleared by proteasomal degradation suggests is consistent with the view that γS-mediated cleavage represents a 
way to dispose membrane proteins stubs. However, our data cannot as yet discard the hypothesis that ACE2-ICD 
might represent a novel biologically active peptide.

Figure 2.   γS-deficient cells cannot process ACE2ΔE. (A) Western blots from Presenilin 1/2 double KO 
(Psen1/2 dKO) or Nicastrin KO (Ncstn KO) MEFs and their wild type (WT) controls. Cells were transfected 
with ACE2-C9 with or without TMPRSS2. ACE2ΔE generated in the absence of TMPRSS2 has a higher 
molecular weight, which corresponds to ADAM17-mediated shedding. (B) Representative immunofluorescence 
images of WT MEFs transfected with ACE2-C9. (C) Representative immunofluorescence images of WT, 
Psen1/2 dKO and Ncstrn KO MEFs transfected with ACE2-C9 and TMPRSS2. (D) GFP fluorescence in WT or 
Ncstrn KO MEFs co-expressing ACE2-GFP and TMPRSS2. (E) Representative immunofluorescence images of 
WT MEFs transfected with ACE2-C9 and TMPRSS2 in the presence of GSI. Scale bars: 10 µm.
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Previous reports indicate that ACE2 processing by cell membrane proteases such as ADAM17 or TMPRSS2 
impacts SARS-CoV S-protein mediated cell entry5,7. Our data is clear that pharmacologic inhibition of 
γS-mediated ACE2 cleavage does not, but cannot rule out the possibility that other compounds termed “γS 
modulators” (GSMs)27 may behave differently. GSMs, developed primarily to differentially affect γS process-
ing of so-called “on-target” (i.e. APP) as opposed to “off-target” (i.e. Notch) substrates, may in fact selectively 
increase γS processivity. In light of our finding that ACE2 is a novel γS target, GSMs are worth evaluating for 

Figure 3.   γS inhibition targets endogenous ACE2. (A) Western blots of Caco-2 cells treated with DBZ ( +) or 
DMSO (−). (ns) indicates non-specific bands. (B) Western blots of VeroE6 cells treated with DBZ ( +) or DMSO 
(−). (C) Western blots of VeroE6 cells treated with DBZ compound E (CmpE) or DMSO (−). D, Gene expression 
in VeroE6after 24 or 72 h treatment with DBZ, showing means ± SD. (E) Gene expression in Caco-2 cells after 24 
or 72 h treatment with DBZ, showing means ± SD.

Figure 4.   γS inhibition does not prevent SARS-CoV-2 S-protein mediated cell entry. Inhibition of SARS-
CoV-2 pseudovirus by DBZ at the indicated concentrations tested on VeroE6 or Caco-2 cells. A SARS-CoV-2 
neutralizing antibody, 2–15, tested on VeroE6 was used as a positive control. Triplicates are presented as 
means ± SEM.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9803  | https://doi.org/10.1038/s41598-021-89379-x

www.nature.com/scientificreports/

biological activity against SARS-CoV-2 pathogenesis. In addition, some groups have speculated that blocking 
Notch signaling with GSIs may ameliorate COVID-19 progression28. Notch signaling promotes M1 polarization 
of macrophages29, and also contributes to T-cell cytokine production30. Thus, despite our finding that GSI does 
not directly affect viral entry, potential effects to block Notch-induced hyperinflammation suggest compounds 
that have completed Ph2/3 clinical trials can potentially be repurposed for COVID-19.

In addition to the relatively recently discovered role as a viral receptor, ACE2 has known roles in the renin-
angiotensin system31, but also other potential functions. For example, mutations causal of Hartnup disorder 
impair association of the neutral amino acid transporter SLC6A19 with ACE2, suggesting that ACE2 serves as 
a chaperone for membrane trafficking32, akin to the function of collectrin towards SLC6A19 or SLC1A133. It 
is possible that γS-mediated transmembrane processing of ACE2 may impact ACE2 chaperone ability, or even 
in the structurally homologous collectrin. These potential ramifications of our findings require further study.

In sum, our results demonstrate that ACE2 is a novel γS target, but that pharmacologic inhibition of γS does 
not impact SARS-CoV-2 S-protein mediated cell entry. Given the pharmacologic accessibility of γS, with prior 
evaluation of GSIs and GSMs for Alzheimer’s Disease and cancer, we present these data to encourage further 
exploration into this novel biology for application to COVID-19 or to other pathology attributable to the myriad 
functions ascribed to ACE2.

Methods
Antibodies and chemicals.  Antibodies against GFP (B-2) sc-9996, Nicastrin (N-19) sc-14369, TMPRSS2 
(H-4) sc-515727, Rhodopsin (ID4) sc-57432, C9 tag (TETSQVAPA peptide) were from Santa Cruz Biotechnol-
ogy; Actin, A2066 from Millipore-Sigma; Presenilin 1-carboxy terminal fragment (CTF) (D39D1) 5643, from 
Cell Signaling Technology; and ACE2 ab15348, from Abcam. MG132 and phorbol 12-myristate 13-acetate 
(PMA) (Sigma). γS inhibitors (GSI) used were Compound E (Axxora) and dibenzazepine (DBZ) (Syncom).

Cell culture and cell lines.  Presenilin-deficient (Psen1/2 double knockout) and control mouse embryonic 
fibroblasts (MEFs) were provided by Nikolaos Robakis (Mount Sinai School of Medicine, New York, NY)22 and 
Nicastrin knockout and control MEFs were obtained from Phillip Wong (Johns Hopkins University School of 
Medicine, Baltimore, MD)21. MEFs, Caco-2, VeroE6 and 293 T cells were cultured in DMEM supplemented with 
10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin–streptomycin (Thermo-Fisher). For transfec-
tion experiments, Lipofectamine 3000 and OptiMEM were used (Thermo-Fisher) as per the manufacturer’s 
instructions.

Plasmids.  C-terminally tagged ACE2 (TETSQVAPA, C9-tag) from Hyeryun Choe, was obtained from 
Addgene (#1786)2. C9 was replaced with EGFP to generate ACE2-GFP, which was in turn deposited to Addgene 
(#154962). TMPRSS2 expression vector from Roger Reeves, was obtained from Addgene34.

Western blotting, immunoprecipitation and quantitative PCR.  Cells were lysed in RIPA buffer 
containing protease inhibitors (Pierce protease inhibitor tablets, Thermo-Fisher), and 10 mM NaF. For immu-
noprecipitation of γS, cells were lysed in 1% CHAPSO, 100 mM NaCl, 2 mM EDTA, 25 mM Tris–HCl (pH 7.4), 
with protease inhibitors, and 1.2  mg of protein lysate immunoprecipitated with 2.5  μg C9-tag antibody and 
Protein G magnetic beads (Cell Signaling Biotechnology). After overnight incubation, beads were separated 
with a DynaMag-2 magnet (Thermo-Fisher), and washed three times in buffer containing 0.5% CHAPSO. Beads 

Figure 5.   Model of ACE2 cleavage. Model showing the sequential processing of full length ACE2 by ADAM17/
TMPRSS2 and γS, rendering ACE2ΔE and ACE2-ICD, respectively. ACE2-ICD is then rapidly degraded in the 
proteasome. The functional consequence of ACE2-ICD is not yet known.
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were re-suspended in 2 × Laemmli buffer and heated at 70ºC for 10 min, prior to SDS-PAGE, Western blot and 
visualization with the ECL Western Blotting Detection Kit (GE Healthcare Bio-Sciences). Uncropped original 
scans of blots are shown in Supplementary Information.

qPCR was performed as previously described35 with primers specific for human (h) Caco-2 cells; or Chlo-
rocebus sabaeus (cs) VeroE6 cells as follows: h/csACE2: TGG​TGG​GAG​ATG​AAG​CGA​GA, AAC​ATG​GAA​CAG​
AGA​TGC​GGG​; hTMPRSS2: CAC​CGA​GGA​GAA​AGG​GAA​GAC​, CAT​GGC​TGG​TGT​GAT​CAG​GT; csADAM17: 
AGG​TGT​CCA​GTG​CAG​TGA​TAGG​, ATC​TTC​AGC​ATT​TCC​CGG​AGG; hADAM17: CGT​TGG​GTC​TGT​CCT​
GGT​TT, TCA​GCA​TTT​CGA​CGT​TAC​TGGG. qPCR results were normalized with peptidylprolyl isomerase A 
using the following primers: csPPIA: CAG​GTC​CTG​GCA​TCT​TGT​CC, GCT​TGC​CAT​CCA​ACC​ACT​CA; hPPIA: 
TAT​CTG​CAC​TGC​CAA​GAC​TGA​GTG​, CTT​CTT​GCT​GGT​CTT​GCC​ATTCC.

Immunofluorescence and confocal imaging.  Cells were seeded on glass coverslips as previously 
described36, and images gathered with an Axio Observer Z1 with an LSM 710 scanning module (Zeiss), collected 
using a 63 × Zeiss Plan-Apochromat oil objective. All images were obtained in a 1024- by 1024-pixel format and 
processed with ZEN2 (Zeiss).

SARS‑CoV‑2 pseudovirus and cell entry inhibition.  Recombinant Indiana vesicular stomatitis virus 
(rVSV) expressing SARS-CoV-2 S-protein, and the neutralizing antibody used as control, were generated as 
described25. 293 T cells were grown to 80% confluency before  transfection with pCMV3-SARS-CoV-2-spike 
using FuGENE 6 (Promega), and cultured overnight at 37 °C with 5% CO2. The next day, medium was removed 
and cells were infected with VSV-G pseudo-typed ΔG-luciferase (G*ΔG-luciferase, Kerafast) in DMEM at an 
MOI of 3 for 1 h before washing the cells with 1 × DPBS three times. DMEM supplemented with anti-VSV-G 
antibody (I1, mouse hybridoma supernatant from CRL-2700; ATCC) was added to the infected cells, and super-
natant harvested the next day. To test DBZ inhibition of SARS-CoV-2 cell entry, VeroE6 or Caco-2 cells were 
seeded in a 96-well plate at a concentration of 2 × 104 cells per well. Pseudovirus were incubated the next day with 
serial dilutions of DBZ in triplicate for 30 min at 37 °C. The mixture was added to cultured cells and incubated 
for an additional 24 h. An S-protein neutralizing antibody was used as control25. Luminescence was measured 
using a Britelite plus Reporter Gene Assay System (PerkinElmer) (Suppl. Information).

Received: 25 September 2020; Accepted: 21 April 2021

References
	 1.	 Hofmann, H. et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular 

entry. Proc. Natl. Acad. Sci. USA 102, 7988–7993 (2005).
	 2.	 Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
	 3.	 Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibi-

tor. Cell 181, 271-280.e8 (2020).
	 4.	 Glowacka, I. et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane 

fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122–4134 (2011).
	 5.	 Heurich, A. et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven 

by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293–1307 (2013).
	 6.	 Lambert, D. W. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-

acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 280, 
30113–30119 (2005).

	 7.	 Haga, S. et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha 
production and facilitates viral entry. Proc. Natl. Acad. Sci. USA 105, 7809–7814 (2008).

	 8.	 Wang, S. et al. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus 
Res. 136, 8–15 (2008).

	 9.	 Oudit, G. Y. et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. 
Clin. Invest. 39, 618–625 (2009).

	10.	 Touyz, R. M., Li, H. & Delles, C. ACE2 the Janus-faced protein—From cardiovascular protection to severe acute respiratory 
syndrome-coronavirus and COVID-19. Clin. Sci. 134, 747–750 (2020).

	11.	 Liu, P. P., Blet, A., Smyth, D. & Li, H. The science underlying COVID-19. Circulation 142, 68–78 (2020).
	12.	 Ragia, G. & Manolopoulos, V. G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach 

for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol. https://​doi.​org/​10.​1007/​s00228-​020-​02963-4 (2020).
	13.	 De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. 

Nature 398, 518–522 (1999).
	14.	 De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 

(1998).
	15.	 Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. & Jones, K. A. Mastermind mediates chromatin-specific transcription and 

turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2002).
	16.	 Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/γ-secretase. J. Alzheimers Dis. 25, 3–28 (2011).
	17.	 Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 

6, 625–636 (2000).
	18.	 Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J. & Wolfe, M. S. Nicastrin functions to sterically hinder γ-secretase–substrate 

interactions driven by substrate transmembrane domain. Proc. Natl. Acad. Sci. USA 113, E509–E518 (2016).
	19.	 LaVoie, M. J. & Selkoe, D. J. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/

gamma-secretase and release signaling fragments. J. Biol. Chem. 278, 34427–34437 (2003).
	20.	 Arribas, J. et al. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J. Biol. Chem. 

271, 11376–11382 (1996).

https://doi.org/10.1007/s00228-020-02963-4


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9803  | https://doi.org/10.1038/s41598-021-89379-x

www.nature.com/scientificreports/

	21.	 Li, T., Ma, G., Cai, H., Price, D. L. & Wong, P. C. Nicastrin is required for assembly of presenilin/gamma-secretase complexes 
to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J. Neurosci. 23, 
3272–3277 (2003).

	22.	 Barthet, G. et al. Inhibitors of γ-secretase stabilize the complex and differentially affect processing of amyloid precursor protein 
and other substrates. FASEB J. 25, 2937–2946 (2011).

	23.	 Ignjacev-Lazich, I. et al. Angiotensin-converting enzyme regulates bradykinin receptor gene expression. Am. J. Physiol. Heart Circ. 
Physiol. 289, H1814–H1820 (2005).

	24.	 Lucero, H. A., Kintsurashvili, E., Marketou, M. E. & Gavras, H. Cell signaling, internalization, and nuclear localization of the 
angiotensin converting enzyme in smooth muscle and endothelial cells. J. Biol. Chem. 285, 5555–5568 (2010).

	25.	 Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).
	26.	 Kopan, R. & Ilagan, M. X. G. Gamma-secretase: Proteasome of the membrane?. Nat. Rev. Mol. Cell Biol. 5, 499–504 (2004).
	27.	 Golde, T. E., Koo, E. H., Felsenstein, K. M., Osborne, B. A. & Miele, L. γ-Secretase inhibitors and modulators. Biochim. Biophys. 

Acta 1828, 2898–2907 (2013).
	28.	 Rizzo, P. et al. COVID‐19 in the heart and the lungs: could we ‘Notch’ the inflammatory storm? Basic Res. Cardiol. 1–8. https://​

doi.​org/​10.​1007/​s00395-​020-​0791-5 (2020). 
	29.	 Xu, H. et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. 

Nat. Immunol. 13, 642–650 (2012).
	30.	 Amsen, D., Helbig, C. & Backer, R. A. Notch in T cell differentiation: All things considered. Trends Immunol. 36, 802–814 (2015).
	31.	 Kuba, K., Imai, Y., Ohto-Nakanishi, T. & Penninger, J. M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS 

receptor, and a partner for amino acid transporters. Pharmacol. Ther. 128, 119–128 (2010).
	32.	 Kowalczuk, S. et al. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 22, 2880–2887 

(2008).
	33.	 Danilczyk, U. et al. Essential role for collectrin in renal amino acid transport. Nature 444, 1088–1091 (2006).
	34.	 Edie, S. et al. Survey of human chromosome 21 gene expression effects on early development in Danio rerio. G3 8, 2215–2223 

(2018).
	35.	 Bartolomé, A., Zhu, C., Sussel, L. & Pajvani, U. B. Notch signaling dynamically regulates adult β cell proliferation and maturity. J. 

Clin. Invest. 129, 268–280 (2019).
	36.	 Bartolomé, A. et al. MTORC1 regulates both general autophagy and mitophagy induction after oxidative phosphorylation uncou-

pling. Mol. Cell Biol. 37, e00441-e517 (2017).

Acknowledgements
We thank Michael Yin, and members of the Pajvani and Ho laboratories for insightful discussion. Supported 
by NIH DK103818 (UBP) and a Russell Berrie Foundation Fellowship in Diabetes Research (AB). The content 
is solely the responsibility of the authors and does not necessarily represent the official views of the National 
Institutes of Health.

Author contributions
A.B. designed, performed and interpreted experiments, and wrote the manuscript. J.L., P.W., and D.D.H per-
formed and interpreted experiments. U.B.P. designed and interpreted experiments, and wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​89379-x.

Correspondence and requests for materials should be addressed to U.B.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1007/s00395-020-0791-5
https://doi.org/10.1007/s00395-020-0791-5
https://doi.org/10.1038/s41598-021-89379-x
https://doi.org/10.1038/s41598-021-89379-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Angiotensin converting enzyme 2 is a novel target of the γ-secretase complex
	Results
	ACE2 ectodomain shedding is required for γS cleavage. 
	ACE2 cleavage-dependent localization is altered in γS-deficient cells. 
	Endogenous ACE2 cleavage is regulated by γS. 
	γS inhibition does not alter SARS-CoV-2 S-protein-mediated cell entry. 

	Discussion
	Methods
	Antibodies and chemicals. 
	Cell culture and cell lines. 
	Plasmids. 
	Western blotting, immunoprecipitation and quantitative PCR. 
	Immunofluorescence and confocal imaging. 
	SARS-CoV-2 pseudovirus and cell entry inhibition. 

	References
	Acknowledgements


