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ABSTRACT: Reservoir stimulation is a widely used technique in
the oil and gas industry for increasing the productivity of
hydrocarbon reservoirs, most notably in carbonate formations.
This work aims to develop an optimization workflow under
uncertainty for matrix acidizing. A reactive transport model is
implemented in a finite-element framework to simulate the
initiation and propagation of dissolution channels in porous
carbonate rock. The model is verified using an analytical solution.
We utilize surrogate modeling based on polynomial chaos
expansion (PCE) and Sobol indices to identify the most significant
parameters. We investigate the effect of varying 12 identified
parameters on the efficiency of the stimulation process using
dimensionless groups, including the Damköhler, Peclet, and acid
capacity numbers. Furthermore, the surrogate model reproduces the physics-based results accurately, including the dissolution
channels, the pore volume to breakthrough, and the effective permeability of the stimulated rock. The developed workflow assesses
how uncertainties propagate to the model’s response, where the surrogate model is used to calculate the univariate effect. The global
sensitivity analysis shows that the acid capacity number is the most significant parameter for the pore volume to breakthrough with
the highest Sobol index. The marginal effect calculated for the individual parameter confirms the results from Sobol indices. This
work provides a systematic workflow for uncertainty analysis and optimization applied to the processes of rock stimulation.
Characterizing the impact of uncertainty provides physical insights and a better understanding of the matrix acidizing process.

1. INTRODUCTION
Substantial proportions of hydrocarbon fuels reside in carbonate
reservoirs. Several studies estimated that more than 60% of the
world’s oil reserves are trapped in carbonate reservoirs.1−3

However, several challenges hinder efficient recovery from these
reservoirs, such as rock heterogeneity at different length scales,
drilling-induced damage, and tight formation. Damage to the
reservoir from various operations causes plugging of the pores
and decreases the effective permeability near the wellbore
region, leading to flow restriction and poor well productivity.4

Well stimulation is a popular method used to improve
productivity from carbonate reservoirs, where the near-wellbore
flow transmissibility is enhanced by injecting different chemicals
into the reservoir.5 The success of the operation needs to
optimize the used volume of chemicals (i.e., the cost) and the
incremental deliverability of the well.
Matrix acidizing in carbonates is an effective stimulation

method to increase productivity.6 Its treatment typically
involves injecting a reactive chemical into the porous medium
at a pressure below the rock’s fracturing pressure. The reactive
fluid tends to dissolve the rock minerals, creating high-
conductive pathways (wormholes) for the flow of subsurface
fluids. The choice of the reactive fluid strongly depends on the

formation mineralogy and the subsurface pressure and temper-
ature conditions. For example, in carbonate rocks, where the
dominant minerals are calcite and dolomite, hydrochloric,
emulsified, citric, acetic, and chelating acids are the typical
solutions used in the treatment.7−13 The initiation and
propagation of the induced wormholes depend on many
parameters, including the relative magnitude of the rate of
acid transport to the rate of reaction, temperature, mineralogy,
and porous medium properties at different length scales.14−16

Extensive work has been conducted in the literature to
understand wormhole initiation and propagation in carbonate
rocks (WIPCR). Experimental work in the core flooding setup
was first conducted to understand the parameters that control
the acidizing in carbonate rocks. These experimental studies
analyzed the impact of rock properties, injection conditions,
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pressure, mineralogy, temperature, and reaction kinetics on the
created channels.17−21 In those linear core flooding exper-
imental studies, the acidic solution is injected at a different rate
in a cylindrical core sample, and the pore volume to the
breakthrough was measured along with the other pressure
measurements.20,22,23

Different modeling approaches have been developed to study
the governing multiphysical processes to simulate and validate
the results of laboratory experiments and to optimize the design
of field deployment. These approaches can be summarized into
three categories.24 The first one is the capillary tube approach,25

which uses cylindrical tubes to represent wormholes, assuming
that their shape and location are predetermined. The model
enables studying the effect of reaction kinetic and fluid transport
on the wormhole penetration rate but cannot predict wormhole
initiation as it assumes a preexisting channel. The second
approach is based on a network model to mimic rock
dissolution. In this model, the porous medium is represented
by interconnected tubes, where the Hagen−Poiseuille equation
is used to capture the flow of the acidic solution.26,27 Currently,
the network model, also known as the pore-scale model, is built
from high-resolution scanning techniques, where the flow
processes are simulated at the pore scale.22,28,29 As a result,
this approach exhibits limitations related to the required
computational resources and implementation at the field scale.
The third approach is a continuum-based or averaged-based
model that couples fluid flow, species transport, and fluid/rock
reaction, including the dissolution mechanism and induced
channel propagation. The flow is assumed to be governed by
Darcy’s law. A simplified pore-scale concept is utilized to
correlate the parameters at the pore scale, such as the pore
radius, surface area, and local mass transfer to Darcy-scale
parameters.30−32 The continuum-based model has been
extended to consider radial and three-dimensional systems.33−35

Simulation results showed good agreement with the exper-
imental observation regarding the dissolution pattern and the
prediction of pore volume to breakthrough.36 Other studies
expanded the model to consider the influence of temperature,37

discrete fractures,38,39 and the presence of a second fluid
phase.40 However, the main limitations of the continuummodel
are related to the uncertainties of the underlying variables,
corresponding to the nature of rock heterogeneity. Quantifying
such uncertainties and their impact on the model predictions is
of significant interest in optimizing this technology.
This study is based on the continuum model, which involves

several parameters related to the rock properties (i.e., pore
radius, surface area, and fluid/rock interaction), acid reactivity,
and injection conditions. These parameters are often subject to
uncertainties, which propagate through the model, leading to
variability in the predictions. Thus, it is vital to develop a
workflow to quantify how uncertainties in the model inputs
propagate to the model’s output. We propose an uncertainty
propagation analysis, which, to the best of our knowledge, has
never been performed for WIPCR. Existing approaches in the
literature examined the sensitivity of the underlying parameters
such as rock properties, reaction rate, diffusion coefficient, and
pore-scale parameters using one variable at a time, which is
inefficient and does not capture parameter dependencies.30,33,41

Alternatively, a more general and robust framework of
uncertainty propagation is the global sensitivity analysis
(GSA). GSA can provide more insights into this problem by
considering the dependencies among parameters. This feature is
important for applications that involve strong coupling between

different physical processes, such as WIPCR. In other fields,
many studies utilized this approach to examine complex
problems in the subsurface, such as studying carbon dioxide
storage,42 reservoir simulation,43−45 reactive transport,46,47 and
natural convection in porous media.48−51 For instance,
Benetatos and Giglio introduced a comprehensive workflow
for full-scale reservoir simulation, including multiple data
sources.52 However, GSA has not yet been applied to WIPCR.
The goal of this work is to develop a GSA method for WIPCR,
which allows improving uncertainty quantification and opti-
mization of the carbonate dissolution processes.
A dimensionless analysis is developed to perform the GSA.

We consider the impact of uncertainties on the model
dimensionless parameters, including the convection Damköhler
number, the diffusion Damköhler number, the Peclet number,
the acid capacity number, pore volume injection to break-
through, and the effective permeability of the system. WIPCR
modeling requires a large number of forward simulations, which
involve nonlinear coupling between multiphysical processes.
Moreover, the number of input parameters is relatively large. To
mitigate this challenge, we present a new strategy based on
coupling a variance decomposition technique and a screening
method. We used the screening method to identify the most
significant variables to reduce the model’s dimensions. The
variance decomposition technique is then used to rank the most
important parameters based on the contribution of every
parameter to the selected model’s output.53 The traditional
method of calculating these sensitivity indices uses Monte Carlo
simulations, which is impractical to use with expensive
computational models. To overcome this issue, we utilize
polynomial chaos expansion (PCE)54,55 as a surrogate for the
full-physics model. Once the PCE is built, further processing of
the coefficients in the PCE allows the calculation of the
sensitivity indices.
This paper is organized as follows: Section 2 presents the

mathematical model and the nondimensional analysis. Section 3
is devoted to the methodology, where we present the numerical
model and the global sensitivity method. In Section 4, we
validate the numerical model against an analytical solution for
carbonate dissolution. Section 5 presents the results and
discussion of the GSA, followed by the main conclusion in
Section 6.

2. PROBLEM DESCRIPTION
Wormhole formation and dissolution is a process that occurs at
different length scales of the porous medium. The reactive fluid
propagates within the rock pore and exhibits a wide range of
pore distributions in shape and size. The pores are enlarged due
to rock dissolution at the pore walls, leading to the initiation and
propagation of the dissolution channel. Here, we consider a
continuum reactive transport model to simulate carbonate
acidizing in a rectangular domain. This model considers the
dissolution of porous carbonate rocks by acidic solutions at
Darcy’s scale.30 The model captures wormhole formation and
propagation by correlating the pore radius and the solid−fluid
interfacial area to Darcy-scale properties. This coupling is
achieved through a structure−property relationship. The model
consists of the continuity equation and Darcy’s law, which are
used to obtain the pressure field, such that,

PU K
1= ·

(1)
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t
U 0+ · =

(2)

where U is the flow velocity vector [m/s], K is the absolute
permeability [m2], P is the pressure [Pa], μ is the viscosity [Pa·s]
of the solution, and φ is the porosity [−].
The species balance equation, given by a convection−

diffusion−reaction equation, is given by
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where Cf is the acid concentration [mol/m3], De is the effective
dispersion−diffusion tensor [m2/s], kc is the local mass transfer
coefficient [m/s], av is the solid−fluid interfacial area [1/m], Cs
is the concentration of the acid at the fluid−solid interface [mol/
m3], and ks is the surface reaction rate [m/s]. Acidizing
carbonate causes the dissolution of the rock mineral. This
dissolution is captured at Darcy’s scale by a change in porosity as
follows:

t
k C C a( )c f s v

s

=
(5)

where α is the acid dissolving power, defined as the mass of
minerals consumed by a given mass of acid [kg/mol], and ρs is
the density of the carbonate rocks [kg/m3]. Eq 3 describes the
acid species transport at Darcy’s scale. The last term in this
equation represents the transport of the acid from the bulk fluid
phase to the solid−fluid interface. One assumption is that the
dissolution does not affect the density and viscosity of the fluid.
The mathematical model is completed by relating the pore
radius and solid−fluid interfacial area to the change in local
porosity, permeability, and mass transfer coefficient, as
described below.
As the acid dissolves the rock, the porous medium structure

changes at different length scales. At Darcy’s scale, the rock
permeability and porosity are altered, while at the pore scale, the
pore radius, the interfacial area, and pore connectivity are
continuously varying. Different correlations have been empiri-
cally formulated to relate these properties.56 In this study, we
consider a modified Carman−Kozeny correlation to relate the
increase in porosity to the permeability as a result of dissolution,
that is,

k
k

(1 )

(1 )0 0

0

0

2i
k
jjjjj

y
{
zzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
=

(6)

where k is the current permeability [m2], k0 is the initial
permeability [m2], φ0 is the initial mean porosity [−], and β is a
constant [−]. The following relationships capture the variation
in the pore radius and surface area available for the reaction:
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Here, rp represents the relative change of the pore radius [m],
rp0 is the initial relative change of the pore radius, and av0 is the

initial interfacial area [1/m]. Themass transfer coefficient (kc) is
calculated with the following relationship:57,58

Sh
k r

D
Sh bRe Sc

2 c p

m
p
1/2 1/3= = +

(8)

where Sh is the dimensionless Sherwood number [−], Dm is the
acid molecular diffusion coefficient [m2/s], Sh∞ is the
asymptotic Sherwood number [−], b is the local mass transfer
constant, Rep is the Reynolds number at the pore scale [−], and
Sc is the Schmidt number [−]. The Reynolds number at the pore
scale is defined as follows:

Re
rU2

p
p=

| |
(9)

where ν is the kinematic viscosity [m2/s]. The Schmidt number
is defined by:

Sc
Dm

=
(10)

The effective dispersion coefficients are calculated as follows:
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In the above equation, DeT and DeX are the transverse and
longitudinal dispersion coefficients [m2/s], respectively, and λx
and λy are constants that depend on the pore structure [−], and
α0s is the pore-connectivity constant [−]. The simulated domain
is shown in Figure 1, which represents a commonly used

benchmark in the literature, mimicking the conditions for a core
flooding experiment.31,40,59 The Danckwert’s inflow condition is
imposed at the inlet (left side), while Dirichlet boundary
conditions (constant pressure) are imposed at the outlet (right
side) with no flow at the transverse boundary. The acidic
solution is injected through the left side at a constant injection
concentration. Outlet boundary conditions (zero dispersive
flux) are imposed on the right side. The boundary conditions,
along with the geometry, are illustrated in Figure 1.
The initial and boundary conditions are given by

uC D
C
x

u C x, 0xf
f

0 0= =
(12)

k p
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u
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x, 0, 0x
0= = =

(13)
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p p
C
x

x L, 0,e
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(15)

Figure 1. Illustration of the 2D geometry of the simulation domain with
initial and boundary conditions; the color map depicts the initial
porosity distribution.
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f C t f, 0 at 0, where ,0 f 0 0= + = = { }
(16)

where u0 is the inlet velocity of the injected solution [m/s], C0 is
the inlet concentration of the acidic solution [mol/m3], pe is the
pressure at the outlet [Pa], n is a normal vector on the transverse
boundary [−], L is the domain length in the flow direction [m],
and f ̂ is a perturbation that is introduced to the initial mean
porosity [−] that is varied within the interval [ − Δφ0, Δφ0], as
shown in Figure 1. This variability is used to introduce bios in
the system to determine the initiation of wormholes.

3. DIMENSIONLESS ANALYSIS
The processes of wormhole formation and dissolution are
governed by 16 physical parameters: fluid viscosity (μ), fluid
kinematic viscosity (ν), surface reaction rate (ks), acid dissolving
power (α), density of the carbonate rocks (ρs), initial average
permeability (k0), initial mean porosity (φ0), the constant of the
permeability−porosity relationship (β), initial relative change of
the pore radius (rp0), interfacial surface area (av0), acid
molecular diffusion coefficient (Dm), pore-connectivity constant
(α0s), dispersion tensor constants (λx and λy), inlet velocity of
the acidic solution (u0), inlet concentration of the acidic solution
(C0), pressure at the outlet (pe), perturbation introduced to the
initial mean porosity ( f)̂, porosity interval (Δφ0), and the
constant of the local mass transfer equation (b).
In this study, the sensitivity analysis is performed using the

dimensionless form of the governing equations. This approach is
crucial to extend the results and interpretations of physical
processes to multiscale scenarios. The governing equations are
expressed in the dimensionless form by introducing the
following dimensionless variables:
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A complimentary list of dimensionless numbers is identified
by

Da
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where Da is the convection Damköhler number which
represents the ratio of reaction rate to convection rate, ϕ2 is
the diffusion Damköhler number which represents the ratio of
reaction rate to diffusion rate, Nac is the acid capacity number
that reflects the volume of carbonate dissolved in a unit volume
of the acid, η is the ratio of the pore-scale to Darcy scale, Pe is the
Peclet number which represents the convection rate to diffusion
rate. The governing equations in the dimensionless form are
provided in Appendix A.

4. METHODOLOGY: NUMERICAL MODEL AND GSA
4.1. Finite-Element Numerical Model. A finite-element

model is developed, using COMSOL multiphysics, to solve the
system of nondimensional equations. The momentum equation
is defined in the porous medium flow module, where the
pressure and flow velocity are calculated. The convection−
diffusion−reaction equation is defined by the transport of
diluted species in porous media under the chemical species
transport module. Furthermore, we use the domain ordinary-
differential equation to define the mass conservation equation
where the porosity change with time is captured. We utilize local
variables to define the structure−property relationships. This
step updates the permeability, pore radius, interfacial surface
area, and local mass transfer coefficient. We select second-order
discretization for the shape function in the species transport
equation, the mass conservation equation, and linear elements
discretization for the momentum equation. For solver
configuration, we use a segregated solver approach where the
set of equations is solved sequentially. Multifrontal massively
parallel sparse direct solver (MUMPS) is used to solve the
resulting system of equations.

4.2. GSA Workflow. GSA is used to perform uncertainty
propagation analysis aiming at understanding how the variability
in the reactive transport model is impacted by the variability of
inputs. This process is essential in subsurface applications with
uncertainties in the rock and fluid-rock properties. For instance,
important properties used in modeling carbonate dissolution are
the distribution of the pore radius and interfacial surface area,
which can vary by several orders of magnitude. The processes of
WIPCR are governed by 20 physical parameters. With the
dimensional analysis, we could regroup these parameters into 13
dimensionless parameters with uncertainties. GSA allows
ranking the dimensionless input parameters according to their
significance to the objective function. The variance decom-
position technique60 has several advantages; it has been widely
used in applications related to coupled flow and transport in
porous media.49,61,62 However, for WIPCR, even with the 1D
analysis, the number of input parameters is still large. Thus, the
variance decomposition technique is impractical as it requires
many runs of the forward model.
To overcome this challenge, we present a robust strategy for

WIPCR modeling that allows reducing computational require-
ments and the number of assessed parameters. The analysis
follows a black-box approach, which is based on the model’s
response to a given distribution of the model’s inputs. The GSA
workflow consists of multiple steps, including parameter
screening, design of experiments (DoE), variance decomposi-
tion, and Sobol indices (SI), as detailed below.
4.2.1. Parameter Screening and DoE. This step aims to

identify the significant parameters in the model based on a
screening analysis performed using a simplified DoE. Reducing
the dimensions of the model allows performing a detailed GSA
with the variance decomposition method. The screening
method uses DoE to maximize the information about the
model response and structure with reduced computational time.
In our study, we used the folded Plackett−Burman design as a

screening method.63,64 This DoE uses runs that are a multiple of
four that provides an efficient evaluation of the response in the
objective function with a reasonable number of simulations.
Based on the screening method, several insignificant parameters
can be disregarded in the sensitivity analysis. The sensitivity of
the remaining significant parameters requires a more accurate
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technique to capture dependencies among the model parame-
ters.
4.2.2. Variance-Based Technique: Sobol Indices.One of the

most effective methods in sensitivity analysis is the variance-
based technique, where Sobol indices (Sis) are used as
sensitivity matrices.49,54 This approach does not require linearity
in the physical model and can be used to study complex models.
The traditional approach to computing Sobol indices is through
Monte Carlo simulations, which requires a large set of
experimental designs that make it impractical. To overcome
this problem, we use PCE as a surrogate model for the
simulation model to calculate the Sobol sensitivity indices and
the marginal effect. The GSA workflow with different computa-
tional steps is illustrated in Figure 2. Additional details are
provided in Appendix B.

4.3. Verification of the Numerical Model. This section
aims to investigate the correctness of the numerical model,
which is a prerequisite step before GSA analysis. We verify the
simulation model with a 1D analytical solution. Simulations
were performed on the domain shown in Figure 1, mimicking
core flooding acidizing experiments. The input parameters are
specified in subsequent sections.
4.3.1. Verification with 1D Analytical Solution. The

multiphysical processes of WIPCR are not intrinsically available
in COMSOL. Therefore, the model was developed by coupling
two existing physics (Darcy’s law and transport of diluted
species in porous media) with the domain ordinary-differential
equation. Several mathematical functions were also defined. We
consider the 1D analytical solution, developed in a previous
study,33 where the mass transfer coefficient kc (eq 17) and
dispersion coefficient De (eq 18) were assumed to be
independent of flow velocity. The domain was also assumed
to be homogeneous. Figure 3 shows the initial and boundary
conditions used in the simulation model with the analytical
solution.
The dimensionless parameters used in the simulations are

given in Table 1, where the values of the parameters are fixed

unless otherwise stated. Table 2 summarizes the inputs used in
the simulations to replicate the analytical solution. The domain
is discretized with fine elements using edge meshing for the 1D
case. For the 2D cases, we used a triangular meshing
corresponding to about 42,000 mesh elements. Based on
previous studies for the 2D problem,40 simulation results were
independent of the mesh size for a degree of freedom that is
more than 31,500 mesh elements. In this study, the selected
mesh consisted of 42,000 elements. An adaptive time stepping
was used in the numerical model, where the solver adjusts the
time step to maintain the desired relative tolerance (0.0005).
The observed simulation times were the function of the input
parameters (mainly Da) and ranged between half an hour to 24 h
on a computational workstation.
Figure 4 shows a comparison between the simulation results

and the analytical solution, where a good match is obtained
between the two solutions. The red curve represents the
calculated dissolution front from simulations, while the blue
curve represents the analytical solution. The plots on the left
show normalized concentration against the normalized distance
for different Damköhler numbers. The concentration is
normalized by the inlet concentration (C/C0), and the distance
is normalized by the length of the domain (x/L). The
normalized concentrations are shown after injecting 42 pore
volumes at a convection Damköhler number (Da) of 500. We
observe piston-like fronts for dissolution and porosity, which are
in excellent agreement with the analytical solution. Figure 4 also
shows similar results for a value of the Damköhler number of 10.
The dissolution front is sharper for higher values of the
Damköhler number.
4.3.2. Numerical Experiments. We conducted simulations

for the domain shown in Figure 1, which illustrates the impact of

Figure 2. Workflow of the proposed GSA.

Figure 3. Initial and boundary conditions for the model verification
case.

Table 1. Dimensionless Parameters Used in the Simulations

inputs value description

b 0.7 constant of the local mass transfer (b)
Nac 0.2 acid capacity number
Sc 2500 Schmidt number
Sh∞ 3 asymptotic Sherwood number
α0s 0.5 tortuosity correction constant
β 2 exponent in structure−property correlation
λT 0.1 dispersion transverse coefficient
λx 0.5 dispersion longitudinal coefficient
η 8.00E−04 pore scale to the Darcy-scale ratio
ϕ2 20 diffusion Damköhler number
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different transport and reaction phenomena on carbonate
dissolution. The acid is injected from the inlet boundary at a
constant rate. The fluid is contained in the domain by applying a
no-flux boundary condition in transverse boundaries. A porosity
field is randomly disturbed in the domain with an average
porosity of 0.2. The numerical implementation of the model is
discussed in the previous section. The dimensionless parameters
used in the simulations are given in Table 1, and the
corresponding physical parameters are given in Table 2. The
input data are used as reported in previous studies.30,31Figure 5
presents the simulation results for one case at different times for
15% hydrochloric acid injection. The resulting porositymaps are
shown at different times, where the velocity vectors, represented
by white arrows, depict the wormhole initiation and propagation
in the porous medium. Initially, the acid dissolves the face of the
rock, and small channels form. The formed channels expand due
to the reaction of the acid with the rock. Among these small
channels, one channel develops more dominantly, leading the
acids to get directed to that dominant channel due to higher
conductivity. This is also obvious in the velocity vectors, where
all the acid injected flows into the channel. Furthermore, the acid
leaks through the wormhole wall causing small branching
channels out of the main wormhole. Leakage is mainly caused by

diffusion and dispersion. As time progresses, the acid enlarges
the width of the channel. Simulations were terminated during
acid breakthrough at the outlet.
An important output of theWIPCRmodels is the time of acid

breakthrough (tBT), which is determined as the time at which the
pressure drop across the domain decreases by a factor of
100.33,36 Once the time to breakthrough is known, we calculate
the pore volume to breakthrough (PVTB) as follows:

PVTB
Q t

PV
BT= ·

(19)

where Q is the acid flow rate, tBT is the breakthrough time, PV is
the pore volume of the medium.
The pore volume to breakthrough is an indicator that is used

to assess the performance of the acid. Aminimum volume of acid
is desired to form a maximum length of the wormhole. We
monitor the effective permeability across the porous medium
over time, which serves as an indicator for PVTB. The pressure at
the inlet and the velocity at the outlet obtained from the
simulation were used to calculate the effective permeability
based on Darcy’s law. Figure 6 shows the effective permeability
(keff) and the pressure drop across the domain versus time for a
test case. The permeability plot can be divided into two parts.
Initially, the effective permeability increases at a slow rate,
reflecting how the dissolution process progresses before
breakthrough, followed by an exponential increase in keff,
resulting from the acid breakthrough. At this stage, the induced
wormhole connects the inlet and the outlet of the core. The time
at which the wormhole connects the inlet and outlet exhibits a
significant reduction in the pressure drop across the domain.
This explains the abrupt jump in the effective permeability plot.
Figure 7 illustrates the effect of varying the acid injection rate.

The injection rate changes the Peclet number (Pe) and
Damköhler number (Da). Low values of the Damköhler
number indicate a high injection rate compared to reactivity
and vice versa. At a very high injection rate (e.g., Da = 1), no
formation of any channels is observed (Figure 7a). However, the
porosity in the domain increases. These results highlight the
balance between transport and reaction. In this case, the acid
residence time is insufficient compared to the reaction time,
resulting in partial reactivity of the acid with the carbonate. This
dissolution pattern is usually referred to as uniform dissolution.
In this scenario, the convection of the acid is more dominant
than dispersion. On the other hand, at a very low injection rate
(e.g., Da = 30,000), the soaking time of the acid is significant,
resulting in complete dissolution (Figure 7f). The acid in this
regime produces face dissolution, and dispersion tends to be
more dominant than convection, leading to slow propagation of
the induced channel. At intermediate injection rates, the acid
produces preferential pathways (wormholes) due to the
competing effects of convection, dispersion, and reaction. In
this regime, the acid only dissolves part of the medium, resulting
in fewer volumes of acid required to achieve breakthrough. The
behavior of wormhole development and propagation, as Da
varies, is shown in Figure 7b−e, where one observes variability in
the morphology of the wormholes. For instance, a single
wormhole with fewer branches was formed when Da = 500. On
the other hand, multiple longer branches were formed from the
mother channel when Da = 300, resulting in a ramified
dissolution. At higher values of the Damköhler number (Figure
7e), the dissolution channel becomes wider, creating a conical
wormhole. This sensitivity study highlights the need to develop
an accurate and efficient optimization process for WIPCR.

Table 2. Physical Parameters Used in the Simulations

input
value − 1D validation

case
value − 2D numerical

experiment description

a0 5000 [1/m] 5000 [1/m] interfacial area
b 0.7 0.7 constant in local

mass transfer
C0 2.71 [mol/L] 2.71 [mol/L] inlet concentration

of the acid
Dm 4 × 10−10 [m2/s] 4 × 10−10 [m2/s] molecular diffusion

coef.
H 2 [cm] height of the

domain
k0 10 [mD] 5 [mD] initial permeability
ks 1.4 × 10−04 [cm/m] 1.4 × 10−04 [cm/m] surface reaction rate

constant
L 15 [cm] 5 [cm] length of the

domain
r0 1 [μm] 1 [μm] initial pore radius
Sh∞ 3 3 asymptotic

Sherwood
number

u0 0.0016 [cm/s] varying injection velocity at
the inlet

α0s 0.5 0.5 tortuosity
correction
constant

α 50 [g/mol] 50 [g/mol] dissolving power of
the acid

β 1 1 pore-broadening
parameter

γ 1 1 pore-connectivity
parameter

λx 0.5 longitudinal
dispersion
constant

λy 0.1 transverse
dispersion
constant

μ 1 [cP] 1 [cP] acid viscosity
ρs 2.71 [g/cm3] 2.71 [g/cm3] density of

carbonate
ν 0.01 [m2/s] 0.01 [m2/s] acid kinematic

viscosity
ρ 1000 [kg/m3] 1000 [kg/m3] density of water
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Figure 8 depicts the variation of pore volume to breakthrough
(PVTB) versus the dimensionless injection rate (reciprocal of
the Damköhler number) obtained from the simulations. The
simulation input data are presented in Table 2 with varying
injection rates. The plot indicates an optimum injection rate to
achieve the same length of the dissolution channel with a
minimum amount of acid injected. The breakthrough curve
provides the general behavior of the experimental observations.
For instance, the optimum rate corresponding to the minimum
acid usage in Figure 8 is at Da−1 ≈ 0.002, whereas more volume
of acid is needed to achieve a breakthrough at lower and higher
injection rates. For instance, at low injection rates (e.g., Da−1 =
10−4), the acid soaking time is long enough to achieve a
complete reaction, resulting in the overuse of acid to attain
breakthrough. Conversely, as the acid injection rate increases
(e.g., Da−1 = 1), the acid escapes the porous medium with

incomplete reactivity, leading to more acid usage to establish
channel conductivity between the inlet and outlet.
Figure 9 shows the impact of changing the injection rate on

the increase of effective permeability. For example, a lower
injection rate requires more time to reach a breakthrough, which
can be seen at Da = 1000 compared to other curves. However, as
the injection rate increases, the time required for the
permeability to increase from the initial mean permeability
decreases.

5. RESULTS AND DISCUSSION
5.1. Variable Screening. We address the impact of the

variability of input parameters on themodel’s objective function,

Figure 4.Comparison between analytical and numerical solutions, showing the concentration and porosity distribution after injecting 42 pore volumes
of acid, corresponding to Da = 500 in (a) and Da = 10 in (b).

Figure 5. Porosity maps with the velocity vectors (white arrows)
showing the solutions until the breakthrough for Da = 500 at different
times (a−f) corresponding to 10, 20, 30, 50, 80, and 101 min.

Figure 6. Effective permeability (keff) across the core as a function of
time, which indicates the injected acid breakthrough at the outlet,
leading to a conductive channel between the inlet and outlet.
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corresponding to the pore volume to breakthrough (PVTB) and
the effective permeability (keff) of the medium. We use the DoE
to identify the significant factors affecting the model’s response.
We implement folded Placket−Burman DoE to determine the
significant variables in the simulation model. We monitor the
acid concentration at the outlet to serve as an indicator for the
simulation stopping criteria, corresponding to channel break-
through and the end of the stimulation job. This approach was
found to be more robust than using pressure drop or effective
permeability as stopping criteria. Figure 9 confirms the
robustness of the selected stopping criterion for all tested
cases, which is verified by the consistency of the final effective
permeability of the system. The time to breakthrough is defined
as the time at which 10% of the inlet acid concentration reaches
the outlet of the core. This criterion does not impact the final
outcome. Table 3 summarizes the range of the uncertain
parameters used in the DoE, corresponding to the surface
reaction rate, diffusion coefficient, initial pore radius, and
interfacial surface reported in the literature.65−67 We performed
the analysis with dimensionless numbers instead of the physical
parameters.

We conducted 33 simulations to identify the significant
variables using Plackett−Burman’s DoE. The results obtained
from the simulation are used to build a nonlinear regression
model. We then utilize the regression model to calculate the
effect of each variable on the objective function. Figure 10a
shows the Pareto chart for the standardized effect on PVTB. The
acid capacity number is the most significant parameter. This
dimensionless number represents the stoichiometry of the
reaction. It is defined as the volume of carbonate that can be
dissolved in a unit volume of the acid. The second significant
parameter is the initial mean porosity, which is essential to
calculate pore-scale parameters such as the initial pore radius
and interfacial surface area. This finding is consistent with the
analytical solution proposed in a previous study30 given by

PVTB
N

(1 )0

ac 0

=
(20)

The above equation is a simple correlation to estimate PVTB
as a function of porosity and the acid capacity number. The last
parameter that appears to be significant is the pore-connectivity

Figure 7. Porosity maps at different values of the convection
Damköhler number corresponding to Da = (a) 1, (b) 300, (c) 500,
(d) 700, (e) 1000, and (f) 30,000, indicating different behaviors of the
stimulation process as a result of the competing mechanisms of
convection, diffusion, and reaction.

Figure 8. Pore volume to breakthrough versus the reciprocal of Da,
showing the optimum injection conditions (minimum PVTB) to
achieve a fast breakthrough with low acid usage.

Figure 9. Influence of varying the injection rate (dimensionless
convection Damköhler number) on the effective permeability of the
porous medium established by acid stimulation.

Table 3. Range of Variability for the Uncertainty Parameters
Used in the DoE

inputs range description

b [0.1−0.7] constant of the local mass transfer (b)
Da [50−1000] convection Damköhler number
Nac [0.01−0.2] acid capacity number
Pe [200−20,000] Peclet number
Sc [250−2500] Schmidt number
Sh∞ [2−4.36] asymptotic Sherwood number
α0s [0.1−0.5] tortuosity correction constant
β [1−2] exponent in the structure−property

correlation
η [4.00E−05−8.00E−04] pore-scale to Darcy-scale ratio
λT [0.1−0.5] dispersion transverse coefficient
λx [0.1−0.5] dispersion longitudinal coefficient
ϕ0 [0.05−0.2] initial mean porosity
ϕ2 [0.07−20] diffusion Damköhler number
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parameter (β). The aforementioned parameters are statistically
significant at the significant limit of 0.1, while the remaining ones
are less significant based on their prior interval of uncertainties.
Figure 10b shows the Pareto chart for the standardized effect

on effective permeability. The effective permeability is related to
the pressure drop across the rock. During dissolution, the
pressure drop decreases as the acid reacts with the rock mineral,
creating a conductive path for fluid flow. This explains why the
diffusion Damköhler number (ϕ2) and the convection
Damköhler number (Da) top the list as the most significant
factors impacting the effective permeability. Also, the pore-scale
to Darcy-scale ratio and the initial mean porosity appears to be
significant. The initial mean porosity is used to update the rock’s
permeability, which explains the strong dependency of
permeability on the initial mean porosity. The aforementioned
parameters are statistically significant on the effective perme-
ability at the significant limit of 0.1. The remaining parameters

are statistically insignificant. Based on the screening step, we
select six parameters to conduct further analysis, including the
diffusion Damköhler number (ϕ2), the convection Damköhler
number (Da), the initial mean porosity (ϕ0), the pore scale to
Darcy scale ratio (η), the acid capacity number (Nac), and the
pore-connectivity parameter (β).

5.2. Development of the Surrogate Model. Polynomial
chaos expansions (PCEs) were constructed and trained to
replace the finite-element model in the evaluation of GSA and
optimization. Therefore, the reliability of the study depends on
the accuracy of the PCEs, which require careful verification. To
do so, we consider the previous 2D problem with properties, as
presented in Table 1, corresponding to six variables. The
identified insignificant parameters are kept constant at their
most likely values, as listed in Table 1. The six input parameters
are assumed to be uniformly distributed over the ranges of
variability. The surrogate model (PCEs) is constructed using a

Figure 10. Pareto plot for the standardized effect on PVTB (a), and keff (b), showing the ranking of the significant parameters.

Figure 11.Comparisons between the simulation results and PCE for the PVTB and the effective permeability. On the left side, 250 samples were used
in the experimental design, and on the right side, 50 samples were used for verification.
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DoE consisting of 300 samples, based on a quasi-random
sampling technique to cover the parameters’ space. The
workflow was developed using UQLAB software.68 Several
PCEmodels were constructed to capture multiple outputs of the
simulations, including pore volume to breakthrough (PVTB),
effective permeability (keff), as well as the 2D spatial distribution
of acid concentration in the domain at the breakthrough time.
In the case of acid distribution, component-wise PCE was

constructed for each node in the simulation domain. Out of the
300 simulations from the DoE, 250 experiments were used to
construct the PCEs, and 50 were kept to validate the model. We
use the adaptive basis strategy in UQLAB to optimize the order
of the constructed PDE, which was tested within the range of 1
to 6. The optimization process of the PCE order minimizes the
leave-one-out (εLOO) cross-validation error, which checks the
predictability of PCE on sets of data that were not part of the
training. Figure 11 represents parity plots that compare the
results from the surrogate and simulation models for input
parameters corresponding to the data sets used to build the
proxy and validation sets that are not utilized to construct the
PCE. We notice a good match for training and a reasonable
match for validation. This accuracy of PCE, corresponding to
leave-one-out (εLOO) cross-validation error within 1.68%, was
found to be good enough to perform GSA and Monte Carlo
simulations.
Figure 12 shows a comparison between the results from the

simulationmodel and values obtained from the component-wise

PCE for the 2D acid concentration distribution at the
breakthrough time. Given the complexity of the flow and
transport processes in the heterogeneous domain, the PCE-
predicted concentration map is in excellent agreement with
finite-element simulation. It should be noted that the
component-wise PCE allows calculating the Sobol sensitivity
indices map in the domain, as demonstrated in the next section.

5.3. Uncertainty Propagation Analysis. Postprocessing
of the PCE coefficients allows calculating the total Sobol indices
(SIs) that are utilized to perform uncertainty propagation
analysis. Furthermore, we can assess the impact of the input
factors on the model response by calculating the marginal effect.
This process is useful to extend the surrogate model for new
samples. Hence, we can calculate the univariate effect by

evaluating the variability of the model’s response (i.e., pore
volume to breakthrough and effective permeability) to a specific
parameter using the surrogate model. This is achieved by varying
the factor of interest and keeping other parameters constant at
their average values. Figure 13 shows the results of GSA for the
spatial distribution of the acid concentration by varies for the
identified significant parameters. Figure 13a represents themean
distribution of the acid concentration calculated from the PCE
moments at the breakthrough time. The mean value of the acid
concentration is calculated at each node of the simulation
domain. It uses the coefficient (y0) with the constant basis (Φ0 =
1). Because of the complexity of the problem, the mean acid
concentration does not fully capture the model’s response. In
each experiment, the wormhole initiates and propagates from a
different point on the core. This is because of the interplay
between the reaction and transport.
By varying the input parameters, such as initial mean porosity,

initial pore radius, and the interfacial surface area available for
reaction, wormholes may initiate from different points and
propagate through different pathways. The mean value of the
acid concentration obtained from the surrogate model captures
the general behavior of the dissolution. Dissolution of the rock
face occurs at the inlet of the core, and later, a channel develops.
Figure 13b shows the standard deviation of acid concentration,
illustrating the deviation of concentration from its mean in the
2D domain. The high variance of the acid concentration
corresponds to where dissolution occurs the most. It can be
interpreted by the acid leaking into the wormhole wall because
of diffusion and dispersion, which creates this high variability
around the region where dissolution occurs. We assess the
sensitivity of the spatial acid concentration to the uncertain
input parameters with the total Sobol indices (SIs). Figure 13c
shows the total SIs of the initial mean porosity. One observes
that the uncertainty of this parameter has an insignificant impact
on acid concentration where dissolution occurs. Figure 13d
shows the total SIs for the acid capacity number.
The acid concentration is highly sensitive to this parameter’s

uncertainty where the SIs are high in the active dissolution
regions. Surrounding the dissolution channels, the SIs are lower
due to the leak-off to the channel walls by diffusion and
dispersion. At the center of the channel, the SI has high values,
corresponding to the dominance of convection, making the acid
concentration sensitive to the acid capacity number. It is
important to emphasize that the total SI considers the overall
contribution of a particular parameter to the model’s response,
including interactions and nonlinear effects. Hence, it allows for
the ranking of the input parameters according to their
significance to the output of interest. This shows that the acid
capacity number (Nac) (Figure 13d) is the most significant
parameter compared to other input parameters. In this case, the
total SI is more prominent in the dissolution region, where the
variance of the acid concentration is maximum. The acid
concertation is not sensitive to initial mean porosity (Figure
13c), as the region where the SI is high corresponds to negligible
variance. Figure 14 shows examples from the 300 experiments
on how the wormhole initiates and propagates differently in each
case, showing different apertures of the wormholes.
Figure 15 presents the sensitivity of the model’s responses

(i.e., PVTB and keff) to the uncertain parameters that we
considered in this study. The figure shows the bar plot of the
total sensitivity indices corresponding to the uncertain input
parameters. These sensitivity indices, along with the univariate
effect, are used to understand the uncertainty of the output of

Figure 12.Comparison between the values of (a) the simulation results
of the acid concentration map and (b) the concentration distribution
obtained from the multivariate PCE built on simulation nodes at the
breakthrough time.
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the reactive transport model related to incomplete knowledge of
the input parameters. Figure 15a indicates that the highest
contribution to the PVTB is due to the acid capacity number,
initial mean porosity, and the broadening exponent, while Figure
15b shows that the initial mean porosity and diffusion
Damköhler number (ϕ2) are main influential parameters for
the effective permeability.

The acid capacity number (Nac) is the most significant
parameter, with a total SI of 0.59. The univariate effect of Nac and
ϕ0 on PVTB is presented in Figure 16a,b, respectively. The acid
capacity number is mainly a function of the acid’s inlet
concentration. Figure 16a shows that the PVTB decreases with
the increase in the acid capacity number (Nac), which is in
agreement with previous studies.30,59 As the acid concentration
increases, the volume of acid required decreases. We also notice

Figure 13. GSA results for the 2D spatial distribution of the acid concentration, where (a) mean of the acid concentration [mol/m3], (b) standard
deviation of the acid concentration [mol/m3], (c) total Sobol indices map for initial mean porosity, and (d) total Sobol indices map for the acid
capacity number (Nac).

Figure 14. Spatial distribution of acid concentration [mol/m3] from the simulation results at the final simulation time, illustrating how the wormhole
initiates and propagates in different cases from DoE.

Figure 15. Total SIs for (a) PVTB and (b) effective permeability (keff).
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that when the acid capacity number is greater than 0.1 (15%
HCL), its effect on pore volume to breakthrough is less
significant. Figure 16b shows that PVTB decreases with an

increase in the mean porosity, which is coherent with previous
results.31,34 The presence of more minerals can explain this in
the low-porosity rocks compared to the high-porosity rocks.

Figure 16. Univariate effect of the input parameters (a) Nac, (b) ϕ0, (c) ϕ2, and (d) β on the PVTB.

Figure 17. Univariate effect of the input parameters (a) k, (b) ϕ2, (c) ϕ0, and (d) η on the effective permeability.
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Hence, more acid is required to dissolve the rock mineral in rock
with low mean porosity. Figure 16d shows that PVTB decreases
with an increase in the pore-broadening parameter. The increase
in this exponent causes the wormhole diameter to be smaller,
which explains why less volume of acid is required. Figure 16c
shows the univariate effect of the diffusion Damköhler number
(ϕ2). PVTB decreases with an increase in the diffusion
Damköhler number until the value of ϕ2 ≈ 10. At this point,
the effect is not pronounced. In fact, this is a transition between
reaction regimes from the kinetically controlled regime to the
mass transfer regime.30Figure 15b shows that most of the
contribution to the effective permeability (keff) is due to initial
mean porosity and the diffusion Damköhler number. The initial
mean porosity (φ0) is the most influential parameter with a total
SI of 0.84. This is evident from the univariate effect in Figure
17c. We notice that the effective permeability decreases with the
increase in porosity. We need to highlight here that this effective
permeability corresponds to the permeability at breakthrough.
Rocks have complicated structures, especially at the pore scale.
For small porosity, the increase in the permeability is higher to
achieve acid breakthrough, which might explain the behavior of
the plot.
Figure 1b shows the variability of the effective permeability

with respect to ϕ2. The effective permeability decreases with the
increase in ϕ2. Also, a similar behavior is observed in the
transition between the kinetically controlled regimes to the mass
transfer regime. Figure 1a shows that as Da increases, the
effective permeability increases. This can be attributed to the
influence of convective transport and reaction. A wider channel
is observed at high Da, causing less pressure drop and eventually
higher permeability. Figure 17d shows the relationship between
the final effective permeability and η. There is a proportional
relationship between the two variables. An increase in η
increases the pore radius, which explains this relationship.

6. CONCLUSIONS
This study provides an integrated framework to model
carbonate acidizing with uncertainty propagation and GSA
that combines continuum-based modeling, variable screening,
and variance decomposition techniques. The main conclusions
are

• The model estimates the optimum injection rate of the
used chemical where the pore volume to breakthrough is
minimized while maximizing the increase in effective
permeability of the rock formation.

• The diffusionDamköhler number, convectionDamköhler
number, initial mean porosity, pore scale to the Darcy
scale ratio, acid capacity number, and the pore-
connectivity parameter are found to be the significant
parameters.

• The Sobol sensitivity map shows that the distribution of
the acid concentration is sensitive to the acid capacity
number, especially in the region where dissolution occurs.

• The variability of the pore volume to breakthrough is
mainly impacted by the acid capacity number. The second
main significant factor is the initial mean porosity,
followed by the pore-broadening parameter.

• Understanding the uncertainty parameters in the reactive
transport model is critical to optimize the process.
Furthermore, it is important to minimize the volume
requirement as acid is often prepared from fresh water,
which has environmental concerns.

• Potential future work includes understanding the acidiz-
ing process in a layered system with sorted distribution of
reservoir properties. The modeling should be performed
at the wellbore-reservoir scale, where the thermal effect is
also considered.

■ APPENDIX A. GOVERNING EQUATIONS WITH
DIMENSIONLESS VARIABLES

The governing equations can then be written in the
dimensionless form as follows:
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Then, the initial and boundary conditions can then be written
as follows:
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■ APPENDIX B. SOBOL INDICES
Sobol sensitivity analysis helps us understand how the
uncertainty propagates in the used reactive transport model.
Consider the response of the mathematical model56,57 to be Y =
M(X), where this model depends on several uncertainty
parameters, X = {X1, X2,..., XM}. The response of the system
can be decomposed as follows:
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Here, M0 is a constant that is equal to the expected value of
M(X), a condition must hold for the decomposition such that its
integral over its independent input variables is zero, that is:
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where ΓXdik
and f Xdik

(Xik) represent the support of Xik, and the
marginal probability density function, respectively. The
orthogonality and uniqueness of Mi lead to the following
variance compositions:
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where u = {i1, i2,...,im}⊆ {1, 2,...,M} represents the index sets, and
Xu are the subvectors in u. Here, Du represents the partial
variance, defined by
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Thus, the Sobol sensitivity indices are expressed as
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The total Sobol sensitivity indices that include the
contribution of an input parameter with the effect of the rest
of the parameters are defined as follows:

S
D
D

u i, ( )i
u

i
T

i

= = { }
(B6)

The sensitivity indices can be calculated in many ways. The
traditional method is through Monte Carlo simulations. To
reduce computations, we utilized polynomial chaos expansion54

for the calculation of these indices. Each output that is used to
assess the efficiency of a system is written into a set of
multivariate polynomials, as follows:

Y M X y X( ) ( )
A

=
(B7)

where A is a set of chosen multi-index α = {α1, α2,..., α2} which
identifies the multivariate polynomial components (Φα(X)),
and yα is the corresponding polynomial coefficient.
Various methods can evaluate the corresponding polynomial

coefficients for given basis functions. The common strategy used
to compute the coefficients is the projection and the regression
method. The regression method is performed based on
minimizing an objective function that represents the difference
in predictions between simulations and the surrogate model,
PCE. Once PCE is built, the total variance (D) and mean value
(μ̂) of the model response can be evaluated as follows:
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Using the PCE coefficients, the total SIs can be expressed as
follows:
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Themarginal effects69 can also be calculated from PCE, which
provides the relation between the model’s response and the
sensitive input parameters. The marginal effect can be evaluated
as follows:
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