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Tenascins represent key constituents of the extracellular matrix (ECM) with major impact
on central nervous system (CNS) development. In this regard, several studies indicate
that they play a crucial role in axonal growth and guidance, synaptogenesis and
boundary formation. These functions are not only important during development, but
also for regeneration under several pathological conditions. Additionally, tenascin-C
(Tnc) represents a key modulator of the immune system and inflammatory processes.
In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in
the diseased CNS, specifically after retinal and optic nerve damage and degeneration.
We summarize the current view on both tenascins in diseases such as glaucoma,
retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this
context, we discuss their expression profile, possible functional relevance, remodeling
of the interacting matrisome and tenascin receptors, especially under pathological
conditions.

Keywords: extracellular matrix, glaucoma, glycoprotein, neurodegeneration, optic nerve, retina, tenascin-C,
tenascin-R

INTRODUCTION

Numerous studies demonstrate that retina and optic nerve degeneration is highly associated with
remodeling of various extracellular matrix (ECM) components. Glycoproteins and proteoglycans
that surround retinal cells and optic nerve fibers represent major constituents of the ECM
meshwork, known as the matrisome (Reinhard et al., 2015; Naba et al., 2016; Vecino et al.,
2016). Various components of the matrisome came into focus as ‘‘good cop, bad cop’’ in de- and
regeneration processes after injury or damage of the optic nerve (Isenmann et al., 2003; Ahmed
et al., 2005; Ren et al., 2015). Additionally, remodeling of matricellular proteins is evident in the
trabecular pathway, for instance in glaucoma pathogenesis (Wallace et al., 2015). In this review
article, we focus on tenascin glycoproteins, which raised considerable attention in the context of
degenerative processes in the retina and optic nerve.

The Tenascin Family
In vertebrates, the family of tenascins comprises the four members tenascin-C, -R, -W and -X
(Chiquet-Ehrismann and Tucker, 2011; Chiquet-Ehrismann et al., 2014). Expression of tenascin-R

Abbreviations: AMD, age-related macular degeneration; CNS, central nervous system; CSPG, chondroitin sulfate
proteoglycan; ECM, extracellular matrix; FGF2, fibroblast growth factor 2; IOP, intraocular pressure; JCT, juxta-
canalicular tissue; POAG, primary open-angle glaucoma; RGC, retinal ganglion cell; RPE, retinal pigment epithelium;
RPTPβ/ζ, receptor protein tyrosine phosphatase β/ζ; TGF, transforming growth factor; TLR4, toll-like receptor 4;
TM, trabecular meshwork; Tnc, tenascin-C; Tnr, tenascin-R.
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(Tnr) is restricted to the nervous system, whereas tenascin-C
(Tnc) can also be found in non-nervous tissue. Due to the
fact that little, if anything, has been reported about the role
of tenascin-W and -X in the diseased visual system, this
review article mainly focuses on the expression and functional
importance of Tnc and Tnr in retinal and optic nerve
degeneration and various eye diseases.

Both tenascin molecules exhibit a modular structure (Nies
et al., 1991; Siri et al., 1991; Jones F. S. and Jones, 2000; Jones
P. L. and Jones, 2000; Joester and Faissner, 2001; Midwood
and Orend, 2009). Tnc is an oligomeric protein, which consists
of six monomers that are connected via a tenascin assembly
(TA) domain at the amino-terminal region (Figure 1A). This
constitution is also called hexabrachion. In human, each TNC
monomer consists of a TA domain, followed by a cysteine-rich
domain, 14.5 epidermal-growth factor (EGF)-like domains, eight
fibronectin (FN)-type III domains and a fibrinogen (FG)-like
carboxy-terminal part. Additional FN-type III domains, termed
A1, A2, A3, A4, B, AD2, AD1, C and D, can be inserted between
domain 5 and 6 (Spring et al., 1989; Nies et al., 1991; Dörries
and Schachner, 1994; Joester and Faissner, 1999, 2001; Tucker
et al., 2006). Via alternative TNC mRNA splicing, and based
on a binary combinatorial potential, the generation of up to
512 isoforms in humans is feasible (Joester and Faissner, 1999,
2001; Theocharidis et al., 2014; Midwood et al., 2016; Faissner
et al., 2017). One interesting feature of Tnc is that it exhibits both
adhesive and anti-adhesive properties (Faissner and Kruse, 1990;
Chiquet-Ehrismann et al., 1991; Faissner, 1997). For instance,
the FN-type III region exhibits pro-adhesive characteristics,
whereas the EGF-like domains show anti-adhesive properties

FIGURE 1 | Modular assembly of human tenascin-C (TNC) and tenascin-R
(TNR) monomers. (A) In human, each TNC monomer consists of an
amino-terminal tenascin assembly (TA) domain, a cysteine-rich domain,
14.5 epidermal-growth factor (EGF)-like domains, eight constitutive fibronectin
(FN)-type III homologous domains and a fibrinogen (FG)-like carboxy-terminal
part. Between the FN-type III domains 5 and 6, TNC can carry the additional
FN-type III domains A1, A2, A3, A4, B, AD2, AD1, C and D due to alternative
splicing. (B) Human TNR also consists of a TA domain and a cysteine-rich
domain, in this case followed by 4.5 EGF-like domains, eight constitutive
FN-type III domains and a FG-like carboxy-terminal part. The alternatively
spliced FN-type III domain R can be inserted between the FN-type III domains
5 and 6. Abbreviations: EGF, epidermal-growth factor-like domain; FG,
fibrinogen-like domain; FNIII, fibronectin-type III homologous domain; TA,
amino-terminal tenascin assembly domain; TNC, human tenascin-C; TNR,
human tenascin-R.

(Spring et al., 1989; Ajemian et al., 1994; Gotz et al., 1996).
The latter are also associated with proliferation, growth cone
repulsion and migration (Joester and Faissner, 2001; Swindle
et al., 2001; Loers and Schachner, 2007). Human TNR exhibits a
similar modular structure, but it is composed of three monomers
(Figure 1B; Schachner et al., 1994). Each monomer consists
of an amino-terminal TA domain, a cysteine-rich domain, 4.5
EGF-like repeats, eight or nine FN-type III domains and a FG
carboxy-terminal part.

Tenascins in the Developing and Adult
Healthy Retina and Optic Nerve
As part of the eye (Figure 2A), the retina and the optic nerve
develop from neuroectodermal tissue. During retinogenesis,
seven main cell types, namely retinal ganglion cells (RGCs),
amacrine, bipolar, horizontal, Müller glia as well as cone and rod
photoreceptor cells, arise from multipotent retinal progenitor
cells in highly conserved and overlapping waves (Cepko et al.,
1996; Dyer and Cepko, 2001; Marquardt, 2003; Agathocleous
and Harris, 2009; Heavner and Pevny, 2012). Until adulthood,
following a maturation and synaptic fine-tuning period, retinal
cell nuclei are assigned to specific nuclear layers, while their
synaptic processes are arranged in plexiform and nerve fiber
layers (Figure 2B).

Indeed, the retina is an excellent model system to study
developmental aspects such as proliferation and differentiation,
but also axonal growth and guidance as well as pathfinding
(McLaughlin et al., 2003; Oster et al., 2004). Nasal and temporal
projections from the retina are transmitted via RGC axons, which
form the optic nerve. RGC axons from both eyes converge in
the optic chiasm at the base of the hypothalamus and segregate
into ipsi- and contralaterally projecting fibers (Petros et al., 2008;
Erskine and Herrera, 2014). Via the optic tract, axons project in a
highly topographic manner into subcortical and cortical areas to
transfer the visual information.

Intrinsic and extrinsic factors, which comprises transcription
factors, growth factors and a variety of ECM components,
including tenascins, influence retinogenesis and the growth of
optic nerve fibers (Thanos and Mey, 2001; Hatakeyama and
Kageyama, 2004; Harada et al., 2007; Agathocleous and Harris,
2009; Xiang, 2013; Reinhard et al., 2015).

In the developing retina, Tnc becomes detectable within
the inner neuroblastic layer at embryonic day 13 (Klausmeyer
et al., 2007). In the adult retina, it is synthesized by different
neuronal subtypes, including horizontal, amacrine and displaced
amacrine cells and is prominently enriched in the outer and
inner plexiform as well as in the nerve fiber layer (D’Alessandri
et al., 1995; Sánchez-López et al., 2004; Figure 2C). As shown
by Siddiqui et al. (2009), cultivated postnatal Müller glia cells
also express large Tnc isoforms. In the optic nerve, astrocytes
secrete huge amounts of the Tnc protein (Bartsch et al., 1995;
D’Alessandri et al., 1995; Garwood et al., 2004; Reinhard et al.,
2015).

Tnr, also known as janusin/J1-160/180 in rodents or restrictin
in the chicken, is initially expressed upon postnatal stages
in the developing retina and optic nerve (Ffrench-Constant
et al., 1988; Bartsch et al., 1993; Wintergerst et al., 1993;
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FIGURE 2 | Cartoon summarizing the current view on the expression of tenascins in the retina, optic nerve and iridocorneal angle. (A) Scheme of the adult human
eye. (B) Scheme of the retina, optic nerve and iridocorneal angle. (C) Visualization of Tnc- and Tnr-expressing cell types/structures in the retina, optic nerve and
iridocorneal angel. In the retina, horizontal, amacrine and displaced amacrine cells are a main source of Tnc expression (orange). Horizontal cells also co-express
large amounts of Tnr (blue). Additionally, signals of both proteins can be observed in the plexiform layers (orange/blue). In the optic nerve, astrocytes show a strong
Tnc expression (orange). Tnr (blue) is highly expressed by optic nerve oligodendrocytes and localized at myelinated fibers and nodes of Ranvier. In the iridocorneal
angle, the basement membrane underlying the inner wall of Schlemm’s canal contains Tnc protein (orange). Abbreviations: A, astrocyte; BM, basement membrane;
C, cornea; CS, corneoscleral tissue; I, iris; ICA, iridocorneal angle; IPL, inner plexiform layer; JC, juxtacanalicular tissue; L, lens; NFL, nerve fiber layer; NR, node of
Ranvier; O, oligodendrocyte; ON, optic nerve; ONH, optic nerve head; OPL, outer plexiform layer; R, retina; S, sclera; SC, Schlemm’s canal; TM, trabecular
meshwork; Tnc, tenascin-C; Tnr, tenascin-R, UV, uveal tissue.

Joester and Faissner, 2001). Later, Tnr expression peaks until the
third postnatal week and then decreases again. In the adult retina,
horizontal cells are the main cellular source of Tnr (Figure 2C).
Due to the proximity of Tnr-expressing cells, large amounts of
protein are found in the outer plexiform layer. Nevertheless, the
inner plexiform and nerve fiber layer also show detectable levels
of the Tnr protein, suggesting low expression by other retinal
cell types or intraretinal protein transport. In the optic nerve,
it is highly expressed by oligodendrocytes and associated with
myelinated fibers and nodes of Ranvier with ongoing age until

adulthood. In contrast, Tnr is absent from the unmyelinated
proximal, retina-near part of the optic nerve.

ROLE OF TENASCINS IN EYE DISEASES

In the central nervous system (CNS), Tnc exhibits high
expression during early development. With ongoing maturation,
it is progressively downregulated, but re-expressed under
pathological conditions (Garwood et al., 2004; Roll et al.,
2012; Reinhard et al., 2015). The role of Tnc remodeling in
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TABLE 1 | Summary of the current knowledge on the regulation of tenascin-C (Tnc) and tenascin-R (Tnr) expression in retinal and optic nerve degeneration and eye
diseases.

Type of degeneration/eye disease References

Tnc AMD
High levels in choroidal neovascular membranes of AMD patients Nicolò et al. (2000), Fasler-Kan et al. (2005),

Afshari et al. (2010) and Kobayashi et al. (2016b)
Diabetic retinopathy
Upregulated in fibrovascular membranes in eyes of diabetic patients Ishikawa et al. (2015) and Kobayashi et al. (2016a)
Upregulated in basement membranes of diabetic human eyes To et al. (2013)
Upregulation in intravitreal membranes of patients with proliferative traumatic, idiopathic
vitreoretinopathy and proliferative diabetic retinopathy

Hagedorn et al. (1993)

Glaucoma
Upregulated in the retina and optic nerve of an autoimmune-glaucoma rat model Reinehr et al. (2016b)
Upregulated in the ONH of an IOP-induced glaucoma rat model Johnson et al. (2007)
Upregulation of specific isoforms in mechanically stretched TM cells Keller et al. (2007)
Upregulated in the ONH of POAG patients Pena et al. (1999)

Retinal ischemia
Downregulation of small isoforms in the retina of an ischemia/reperfusion rat model Reinhard et al. (2017)

Optic nerve de-/regeneration
Upregulated following optic nerve crush in the goldfish Battisti et al. (1995)
Upregulated after rat optic nerve transection Ajemian et al. (1994)

Tnr Retinal ischemia
Upregulation of the large isoform in the retina in a rat ischemia/reperfusion model Reinhard et al. (2017)
Optic nerve de-/regeneration
Upregulated in the regenerating visual pathway of the lizard Lang et al. (2008)
Expression not altered in the optic nerve of mice following injury Becker et al. (2000)
Reduced expression levels in the optic nerve of the salamander Becker et al. (1999)

Abbreviations: AMD, age-related macular degeneration; ONH, optic nerve head; POAG, primary open-angle glaucoma; TM, trabecular meshwork; Tnc, tenascin-C;
Tnr, tenascin-R.

the neural stem/progenitor compartment has been reviewed
comprehensively (Roll and Faissner, 2014; Theocharidis et al.,
2014; Faissner and Reinhard, 2015; Faissner et al., 2017). It
regulates proliferation and differentiation and is also enriched
in the adult neural stem cell niche. Additionally, Tnc is
involved in barrier formation, for example in the barrel cortex
during development and as a constituent of the glial scar
after injury. Also in many cancers, Tnc is highly expressed
and promotes migration as well as angiogenesis (Orend and
Chiquet-Ehrismann, 2006; Midwood and Orend, 2009; Brösicke
and Faissner, 2015; Reinhard et al., 2016). These examples
show the huge spectrum of—in part ambivalent—Tnc-mediated
functions. Furthermore, various studies suggest that tenascin
glycoproteins might be involved in degenerative processes
of the retina and optic nerve as well as eye diseases e.g.,
glaucoma.

Tenascin-C in Glaucoma
Glaucoma is one of the leading causes of visual impairment
and irreversible blindness worldwide. It is a neurodegenerative
disease characterized by morphological changes of the optic
nerve head and retinal nerve fiber layer as well as progressive
RGCs loss (EGS, 2017). In 2010, approximately 4.2 million
people were visually impaired due to glaucoma (Bourne et
al., 2016). This number will likely rise to about 11.2 million
people by 2020 (Quigley and Broman, 2006). Among others,
age, genetic predisposition and intraocular pressure (IOP)
elevation are considered the most important risk factors
for glaucoma. However, its pathophysiology is still poorly
understood.

Various studies indicate that remodeling of Tnc is strongly
associated with high-pressure glaucoma (Table 1). Pena et al.
(1999) recognized that enhanced Tnc expression is associated
with reactive astrocytes in the human optic nerve head of
primary open-angle glaucoma (POAG) patients. Although the
precise function of Tnc in glaucoma disease is still unknown,
it was assumed that it might act as barrier molecule, which
locally restricts detrimental humoral and blood-derived factors,
to protect RGC axons. Along these lines, Johnson et al. (2007)
described a prominent Tnc upregulation in the pressure-injured
optic nerve head of a rat ocular hypertension glaucoma model.
Additionally, Tnc might be involved in reactivation of astrocytes,
which play a crucial role in glaucomatous optic nerve fibrosis
(Schneider and Fuchshofer, 2016).

IOP rises due to impaired aqueous humor outflow via the
trabecular pathway in the iridocorneal angle (Abu-Hassan et al.,
2014; Dautriche et al., 2014). In this regard, it is interesting to
note that Tnc is an extracellular component within the human
juxta-canalicular tissue (JCT). In addition, Tnc was detected
in trabecular meshwork (TM) cells (Ueda and Yue, 2003;
Pattabiraman and Rao, 2010; Keller et al., 2013; Figure 2B). In
the JCT, Tnc is predominantly localized in basement membranes
underlying the inner wall of Schlemm’s canal (Figure 2C).

An abnormal accumulation of ECM constituents increases
aqueous humor outflow resistance through the trabecular
pathway (Gabelt and Kaufman, 2005). The functional
importance of matricellular protein production and turnover
to control outflow resistance in the TM has been reviewed
(Wallace et al., 2014, 2015; Tamm et al., 2015). Several
matricellular proteins, including the connective tissue growth
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factor, thrombospondin, Tnc and Tnx, appear to play a role in
TM fibrosis. For instance, deficiency of the matrix glycoproteins
thrombospondin 1 and SPARC (secreted protein acidic and rich
in cysteine) has been shown to enhance outflow facility and
lower IOP in mouse models of glaucoma (Wallace et al., 2015).

Keller et al. (2007) noted increased levels of Tnc in response to
mechanical stretching of porcine TM cells in a perfusion culture
model. Isoforms of Tnc identified in those TM cells included
FN-type III 5-D-6, 5-6, A1-B as well as B-D-6. Interestingly,
levels of Tnc FN-type III domain D transcripts were also
elevated due to mechanical stretching of TM cells, indicating
changes in alternative splicing that might affect TM cell-ECM
interaction.

The effects of Tnc knockdown on TM outflow resistance
were studied in more detail in anterior segment perfusion organ
cultures (Keller et al., 2013). Here, Tnc was upregulated in
response to IOP elevation. Nevertheless, the outflow rate was
not altered by Tnc-silencing in anterior segments following IOP
elevation. In addition, IOP was not altered in Tnc knock-out
compared to control mice, indicating that Tnc does not directly
contribute to the regulation of outflow resistance. However,
Yang et al. (2016) described the effects of induction and
inhibition of matrix cross-linking on remodeling of the aqueous
humor outflow resistance by TM cells. In this study, genipin, a
potent inducer of ECM crosslinking and inhibitor of aqueous
humor outflow, reduced the levels of Tnc and other ECM
components such as collagen I, elastin and the chondroitin
sulfate proteoglycan (CSPG) versican. These findings indicate
that changes in the ECM composition, crosslinking and
turnover are highly dynamic and influence outflow resistance.
Recently, the group around Kuehn showed a positive effect
on outflow facility after transplantation of induced pluripotent
stem cell-derived TM cells into a glaucoma model. Since the
transplanted cells do not persist for long, it was theorized that
the cells might alter TM conditions (Zhu et al., 2016, 2017). These
alterations could also be related to changes in the ECM. The TM
serves as an important target for the treatment of IOP elevation
in glaucoma (Ferrer, 2006). In a future perspective, further
knowledge of ECM-TM physiology is necessary to develop novel
and powerful IOP lowering therapies.

Tenascins are also key regulators of the immune system
and neuroinflammatory processes (Jakovcevski et al., 2013).
A complex interplay and functional relationship between
neural and immune cells in various autoimmune diseases,
e.g., multiple sclerosis and neuropathies, are evident. Tnc was
reported as one major ECM component, which modulates
transforming growth factor β (TGFβ)/Smad signaling and
myofibroblast generation during wound healing of the corneal
stroma (Saika et al., 2016). Also in the TM, TGFβ increases
outflow resistance via alteration of ECM homeostasis and cell
contractility (Fuchshofer and Tamm, 2012; Prendes et al.,
2013; Wang et al., 2017). In addition, Tnc was previously
reported to influence the immune system through the toll-like
receptor 4 (TLR4; Midwood et al., 2009). It promotes an
inflammatory response via macrophage generation, activation
of TLR4 and the secretion of proinflammatory cytokines after
stimulation with lipopolysaccharide (Piccinini and Midwood,

2012; Piccinini et al., 2016). Indeed, Tnc deficiency protects mice
from experimental autoimmune encephalomyelitis and plays a
key role in pathogenesis of CNS autoimmunity (Momcilovic
et al., 2017). Interestingly, various studies have shown that TLR4
gene polymorphisms are associated with an increased risk of
glaucoma (Shibuya et al., 2008; Navarro-Partida et al., 2017a,b).
This confirms that TLR4-mediated signaling is involved in this
disease.

Several studies have also investigated the possible involvement
of the immune system in glaucoma pathogenesis (Tezel andWax,
2004; Tezel, 2009; Rieck, 2013; Ramirez et al., 2017). Recently,
we have noticed Tnc dysregulation in an IOP-independent,
experimental autoimmune glaucoma model (Reinehr et al.,
2016b). In this glaucoma model, RGC loss, optic nerve damage,
reactive gliosis as well as complement activation have been
described (Joachim et al., 2013, 2014; Casola et al., 2015;
Noristani et al., 2016; Reinehr et al., 2016a). Furthermore,
upregulation of Tnc and the CSPG phosphacan, an interaction
partner of Tnc, was found in the retina and optic nerve of
the autoimmune glaucoma model (Reinehr et al., 2016b). Most
interestingly, elevated Tnc levels were observed before RGC loss
occurred in this model. Regarding this finding, Tnc might act as
an early indicator of glaucomatous neurodegeneration, although
the function of Tnc in IOP-independent glaucoma is not well
understood yet.

Tenascin-C and Tenascin-R in Retinal
Ischemia
Ischemia represents a common pathomechanism in several
retinal diseases, like age-related macular degeneration (AMD),
diabetic retinopathy, glaucoma and retinal vascular occlusion
(Mizener et al., 1997; Coleman et al., 2013; Sim et al., 2013).

Several studies reported on a dysregulation of Tnc following
cerebral, hepatic as well as myocardial ischemia (Lu et al., 2003;
Taki et al., 2010, 2015; Kuriyama et al., 2011). We recently
analyzed the regulation of ECM glycoproteins and proteoglycans
in the retina and optic nerve of an ischemia/reperfusion rat
model (Reinhard et al., 2017; Table 1). An interesting finding
of this study includes the prominent upregulation of several
CSPGs in the ischemic optic nerves. Furthermore, in the retina,
elevated levels of the large Tnr isoform were found, while
reduced levels of smaller Tnc isoforms were observed after
ischemia/reperfusion. These findings support the idea of an
isoform-dependent regulation of tenascins. In future studies,
domain-specific Tnc antibodies (Brösicke et al., 2013; Reinhard
et al., 2016) should be used to relate specific isoforms to distinct
retinal cell types under pathological conditions.

In the CNS, tenascins represent main structural and
functional constituents of synaptic sites (Dityatev et al., 2010;
Kwok et al., 2011; Heikkinen et al., 2014; Dzyubenko et al., 2016;
Song and Dityatev, 2017). Also in the retina, tenascins are highly
associated with synaptic layers (Bartsch et al., 1993; D’Alessandri
et al., 1995; Wahlin et al., 2008). We have previously shown a
co-localization of Tnc and synaptophysin in the healthy retina
(Reinhard et al., 2015). In sum, the dysregulation of tenascins
after retinal ischemia might reflect the response or damage of
retinal neurons or synaptic reorganization.

Frontiers in Integrative Neuroscience | www.frontiersin.org 5 October 2017 | Volume 11 | Article 30

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Reinhard et al. Tenascins in Visual System Disease

Tenascin-X and Tenascin-C in Age-Related
Macular Degeneration
AMD is defined by a deterioration of the macula and represents
a major cause of vision impairment worldwide (Jager et al.,
2008; Ding et al., 2009; Lim et al., 2012). It is a multifactorial
disease that affects primarily photoreceptor cells, retinal pigment
epithelium (RPE), Bruch’s membrane as well as choriocapillaries
(Bhutto and Lutty, 2012). Additionally, AMD is characterized
by extracellular depositions between Bruch’s membrane and the
RPE, termed drusen, which includes complement components,
glycoproteins and lipids (Crabb, 2014; Fernandez-Godino et al.,
2016). Choroidal neovascularization is the defining characteristic
of wet AMD.

The tenascin family member Tnx was identified in AMD
patients in a genome-wide association study (Cipriani et al.,
2012). In a plasma protein screen to identify biomarker, Tnx was
differentially expressed in AMDpatients compared to the healthy
controls (Kim et al., 2014).

Additionally, high levels of Tnc were observed in choroidal
neovascular membranes from AMD patients (Nicolò et al.,
2000; Fasler-Kan et al., 2005; Afshari et al., 2010; Kobayashi
et al., 2016b; Table 1). Here, RPE cells restricted to scar areas
exhibited a strong staining for Tnc. Tnc was also identified
as a candidate to cause RPE adhesion failure in damaged and
aged Bruch’s membrane. In this regard, Afshari et al. (2010)
described that Tnc inhibits RPE attachment and migration.
Interestingly, this inhibition can be overcome via integrin
activation or expression of Tnc-binding integrin α9, which
allows RPE cells to interact with the AMD-affected Bruch’s
membrane (Afshari et al., 2010). Additionally, Tnc secretion by
transdifferentiated RPE cells is considered to promote choroidal
neovascular membrane formation via integrin αv in a paracrine
manner (Kobayashi et al., 2016b). Here, Tnc was discussed
as potential target for the inhibition of choroidal neovascular
membrane formation in AMD.

Tenascin-C in Diabetic Retinopathy
Diabetic retinopathy is also highly associated with retinal
vascular dysfunction. Tnc was found in intravitreal membranes
of patients with traumatic and idiopathic proliferative
vitreoretinopathy as well as in diabetic retinopathy (Hagedorn
et al., 1993; Table 1). In light of these results, it was suggested
that Tnc likely controls cellular adhesion and ECM formation
under pathological conditions. Structural, morphological as
well as biophysical changes of ocular vasculature basement
membranes were reported to be accompanied by ECM
remodeling (To et al., 2013). Here, a higher Tnc expression
was detected in basement membranes of diabetic compared to
non-diabetic human eyes. Additionally, Tnc was reported to be
involved in inflammatory processes of diabetic retinopathy.
Increased Tnc levels were found in retinal endothelia
cells following tumor necrosis factor α and interleukin 1β
stimulation (Palenski et al., 2013). Expression analysis in
fibrovascular membranes from patients with proliferative
diabetic retinopathy revealed an upregulation of Tnc (Ishikawa
et al., 2015). Recently, Kobayashi et al. (2016a) showed that
Tnc, secreted from vascular smooth muscle cells, promotes

angiogenesis in fibrovascular membranes associated with
diabetic retinopathy.

ROLE OF TENASCIN-C AND TENASCIN-R
IN OPTIC NERVE INJURY, DEGENERATION
AND REGENERATION

RGC nerve fibers exhibit a poor regeneration capacity after
injury, which often leads to irreversible vision loss. Therefore,
multiple studies focused on the improvement of RGC survival
as well as axonal regrowth, guidance and pathfinding (Fischer
and Leibinger, 2012; Crair and Mason, 2016). Indeed, the optic
nerve serves as an ideal research model to follow axonal de- and
regeneration processes and RGC survival in order to develop
novel therapeutic strategies, for instance after glaucomatous
damage (Diekmann and Fischer, 2013; Gauthier and Liu, 2016;
Calkins et al., 2017; Tamm and Ethier, 2017). Over the past
decades, it has become evident that regeneration capacity differs
a lot with age and between various species. Regeneration is more
efficient in lower compared to higher vertebrates.

After optic nerve damage, Wallerian degeneration,
demyelination, immune activation and glial scar formation
can be observed. In this context, it has become evident that next
to the intrinsic cellular repertoire, an inhibitory environment
prevents regrowth of optic nerve fibers (Fischer, 2012). ECM
proteins are main components of this inhibitory environment.
Here, tenascins were described as crucial boundary formation
molecules in optic nerve degeneration. Those boundaries
represent important decision breakpoints to navigate growing
axons during development as well as following injury or disease
(Silver, 1994). In the adult mammalian CNS, after injury, Tnc
and Tnr play opposing roles in regeneration of optic nerve
fibers, with Tnc being promotive and chemo-attractive, while
Tnr plays an inhibitory and chemo-repulsive role (Jakovcevski
et al., 2013). The current knowledge on the regulation of Tnc
and Tnr following optic nerve degeneration and regeneration is
also summarized in Table 1.

Compared to mammals, the CNS of the zebrafish displays a
robust axonal regeneration capacity and allows visualization of
axonal regeneration and re-myelination in vivo. Tnr was also
described as a repulsive guidance molecule of newly growing as
well as regenerating optic nerve fibers in the zebrafish (Becker
and Becker, 2002; Becker et al., 2004). Becker et al. (2000)
reported that Tnr inhibits regrowth of optic nerve fibers in vitro.
In contrast to the reduced Tnr expression levels observed in the
optic nerve of the salamander (Becker et al., 1999), it persists in
the optic nerve of mice following injury (Becker et al., 2000).
Due to the continued expression, it was suggested that Tnr
inhibits axonal regeneration in vivo. In addition, Tnr and axon
growth-promoting molecules were found upregulated in the
regenerating visual pathway of the lizard Gallotia galloti (Lang
et al., 2008).

Since Tnr is highly associated with myelinated optic nerve
fibers and nodes of Ranvier, it was proposed that it might have
a functional relevance in myelination processes. Recordings of
action potentials from Tnr knock-out mice revealed reduced
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axonal conduction velocities compared to control mice. In
contrast, no significant differences in the number of myelinated
optic nerve fibers or in the myelin ultrastructure were observed
in Tnr knock-out compared to wild-type mice (Weber et al.,
1999).

A potential role of Tnc in neural repair of the injured rat
optic nerve was initially reported by Ajemian et al. (1994).
Here, after optic nerve transection, Tnc immunoreactivity
appeared in astrocytes at the border of the injury. Additionally,
it was proposed to act as important barrier molecule for
oligodendrocyte precursor migration during development
(Bartsch et al., 1994; Kiernan et al., 1999). Following crush
injury of the goldfish optic nerve, Tnc was reported to be
associated with activated granular macrophages, although
its expression in activated astrocytes and microglia was also
assumed (Battisti et al., 1995). In contrast, although Bernhardt
et al. (1996) described lesion-induced upregulation of several glia
cell-associated genes after axotomy in the adult zebrafish, Tnc
levels were not altered. In the embryonic and postnatal rat retina
Tnc promotes axonal outgrowth, especially via the alternatively
spliced FN-type III D domain (Siddiqui et al., 2008).

TENASCIN SIGNALING AND THE
INTERACTING MATRISOME UNDER
PATHOLOGICAL CONDITIONS

A huge diversity of interacting molecules can be observed for
the tenascin proteins. For Tnc this includes the cell adhesion
molecules contactin-1 (Rigato et al., 2002; Czopka et al., 2010),
various CSPGs of the lectican family such as aggrecan and
neurocan, phosphacan/receptor protein tyrosine phosphatase β/ζ
(RPTPβ/ζ; Barnea et al., 1994; Milev et al., 1997; Rauch et al.,
1997; Garwood et al., 1999; Adamsky et al., 2001; Lundell et al.,
2004) but also several integrin family members like α2β1, α7β1,
α8β1, α9β1 and αvβ3 (Tucker and Chiquet-Ehrismann, 2015;
Faissner et al., 2017).

The signaling of integrins in RGC-glia interactions is crucial
for RGC survival and process extension (Vecino et al., 2016).
In the developing retina, β1 integrins mediate RGC neurite
outgrowth and α integrin-subunits are expressed in RGCs. Tnc
inhibits axonal growth, but also displays axon growth-promoting
properties, when appropriate receptors like α9β1 integrin are
expressed. The FN-type III domain Nr. 3 of Tnc is a ligand
of α9β1 integrin (Yokosaki et al., 1998). However, in the
adult, neurite outgrowth-promoting α9β1 integrin is absent
in neurons, which counteracts regeneration properties (Wang
et al., 1995). Interestingly, in the spinal cord, regeneration of
sensory axons can be achieved by expression of Tnc-binding
α9 integrin and kindlin-1 (Andrews et al., 2009; Cheah et al.,
2016). As recently reported, co-transduction of α9 integrin
and the integrin activator kindlin-1 represents a promising
approach to promote optic nerve regeneration (Fawcett,
2017). Integrin-Tnc signaling might also play a role in the
glaucomatous optic nerve head, as Morrison reported on the
crucial importance of integrins in optic neuropathy (Morrison,
2006).

As mentioned above, CSPGs are major interaction partners
of Tnc. In the CNS, CSPGs are widely recognized as
major inhibitory constituents of the glial scar (Silver and
Silver, 2014). Notably, elevated levels of the CSPGs aggrecan,
brevican and phosphacan were noted in the optic nerve
after retinal ischemia (Reinhard et al., 2017). Following laser
lesion, differential expression of RPTPβ/ζ was observed in
the retina (Besser et al., 2009). In the non-injured retina of
Tnc deficient mice, an upregulation of the DSD-1 epitope,
recognized by the monoclonal antibody 473HD and localized
on phosphacan/RPTPβ/ζ, was revealed when compared to
the wild-type mice (Besser et al., 2012). Since RPTPβ/ζ
knock-out mice show a disturbance of Müller glia processes,
RPTPβ/ζ might be implicated in the assembly of the retinal
structure (Horvat-Bröcker et al., 2008). There is also strong
evidence that Tnc interacts with a variety of growth factors.
In this context, it has been shown that the FN-type III
domain 5 of Tnc displays a high binding affinity for the
fibroblast growth factor 2 (FGF2), neurotrophin-3, platelet-
derived growth factor-BB as well as TGFβ1 (De Laporte
et al., 2013). After brain lesion, TGFβ and FGF2 control Tnc
expression in astrocytes and reactive cells (Smith and Hale,
1997; Dobbertin et al., 2010). Therefore, Tnc might contribute to
the signaling environment after lesion. Nevertheless, the direct
functional contribution of Tnc has not been elucidated yet.
Tnc was found to enhance FGF2 sensitivity of de-differentiating
Müller glia cells in vitro. Furthermore, Tnc knock-out mice
show an impaired de-differentiation capacity (Besser et al.,
2012).

Likewise, Tnc displays a complex interactome with
other ECM glycoproteins. For instance, its interaction with
fibronectin and Tnr was reported (Chiquet-Ehrismann
et al., 1991; Chung et al., 1995; Probstmeier et al., 2000;
Giuffrida et al., 2004). After CNS damage, glial-released
fibronectin exhibits neuroprotective repair function and
promotes outgrowth of neurites in vitro (Tom et al.,
2004; Tate et al., 2007; Kim et al., 2013). Also the neural
transmembrane protein CALEB (chicken acidic leucine-rich
EGF-like domain-containing brain protein/neuroglycan C)
directly interacts with Tnc and Tnr (Schumacher et al., 2001;
Schumacher and Stübe, 2003). Interestingly, CALEB is highly
expressed following optic nerve lesion (Schumacher et al.,
2001; Schumacher and Stübe, 2003). CALEB expression is
strongly associated with developing as well as regenerating
RGCs.

The adhesion molecule contactin-1 was identified as an
important neuronal receptor for Tnr. Interaction of these
two molecules was reported to mediate the repulsion and
defasciculation of neurites (Pesheva et al., 1993; Milev et al.,
1998; Xiao et al., 1998). Additionally, as shown for Tnc, Tnr
displays an overlapping expression pattern with the CSPG
phosphacan (Xiao et al., 1997; Milev et al., 1998). Regarding these
findings, Tnc and Tnr seem to represent key components of the
retina and optic nerve matrisome under pathological conditions.
Both molecules partially display an overlapping extracellular
distribution and directly contribute to de- and regeneration
processes.
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CONCLUSION

In the CNS, tenascin glycoproteins are important constituents
of a highly regulated and dynamic matrisome. In sum, the
current literature supports the notion that Tnc and Tnr are
implicated in various pathological processes following retinal
and optic nerve degeneration as well as various eye diseases
(Table 1). Under pathological conditions, during development
as well as regeneration, the opposed character of Tnc and Tnr
is crucial for the growth and guidance of axons. In particular,
the manipulation of Tnc-integrin signaling might be a promising
approach to enhance axonal regeneration. Additionally, as a
structural ECM component of the TM, Tnc and the interacting
matrisome might be a target to improve IOP lowering therapies.
We provide evidence that TLR4 signaling is involved in glaucoma
development. Tnc upregulation observed under these conditions
might indicate an immunomodulatory role, mediated by TLR4.
Since tenascins are highly enriched at synaptic sites in the retina,
it is plausible to speculate that they might play a role in synaptic
remodeling, also under pathological conditions. Nevertheless,
to verify these potential functions, further analyses have to be
performed.
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