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Abstract: Railway turnout system is a key infrastructure to railway safety and efficiency. However, it is
prone to failure in the field. Therefore, many railway departments have adopted a monitoring system
to monitor the operation status of turnouts. With monitoring data collected, many researchers have
proposed different fault-diagnosis methods. However, many of the existing methods cannot realize
real-time updating or deal with new fault types. This paper—based on imbalanced data—proposes a
Bayes-based online turnout fault-diagnosis method, which realizes incremental learning and scalable
fault recognition. First, the basic conceptions of the turnout system are introduced. Next, the feature
extraction and processing of the imbalanced monitoring data are introduced. Then, an online diagnosis
method based on Bayesian incremental learning and scalable fault recognition is proposed, followed
by the experiment with filed data from Guangzhou Railway. The results show that the scalable
fault-recognition method can reach an accuracy of 99.11%, and the training time of the Bayesian
incremental learning model reduces 29.97% without decreasing the accuracy, which demonstrates the
high accuracy, adaptability and efficiency of the proposed model, of great significance for labor-saving,
timely maintenance and further, safety and efficiency of railway transportation.
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1. Introduction

Due to its characteristics of comfort, speed, energy-saving and environmental protection,
the high-speed railway has an increasing ratio of carrying passengers and cargo, which puts increasing
requirements on the safety of the railway system. According to the 2019 China Railway Statistical
Bulletin [1], in 2019, the number of railway passengers sent across the country was 3.66 billion in China,
an increase of 8.4% over the previous year. Moreover, in Europe, passenger and cargo transportation
in railways has been, respectively doubled and tripled in the past decade [2] according to the report of
the European Commission.

The turnout, which is usually installed between two or more strands of tracks, is responsible for
switching the train direction, consequently being a key part of the whole signal system in railway
infrastructure [3–5].

However, due to its complicated mechanical and electrical structure, exposure to the outdoor
environment and the need to be frequently pulled, the turnout is more prone to failure. Based on the
statistics given by China Railway Jinan Group Co, Ltd. in 2016 [6] and China Railway Guangzhou
Group Co, Ltd. in 2018 [7], the number of turnout failures, respectively accounts for approximately 36%
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and 55% of the total railway signal infrastructure failures. It is obvious that turnout system damage
will increase a lot along with the increase in railway transportation demand.

In addition, the cost of turnout maintenance is also very high. For example in England,
the maintenance cost of turnout is about 3.4 million pounds per 1000 km of railway [2]. Moreover,
according to the report of the International Railway Union, the annual maintenance cost of the turnout
system accounts for about 30% of the entire maintenance budget [8]. Moreover, in the United States,
the cost is about ten times that of ordinary tracks [9]. Therefore, research on the turnout fault-diagnosis
method is very important in not only improving railway reliability and safety, but also in reducing
maintenance costs.

The main fault-diagnosis methods have been proposed can be divided into three categories,
they are expert system-based, model-based and feature-based.

Xue et al. [10–13] designed and implemented a fault diagnosis and analysis system for railway
signal equipment by establishing an expert knowledge base of railway signal equipment. This method
overcomes the overreliance on the mathematical model and can effectively identify the faults. However,
the application of expert system needs to obtain sufficient and comprehensive fault diagnosis expert
knowledge and experience, which has certain difficulty. In addition, it is also difficult to generalize
and summarize the experience of experts into the base [14].

Eker, O. F. et al. [15,16] established the mathematical model for turnouts to achieve fault
recognition and prediction of turnout operating state. This method does not require a large number
of samples, however, in practice, it is very difficult to establish an accurate mathematical model for
complex equipment.

For the feature-based diagnosis method, Witczak, Marcin et al. [17] proposed a turnout
fault-diagnosis method based on a neural network. They determined the input parameters and
designed a variable threshold to adapt to new faults. Silmon, JA et al. [18] used qualitative trend
analysis to extract the data trend of normal and fault samples and established a rule matching
mechanism for different fault types.

However, these methods are more costly to deal with new types of faults. Therefore, incremental
learning is introduced in this paper. In other engineering areas, some researchers have proposed
different classification methods (fault-diagnosis method) based on incremental learning. Generally,
these methods can be divided into two different kinds: hierarchy-based methods and improved
models [19].

For hierarchy-based methods, a particular learning hierarchy is designed for incremental learning.
Nong Ye et al. [20] discussed scalable and incremental learning of a non-hierarchical cluster structure
from training data. This cluster structure serves as a function to map the attribute values of new data
to the target class of these data, that is, classify new data. Jun Wu [21] proposed a new online semantic
classification framework, in which two sets of optimized classification models, local and global,
are online trained by sufficiently exploiting both local and global statistic characteristics of videos.

For improved methods, an original model is modified to adapt to the incremental learning
scene. Max Kochurov et al. [22] presented an improved Bayesian method to update the posterior
approximation of each new data so as to reduce the cost of training a deep learning network. David
A [23] proposed an incremental learning target tracking method based on principal component analysis,
which effectively adapted to the change of target appearance. Marko Ristin et al. [24] introduced two
improved random forest (RF) algorithms, one based on k-means and the other based on SVM, which
were used to avoid retraining RFs from scratch when merging new classes. Stefan et al. [25] proposed
an incremental learning SVM method, which inputs the data into the algorithm in several batches
and produces initial results after each step of training. In addition, many other neural network-based
methods have also been proposed [26,27].

Some researchers have also proposed other different incremental methods for classification
problems [28–30]. However, many of these methods cannot be combined well to the field experience
of workers (especially for the turnout system), and also some of these methods cannot update itself,
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which may reduce the efficiency of the model when new samples or fault types appear since the
training samples are quite limited from the very beginning.

Our research group has been long engaged in the safety of railway turnout system, from turnout
fault analysis [31] and simulation fault data generating [32], to fault-diagnosis method [33–35], based
on which, this paper proposed a Bayes-based online turnout fault-diagnosis method with high accuracy,
adaptability and efficiency, which can realize incremental learning and scalable fault recognition, i.e.,
the model can update itself and deal with new turnout fault types, making it more applicable to
the fieldwork and eventually, of great significance for labor-saving, timely maintenance and further,
safety and efficiency of railway transportation.

The remainder of this paper is organized as follows: Section 2 introduces the basic conceptions
of the turnout system, including its structure, fault types and monitoring data. The methods of
data processing and modeling are explained in Section 3, including feature processing, imbalanced
data preprocessing, incremental learning method and scalable fault recognition. Section 4 presents
a numeric experiment using monitoring data from Guangzhou Railway, followed by conclusions
in Section 5. The research framework of this paper is as shown in Figure 1.

1 
 

 

Figure 1. Research framework of this study.
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2. Railway Turnout System

2.1. Turnout System

Turnout is a kind of railway track that can be used to change the direction of the route by
moving the rails before the trains pass. The whole turnout system includes an indoor control circuit
and an outdoor mechanical structure. Figure 2 [36] shows the basic structure of a single turnout
system. As shown in Figure 2, the railway turnout system is mainly composed of three parts, among
which, the switch part, where massive monitoring data can be obtained by the MMS (microcomputer
monitoring system), plays an important role in switching the train direction.
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Figure 2. Railway turnout system. The basic structure of a single turnout system and the location of
mechanical components.

The switch part, as Figure 2 shows, consists of two basic rails (basic rail 1 and basic rail 2),
two switch rails (switch rail 1 and switch rail 2) and a switch machine [37]. Among them, the switch
rails are connected with the switch machine through the connecting rod to realize the corresponding
operation of the switch machine into horizontal conversion, locking, indication and other operations of
the switch rails.

2.2. Fault Type Analysis

Due to the complicated mechanical and electrical structure, exposure to the outdoor environment
and the need to frequently pull it, the turnout is more prone to failure. According to our and other
scholars’ previous research [33,38–40] and combined with the field data, the common types of fault in
the turnout system are shown in Table 1 [33].

Table 1. Turnout fault types.

Fault Label Fault Type

H1 1 Mechanical jam
H2 Improper position of the slide chair
H3 Abnormal impedance in the switch circuit
H4 Bad contact in the switch circuit
H5 Abnormal open-phase protection device in the indicating circuit
H6 Abnormal impedance in the indicating circuit
F1 2 The electric relay in the start circuit fails to switch
F2 Supply interruption
F3 Open-phase protection device fault
F4 Fail to lock
F5 Indicating rod block in the gap

1 H—hidden dangers, showing that the turnout system is in an unhealthy situation, which may further cause major
faults; 2 F—major faults that are more serious.
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The detailed analysis of monitoring data of the turnout system under normal and abnormal
working conditions is as shown in Figure 3. Figure 3a is the normal current and power sample, showing
the three stages of a single movement of the turnout, i.e., startup (Stage 1), conversion (Stage 2) and
indication (Stage 3).

• Stage 1 is the starting of the switch machine and unlocking of the turnout, which needs to overcome
much resistance;

• Stage 2 is the process of the movement of the switch rail to the other basic rail, as well as the
locking of the turnout;

• Stage 3 is responsible for indicating the result of the conversion using a low-power indicating circuit.
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Figure 3b–g shows the samples of some main fault types, i.e., H1, H4, H5, H6, F4 and F5, which
are relatively more frequently occur in the fieldwork. For example, the sample of fault H1 is as shown
in Figure 3b, where the duration of Stage 2 is about 14 s, which is too long compared to the normal of
about 4 s. As shown in Table 1, this fault is usually caused by mechanical jam, which means there may
be a foreign body between the switch rail and the basic rail or there is a jam between the locking gear
and the locking block.

2.3. Imbalanced Monitoring Data

Railway turnout system is a key infrastructure to railway safety and efficiency; therefore, many
railway departments have adopted MMS to monitor turnouts, providing massive data every day.
Among all kinds of monitoring data, the current and power data, which are representative and
significant indicators of the turnout working condition, are used in this research.

More than 2000 pieces of current samples of a railway station for about five months are shown in
Figure 4, where only about 3 abnormal samples can be found, and the rest are normal, which indicates
that there is a huge imbalance between the normal and abnormal samples, let alone between the normal
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and 11 types of fault samples. If provided with these data for training, the classification model is prone
to be caught in a ‘trap’ of imbalanced data.
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Take an extreme example, suppose there are 1000 samples in total, of which there is only one
abnormal sample, then even when the classifier judges all samples as normal, the accuracy can still
reach 99.9%, however, missing the most important abnormal sample. Therefore, preprocessing of the
imbalanced data are of great significance to improve the performance of the diagnosis model.

3. Online Learning and Diagnosis Method

3.1. Knowledge Graph-Based Feature Engineering

Feature engineering, which, to a large extent, determines the limit of machine learning, is of great
importance to obtaining valuable input features for the online diagnosis model of this paper. Therefore,
the first step is feature extraction from the original data. The feature extraction method for monitoring
data of railway turnouts has been introduced in our previous research [33], where 21 features (e.g.,
maximum value, mean value, fluctuation factor, peak factor, etc.) are stored by the knowledge graph
in this paper.

The knowledge graph is a theoretical method to visualize the core structure or knowledge
framework of disciplines or research fields, where the representation of the knowledge graph may
vary from one another. In this paper, the entity-relationship model is used to show the structure of
the knowledge graph of the turnout monitoring data, where the basic elements are entities (squares),
attributes (ellipses) and relationships (lines) as shown in Figure 5.
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In reality, turnout systems are well maintained, and the fault samples are quite rare. According
to the data from Guangzhou Railway, the abnormal samples account for less than 0.1% of the total.
Therefore, the knowledge graph of normal samples and abnormal samples should be arranged in
different ways.

As shown in Figure 5, for normal conditions, it is not necessary to put every single sample into the
knowledge graph. Instead, the changing trend of sample features is the most important characteristic.
Therefore, the knowledge graph records the center, i.e., the most representative sample of all the
normal samples. Other normal samples are only recorded as feature ranges, e.g., mean, maximum,
etc. For abnormal conditions, the samples are divided into different fault types. In each fault type, all
samples will be recorded into the knowledge graph, including features, figures, data and information.

As mentioned above, it is very important to choose the center of normal samples and record
it into the knowledge graph. After the feature set is formed, the next step is to choose the most
representative sample, i.e., the center. To solve this problem, the K-medoids method (an adaption of
K-means algorithm) [35], which requires the clustering center to be one of all the samples rather than
creating a new clustering center, is applied in this paper. The steps of the K-medoids algorithm are
as follows:

• The input feature set is Fm×n (n is the feature dimension) and choose any row as the original center;
• Define the cluster evaluation variable sum of absolute differences (SAD):

SAD =
∑

m
i

√∑
n
j=1( f 0

j − f i
j)

2 (1)

• Choose any sample except F0 as Fk and calculate the corresponding SAD;
• If the SAD of Fk is smaller than the SAD of F0, update the Fk to be the new center;
• When all the samples have been searched, the SAD of the current center will reach the minimum

and the iteration is finished. Otherwise, return to the third step).
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3.2. Imbalanced Data Preprocessing

Before incremental learning modeling, the imbalanced problem of the dataset needs to be solved.
In reality, since fault samples are quite rare, which may influence the classification accuracy. The class
imbalance problem means that there is a class in the data set whose sample number is far more or
less than others, which often leads to the failure of some machine learning models. In this study,
the SMOTE (synthetic minority oversampling technique) [41], an improved method based on random
oversampling, is applied to deal with the imbalance data.

SMOTE produces new samples for the minority class by selecting k-nearest neighbors and add
random numbers to them. The detailed process is as follows:

• For each sample s1 in the minority class, the Euclidean distance is taken as the standard to calculate
its distance to all samples in the class so as to find its k-nearest neighbor;

• A sampling ratio N is set according to the sample imbalance ratio; For each minority sample s1,
several samples are randomly selected from its k-nearest neighbors, assuming that the chosen
nearest neighbor is s2;

• For each chosen neighbor s2, a new sample snew is constructed according to the following formula
with the original sample s1:

snew = s1 + rand(0, 1) × |s1 − s2| (2)

3.3. Bayesian Incremental Learning

The naïve Bayesian (NB) classification model is a pattern recognition method based on the
Bayesian principle which combines the class prior probability and the conditional probability of each
feature attribute to calculate the posterior probability.

Presume that the feature set T consists of {t1, t2, . . . , tm} and the m feature attributes are independent
of each other. The class variable is represented as (c1, c2, . . . , cn). A single sample is represented as
< T, c >.

According to the Bayesian principle, when the prior probability P(ci), the conditional probability
P(T

∣∣∣ci) and marginal probability is known, the posterior probability P(c1
∣∣∣T), P(c2

∣∣∣T), . . . , P(cn
∣∣∣T)

corresponding to n classes can be calculated. The largest posterior probability indicates the class of
this sample:

P(ci|T) =
P(ci) × P(T

∣∣∣ci)

P(T)
(3)

The Laplace estimation is applied to get the prior probability and conditional probability of each
feature attribute:

P(ci) =
1 +

∣∣∣Dci

∣∣∣
|C|+ |D|

(4)

P(tk|ci) =
1 +

∣∣∣Dtk |ci

∣∣∣
|Bk|+

∣∣∣Dci

∣∣∣ (5)

where
∣∣∣Dci

∣∣∣ is the number of the sample of class ci in the training data, |C| denotes the class number,
|D| denotes the number of training samples,

∣∣∣Dtk |ci

∣∣∣ is the number of training samples which have
the attribute tk and belongs to the class ci and |Bk| is the number of training samples which have the
feature attribute k. Since the features are independent of each other, the conditional probability can be
calculated as:

P(T|ci) =
m∏

k=1

P(tk
∣∣∣ci) (6)

naïve Bayesian classifier is of strong mathematical logic and high classification accuracy. However,
the traditional naïve Bayesian classifier has two weaknesses. First, the classification accuracy of the
classifier is closely related to the size and integrity of the training data set, which, generally, is difficult
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to guarantee. Second, when it is applied to turnout fault diagnosis, with the sample size gradually
increasing, for each additional batch of sample data, the quasi-prior probability and conditional
probability of each characteristic attribute must be recalculated, which is very time consuming and
cannot meet the real-time requirement of online fault diagnosis.

However, the combination of the Bayesian algorithm and incremental learning can solve these
problems well while maintaining its inherent strong logic and high diagnostic accuracy. When a fault
occurs, the newly added sample is input into the Bayesian classification model to get the diagnosis
result. If the result is reliable, then this new sample can be used to update the model and ultimately
helps to increase the sample data sets and accuracy of the model.

For the new sample, when meeting the judgment conditions, it can be used to update the model,
i.e., to update the class prior probability and characteristic properties of conditional probability, which
are defined as follows:

P∗(ci) =

{ δ
1+δP(ci), ci

′ , ci
δ

1+δP(ci) +
1

1+δ , ci
′ = ci

(7)

P∗(tk|ci) =


γ

1+γP(tk|ci), ci
′ = citk

′ , k
γ

1+γP(tk|ci) +
1

1+γ , ci
′ = citk

′ = k
P(tk|ci), ci

′ , ci

(8)

where P∗(ci) is the updated class prior probability and P∗(tk
∣∣∣ci) is the updated conditional probability.

To be specific, δ = |C|+ |D| and γ = |Bk|+
∣∣∣Dci

∣∣∣.
As for the judgment conditions, the posterior probability of the fault label ci

′ satisfies the following
condition:

P(ci
′
∣∣∣T) ≥ α(1− P(ci

′
∣∣∣T)) (9)

The overall incremental fault diagnosis process is as shown in Figure 6.
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Figure 6. Flow chart of Bayesian incremental learning.

3.4. Scalable Fault Recognition

Though the incremental learning method was widely used in different fields and it can reduce the
training cost, there is a key problem that cannot be ignored is the recognition of new classes. Since the
types of faults may increase along with the mechanical changes of the turnouts, the new fault types are
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very normal in reality. Therefore, to find a method to recognize new faults and realize the automatic
update of the knowledge graph is very important for the field application.

The scalable fault recognition problem (SFR) can be abstracted into a novelty detection problem.
The model of novelty detection will fit a rough boundary to define the contour of the initial samples, i.e.,
the normal samples. When a new sample appears, it will be judged whether it is within the boundary.

Local outlier factor (LOF) [42], an efficient novelty detection method, aims to detect those abnormal
data that are quite different from the characteristic attributes of normal data. One of the assumptions of
LOF is that the normal data must be clustered, which puts forward certain requirements on the original
data set. The turnout data samples, which were clustered according to the mentioned methods of data
processing, basically meet this requirement.

The principle of LOF is to calculate the density of a certain point and to judge whether the point is
in the sparse region according to the density of the data cluster of the dataset itself. A point in the
sparse region is recognized as a novelty point. Due to its "local" characteristics, LOF can handle clusters
with different densities correctly. The local outlier factor LOFk(p) is used to measure the novelty degree
of point p:

rdk(p, o) = max
{
dk(p), d(p, o)

}
, (10)

lrdk(p, o) =
1∑

o∈Nk(p)
rdk(p,o)

|Nk(p)|

, (11)

LOFk(p) =

∑
o∈Nk(p)

lrd(o)
lrd(p)∣∣∣Nk(p)
∣∣∣ =

∑
o∈Nk(p) lrd(o)∣∣∣Nk(p)

∣∣∣× lrd(p)
, (12)

where d(p, o) is the distance between point p and o;
dk(p) is the distance between point p and the kth nearest neighbor of p;
rdk(p, o) is the reachability distance between point p and o;
lrdk(p, o) is the local reachability density. It measures the density of point p and its k neighbors.

The larger the reachable distance, the smaller the density;
LOFk(p) is the local outlier factor. It defines a concept of relative density, which can deal with

heterogeneous data and make outlier detection more accurate.
According to the definition of the local outlier factor, LOFk(p) ≈ 1 means the local density of p is

similar to its k neighbors; LOFk(p) < 1 means p is in a high-density area, indicating it is a normal point;
If LOFk(p)� 1, then the point p is far away from the normal data cluster, which means it is very likely
to a novelty point.

Since the original LOF can only deal with binary classification problems, the final output should
consider all the binary classification models, inspired by the multiple classification models. If all the
binary classification models output −1, i.e., this sample is not similar to any known classes, then it is
identified as a new class sample.

When the sample size is big enough, a clustering method is applied, and the unidentified samples
can be labeled more easily. Finally, the densest N clusters among these unidentified samples are
selected as the candidate sample set of the new classes. If the density of this sample set exceeds the
specified threshold, then it is determined as the representative sample set of the new class for further
knowledge graph update.

4. Experiment Result

4.1. Clustering and Resampling

In this paper, the experimental data are from several stations of Guangzhou Railway from 2016 to
2018. As mentioned before, the class center is the most representative sample of a class and one of
the key components of the knowledge graph. Taking the normal class as an example, the dimension
of features is 21, under which, the feature clustering result is abstract and hard to understand. For a
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clearer display, the clustering results are divided into several pairs, e.g., feature 2 (span of Stage 1)
& feature 3 (maximum of Stage 1), feature 6 (span of Stage 2) & feature 9 (mean of Stage 2), feature
11 (standard deviation of Stage 2) & feature 12 (peak factor of Stage 2), etc., as shown in Figure 7,
where the orange point stands for the center, and the values of all features have been normalized.
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Before using the feature set to train the diagnosis model, the class-imbalanced data should be
preprocessed with the SMOTE resampling method. In this paper, the original data set consists of
1000 normal samples and 10 samples of each 11 fault types, and the final data set includes 12,000 samples
in total (each class with 1000 samples).

To show it more clearly, an example data set is organized with 100 normal samples, and each of
6 different fault types is of 10 samples, i.e., the normal sample size to the abnormal is 10:1. Moreover,
an LDA feature reduction method is applied to reduce the feature dimension to 3, which can be easily
shown in the picture. Figure 8 shows the original example data set and the resampled data set after
SMOTE. The fault samples are multiplied according to the original imbalance ratio. After SMOTE, the
sample sizes of all classes (including the normal class) are the same. This method cannot only be used
in data preprocessing, but also in generating fault data manually.
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4.2. Incremental and Scalable Fault Diagnosis Model

With the input data set prepared, it comes to the next step, the scalable fault recognition. Different
parameters can be set to get the scalable fault recognition accuracy of different models to determine
the optimal parameter value. The main parameters of the LOF model are “n_neighbors” (n), which is
the number of neighbors and “contamination” (c), the percentage of outliers in the test sample. With
the method of grid search, the parameter choosing result is shown in Table 2. Therefore, the optimal
values for the parameters should be n = 40 and c = 0.01.

Table 2. Local outlier factor (LOF) parameter choosing result (MS).

c
n

25 30 35 40

0.0001 95.35 95.35 93.76 98.13

0.001 95.35 95.35 93.76 98.13

0.01 95.38 95.83 96.01 99.11

For the experiment, only the samples not identified as a new class can be input into the diagnosis
model. For a single fault type, which is regarded as a new class, the diagnosis models with and without
scalable fault recognition are compared. As shown in Figure 9, the blue bars represent the accuracy
of the original model and the yellow bars represent the accuracy of the model with scalable fault
recognition. To 11 fault types, the accuracies improve to different degrees and the average accuracy
improves about 6.8%. Moreover, the total accuracy of scalable fault recognition is 99.11%. When the
training data increasing over time, the accuracy will increase as well.Sensors 2020, 20, x 14 of 17 
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After leaving out the new class samples, the incremental Bayesian model and naïve Bayesian
model are compared both in training time and accuracy. The incremental NB model divides the whole
data set into 10 batches and trains them separately. As shown in Table 3 and Figure 10a, it can be
easily found that as the sample size increases, the incremental NB takes less training time than the
original NB. When the sample size reaches 12 million, the training time of incremental NB decreases by
about 30%. For the training time, the larger the training data set is, the greater the gap between the
two models will be. At the same time, it can be found in Table 4 and Figure 10b that the accuracy of
incremental NB is always above the original NB, with an average improvement of 0.32%. This is mostly
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caused by the step-by-step training model of incremental NB, which can choose the most valuable
samples for training.

Table 3. Training time comparison (MS).

Sample size 1200 12,000 120,000 1,200,000

NB 6.62 10.27 59.84 476.52
Incremental NB 38.48 19.53 51.32 436.72
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Figure 10. Comparison of original naïve Bayesian (NB) and incremental NB. (a) Comparison of training
time; (b) comparison of classification accuracy.

Table 4. Classification accuracy comparison (%).

Sample size 1200 12,000 120,000 1,200,000

NB 97.75 98.74 97.98 97.99
Incremental NB 98.00 98.83 98.37 98.46

5. Conclusions

Based on imbalanced monitoring data, this paper proposes a solution for railway turnout fault
diagnosis, which can realize incremental learning and scalable fault recognition. First, this paper
introduced the basic conceptions of the railway turnout system. Next are the knowledge graph-based
feature engineering and processing of the imbalanced monitoring data. Then, an online learning and
diagnosis method based on Bayesian incremental learning and scalable fault recognition is proposed.
According to the results of the experiment, with data from Guangzhou Railway, the scalable recognition
method can reach an accuracy of over 99%. Moreover, compared to the non-incremental model,
the incremental learning model saves about 30% of training time when the sample size reaches
12 million—with a slight accuracy improvement as well. In addition, it should be noted that the
proposed solution is applicable to most railway turnout systems, except for those whose switch
machines are of three-phase AC type.

Future research directions of this paper may include studying a more intelligent method to
improve the accuracy of scalable fault recognition, and further improvement of the knowledge graph
structure is also required.
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