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Abstract

Flaviviruses bud into the endoplasmic reticulum and are transported through the secretory pathway, where the mildly acidic
environment triggers particle rearrangement and allows furin processing of the prM protein to pr and M. The peripheral pr
peptide remains bound to virus at low pH and inhibits virus-membrane interaction. Upon exocytosis, the release of pr at neutral
pH completes virus maturation to an infectious particle. Together this evidence suggests that pr may shield the flavivirus fusion
protein E from the low pH environment of the exocytic pathway. Here we developed an in vitro system to reconstitute the
interaction of dengue virus (DENV) pr with soluble truncated E proteins. At low pH recombinant pr bound to both monomeric
and dimeric forms of E and blocked their membrane insertion. Exogenous pr interacted with mature infectious DENV and
specifically inhibited virus fusion and infection. Alanine substitution of E H244, a highly conserved histidine residue in the pr-E
interface, blocked pr-E interaction and reduced release of DENV virus-like particles. Folding, membrane insertion and
trimerization of the H244A mutant E protein were preserved, and particle release could be partially rescued by neutralization of
the low pH of the secretory pathway. Thus, pr acts to silence flavivirus fusion activity during virus secretion, and this function can
be separated from the chaperone activity of prM. The sequence conservation of key residues involved in the flavivirus pr-E
interaction suggests that this protein-protein interface may be a useful target for broad-spectrum inhibitors.
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Introduction

The emergence and resurgence of human viral pathogens can

be traced to a complex variety of causes including increased

urbanization, human contact with animal reservoirs, a decrease in

effective public health systems, and the spread of insect vectors

that disseminate some viral infections [1,2,3]. Flaviviruses are a

genus in the Flaviviridae family and include important emerging

and resurgent human pathogens such as dengue virus (DENV),

West Nile virus (WNV), tick-borne encephalitis virus (TBEV) and

yellow fever virus [2,4]. Flaviviruses are transmitted by insects such

as mosquitoes and ticks, and can cause severe human diseases

characterized by encephalitis, meningitis, and hemorrhages [2,3].

More than one third of the world’s population lives in dengue

fever endemic areas, and there are an estimated 50–100 million

cases of dengue infection and 500,000 cases of the more lethal

complication, dengue hemorrhagic fever, per year [5,6,7,8]. There

are currently no antiviral therapies for flaviviruses. DENV vaccine

development is underway but is problematic due to the presence of

four DENV serotypes and the potential for antibody-dependent

enhancement of infection [2,6,9,10]. Antiviral therapies could

thus be an important alternative for DENV and for viruses such as

WNV in which the cost and potential side effects of vaccination

must be weighed against the relatively low number of human

cases [2].

Flaviviruses are small, highly organized enveloped viruses with a

spherical shape [4,11]. They contain a positive-sense RNA

genome packaged by the viral capsid protein. The nucleocapsid

is surrounded by a lipid bilayer containing the viral membrane

protein E. Flaviviruses infect cells by receptor engagement at the

plasma membrane, endocytic uptake, and a membrane fusion

reaction triggered by the low pH of the endosome compartment

[12,13]. The viral E protein binds the receptor and drives the

fusion of the viral and endosome membranes to initiate virus

infection. The pre-fusion structure of the E protein ectodomain

(here referred to as E9) shows that E contains three domains

composed primarily of b-sheets: a central domain I (DI)

connecting on one side to the elongated domain II (DII) with

the hydrophobic fusion loop at its tip, and connecting via a flexible

linker on the other side to the immunoglobulin-like domain III

(DIII) [14,15,16,17,18,19] (Figs. 1A, S1). Although these regions

are not present in the truncated E9 ectodomain, DIII connects to a

stem domain and C-terminal membrane anchor (TM). The E

protein in mature infectious flavivirus is organized in homodimers

that lie tangential to the virus membrane [20]. Within each dimer

the E proteins interact in a head to tail fashion, with the fusion

loop of each E protein hidden in a hydrophobic pocket formed by

DI and DIII of the dimeric E partner.

The E protein mediates virus-membrane fusion by refolding to a

hairpin-like E homotrimer with the fusion loops and TM domains
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at the same end [21,22]. This reaction involves low pH-triggered

dissociation of the homodimer, fusion loop insertion into the

endosome membrane, formation of a core trimer composed of DI

and DII, and the foldback of the DIII and stem regions towards

the target membrane and their packing against the core trimer.

The prefusion and postfusion conformations of the flavivirus E

fusion protein are structurally and functionally similar to those of

the E1 fusion protein from the alphavirus Semliki Forest virus

(SFV) [23,24,25], and these fusion proteins are often referred to as

‘‘class II’’ [26,27,28]. In addition to the ectodomains whose trimer

structures are described above, truncated fusion proteins com-

posed of domains I and II (DI/II) can reconstitute SFV and

DENV core trimer formation on target membranes [29,30]. Such

core trimers act as specific targets for DIII binding, thus

recapitulating the protein-protein interactions during class II

trimerization and hairpin formation.

Flaviviruses bud into the endoplasmic reticulum (ER) and are

transported as virus particles through the secretory pathway and

released by exocytosis [4]. Given the low pH that is present in the

Golgi complex and trans-Golgi network (TGN) [31], how do

flaviviruses avoid inactivation during their transport? The particles

are assembled in the ER as immature non-infectious viruses

containing heterodimers of the precursor membrane protein (prM)

and E protein [4,26,32]. Subsequent exposure to low pH in the

secretory pathway triggers a dramatic rearrangement to E

homodimers and makes the prM protein accessible to furin

cleavage [33,34]. Processing of prM by cellular furin results in

mature infectious virus in which E homodimers are poised to

mediate fusion [33]. Important recent studies describe the

structure of pr peptide in complex with E, and indicate that

processed pr remains associated with the virus at low pH and can

inhibit virus-membrane interaction [34,35,36]. Thus, pr on the

virus could protect E protein from low pH in the secretory

pathway.

The flavivirus prM/pr protein plays multiple roles in the virus

life cycle (reviewed in [26]). prM acts as a chaperone for E protein

folding [37] and associates with the tip of E [34]. prM also appears

to respond to low pH to permit E rearrangement on the virus

surface and allow furin access for prM processing [34,38].

Following cleavage, the pr peptide may prevent premature virus

fusion through bridging interactions that stabilize the E homodi-

mer and thereby prevent dissociation to E monomers, a key fusion

intermediate [35,36]. To better understand these multiple roles of

prM/pr, separation of its chaperone and pH-protection functions

and characterization of the pr-E interaction are needed.

Here we developed a system to produce DENV pr peptide and

reconstitute the pr-E interaction in vitro. At low pH pr bound to

both monomeric and dimeric forms of E and blocked their

membrane insertion and trimerization. Addition of exogenous pr

to mature DENV particles inhibited virus fusion and infection.

Mutation of a key histidine residue in the pr-E interface, E H244,

reduced pr’s binding and inhibitory activity, and reduced DENV

secondary infection and particle production. The defect in particle

Figure 1. Expression and purification of DENV2 pr and
truncated E proteins. A) Linear diagrams of the DENV2 prM-E
proteins and the truncated DENV2 pr and E proteins used in this work
(not to scale). Domain and construct boundaries are marked, with
numbering based on the individual proteins in the DENV2 New Guinea
C (NGC) strain. The sequences appended to the diagrams contain the
Strep (ST) affinity tag(s) used for protein purification (underlined), joined
in the case of two Strep tags by a flexible linker region (STST). Pr was
expressed in 293T cells and contains prM residues 1–86 plus N-terminal
GS residues from the vector and the STST tag. The DI/II and E9 proteins
were expressed in S2 cells and contain E residues 1–291 and 1–395,
respectively, plus ST or STST tags. DIII was expressed in E. coli and
contains E residues 289–430, comprising the linker, DIII, helix 1 and
conserved sequence (LDIIIH1CS). The names in parentheses are the
detailed nomenclature from [30]. B) 4 mg samples of purified pr peptide
were incubated with DTT, Endo H, or PNGase F as indicated, analyzed
by SDS-PAGE and stained with Coomassie blue. The positions of marker
proteins are shown on the right with their molecular masses listed in
kilodaltons. Asterisks indicate the positions of the added glycosidases.
C) 4 mg samples of purified truncated E proteins were reduced with DTT
as indicated, analyzed by SDS-PAGE and stained with Coomassie blue.
Marker proteins are shown on the right with their molecular masses
listed in kilodaltons.
doi:10.1371/journal.ppat.1001157.g001

Author Summary

Enveloped viruses infect cells by fusing their membrane
with that of the host cell. Dengue virus (DENV) is an
important human pathogen whose membrane fusion is
triggered by low pH during virus entry into the cell.
However, newly synthesized DENV must also transit
through a low pH environment during virus exit. DENV is
believed to escape premature fusion in the exit pathway
via the small viral protein pr, which is processed and
associates with virus after biosynthesis, and is released
from the virus particle in the neutral pH extracellular
environment. Here we have reconstituted the interaction
of pr with the DENV fusion protein E using soluble protein
components. The interaction has a low pH optimum and
inhibits membrane insertion of the fusion protein. The
recombinant pr peptide can ‘‘add back’’ to fully infectious
mature DENV and block virus fusion and infection. We
found that mutation of a critical conserved histidine on the
fusion protein inhibits the interaction of E and pr, and
makes the virus susceptible to low pH-induced inactivation
during exit. This work characterizes the mechanism of pr
protection, and suggests that the conserved multifunc-
tional pr-E interaction may be an important target for anti-
viral strategies.

Flavivirus pr Peptide
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production could be partially rescued by neutralization of exocytic

low pH, indicating the important role of pr in protecting DENV

from premature fusion during transport to the plasma membrane.

Results

Expression and characterization of pr peptide
A number of truncated E proteins have been successfully

produced by co-expression with prM (e.g., references [30,39]),

while the pr-E structural studies were based on a secreted hybrid

protein containing truncated prM linked to truncated E [34].

Previous studies indicated that full-length TBEV prM could fold

correctly when expressed in the absence of E protein [37],

suggesting that production of pr peptide alone might be possible.

We generated a construct based on residues 1–86 of DENV2 prM,

truncating pr just before the start of the furin cleavage recognition

site at residue 87 (Fig. 1A). This sequence was linked to a

mammalian signal peptide at the N-terminus and to an affinity tag

at the C-terminus, and expressed in 293T cells. The protein was

isolated in a highly purified form by affinity chromatography and

gel filtration (Fig. 1B), and was recognized by mAb prM-6.1

against prM [40] (data not shown). The pr peptide migrated at a

position of ,17 kDa in reducing SDS-PAGE, in keeping with its

predicted size of 13 kDa plus the presence of carbohydrate due to

the glycosylation site at position 69. This carbohydrate was

removed by Peptide N-glycosidase F (PNGase F) to give a peptide

of the predicted size. The protein was largely resistant to

Endoglyosidase H (Endo H) digestion, indicating maturation of

the carbohydrate chain as the protein transited through the Golgi

complex. A mobility shift was observed upon reduction of pr, in

keeping with the presence of 3 disulfide bonds in the structure of

pr [34].

We also produced and purified a dimeric ectodomain form of

DENV2 E protein containing all three domains (E9), a monomeric

form containing E domains I and II (DI/II), and E domain III

(DIII) (Fig. 1A and 1C), all as previously described in detail

[30,41].

pH-dependent binding of pr and E proteins
As a first test of in vitro pr-E binding, we coupled pr to

sepharose beads and tested its ability to pull-down truncated E

protein containing only domains I and II. This form of E protein is

monomeric and the tip of DII is thus accessible even at neutral

pH. Previous studies showed that this and other DENV DI/II

proteins are active in membrane insertion and trimerization at

both neutral and low pH [30]. We observed efficient pull-down of

DI/II protein by pr-sepharose (Fig. 2A), but in spite of the

accessibility of the pr binding site on DI/II at neutral pH, pull-

down was low pH-dependent. The pull-down of DI/II protein by

pr was specific, as it was blocked by inclusion of mAb 4G2 against

the E fusion loop at the DII tip, and did not occur with BSA-

sepharose beads. These data suggested that the recombinant pr

peptide could bind to the tip of DI/II in a low pH-dependent

reaction.

For more detailed studies of pr-E binding, we performed surface

plasmon resonance (SPR) assays using our various forms of

recombinant E protein with immobilized pr peptide. Compared to

the pull-down assay, SPR can detect low levels of protein-protein

interactions as binding is detected in real time and does not require

removal of unbound E. The E9 protein is a dimer at neutral pH

and dissociates to monomers at low pH [30]. When SPR was

performed with E9 protein buffered at pH 8.0 there was very low

binding (low signal response) (Fig. 2B). As the buffer pH was

Figure 2. Pr peptide binds DENV E proteins in a pH-dependent manner. A) Pull-down of DI/II protein by pr. DI/II was incubated with
sepharose beads conjugated with pr peptide or BSA at the indicated pH for 1 h at room temperature. As indicated, reactions contained a 2:1 molar
excess of mAb 4G2 to the E fusion loop or mAb to the ST tag (con.). Input lanes show an aliquot representing 20% of the reaction prior to pull-down.
(Panels B–D) SPR analysis of pr-E binding. Pr peptide was immobilized on a CM5 sensor chip, and DENV2 E9 (B), DI/II (C) or SFV DI/II proteins (D) were
flowed over the chip at concentrations of 1.2 mM in buffers of the indicated pH for 300 s, followed by injection of protein-free buffer at the same pH.
Data are a representative example of two independent experiments.
doi:10.1371/journal.ppat.1001157.g002
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decreased, the signal gradually increased, with maximal response

observed at ,pH 6.25 and no further increase at pH 6.0. A rapid

decrease in signal was observed when the samples were shifted to

protein-free buffer, indicating rapid dissociation of the pr-E

interaction. Similar results were obtained using monomeric DI/

II, with the lowest binding at pH 8.0, highest binding at pH 6.25,

and a slight decrease at pH 6.0 (Fig. 2C). Thus, the dimeric E9 and

monomeric E DI/II proteins bound pr peptide with similar pH-

dependence. Binding to pr was specific, as little interaction was

observed using the structurally similar E1 DI/II protein of SFV

(Fig. 2D). In addition, binding of DENV E DI/II protein to pr was

inhibited by preincubation with mAb 4G2 against the fusion loop

(molar ratio 1:1) (data not shown). Determination of the affinity of

pr-E binding was not performed as the data did not fit to a simple

Langmuir model of 1:1 binding, presumably because of E protein

aggregation at low pH.

Effect of exogenous pr peptide on E protein-membrane
interaction

Previous studies showed that retention of endogenous pr peptide

on the furin-processed DENV particle inhibits virus interaction

with liposomes at low pH [35]. Structural considerations suggested

that this inhibition occurs primarily by blocking low pH-triggered

dissociation of the E dimer, a required first step in the fusion

reaction. To test this mechanism, we evaluated the effect of pr on

the membrane interactions of dimeric and monomeric forms of E

protein. The E9 dimer was preincubated with pr peptide or an

unrelated protein with the same affinity tag for 5 min at pH 8.0,

and then treated at pH 5.75 in the presence of target liposomes.

Membrane-associated proteins were separated by liposome

floatation on sucrose gradients. There was no liposome co-

floatation when E9 protein was incubated with liposomes at

neutral pH (Fig. 3A). About 70% of the total E9 floated with

liposomes in the top part of the sucrose gradient after treatment at

pH 5.75 in the presence (Fig. 3A, top panel) or absence (data not

shown) of a control protein. In contrast, when E9 was preincubated

with pr peptide (pr:E9 molar ratio 12:1) and treated with low pH,

only ,2% of E9-ST floated with the liposomes (Fig. 3A, middle

panel). Inhibition by pr was not observed when it was added after

E9 was treated at low pH in the presence of liposomes for 30 min

(Fig. 3A, bottom panel), and thus pr needed to be present during

the membrane insertion step. Inhibition was concentration-

dependent, with 22% E9 co-floatation at a pr:E9 molar ratio of

3:1, 8% at 6:1, and 0.4% for 24:1 (data not shown; see also

Fig. 3E).

We then tested the effect of pr on the DENV E DI/II protein.

This protein is monomeric and its stable membrane interaction

requires DIII to ‘‘clamp’’ the core trimer [30]. As shown in Fig. 3B,

,25% of DI/II co-floated with liposomes at low pH in the present

of DIII, while no co-floatation was detected when BSA was

Figure 3. Pr peptide inhibits E protein-membrane interaction. A) E9-liposome co-floatation assay. E9 protein was mixed with pr peptide or an
ST-tagged control protein (Seap) at a final concentration of 50 mg E9 protein and 200 mg pr/Seap protein/ml (molar ratio 12 pr/1E). Liposomes were
added at a final concentration of 1 mM, and the samples were incubated at the indicated pH for a total of 60 min at 28uC. Where indicated, E9 protein
plus liposomes were incubated for 30 min, pr peptide added to a final concentration of 200 mg/ml, and the incubation continued for an additional
30 min. The liposome-bound proteins were then separated by floatation on sucrose gradients at the indicated pH. Aliquots of the top, middle and
bottom of the gradients were analyzed by SDS-PAGE and western blotting for E protein. B) DI/II-liposome co-floatation assay. 40 mg/ml DI/II plus DIII
or BSA (200 mg protein/ ml) were incubated with liposomes plus 200 mg pr peptide/ml as indicated and assayed for liposome co-floatation as in panel
3A. C) SFV DI/II-liposome co-floatation assay. SFV DI/II protein (40 mg/ml) was mixed with BSA or pr peptide (160 mg/ml). Liposomes were added at a
final concentration of 1 mM, and the samples were incubated at the indicated pH for a total of 30 min at 28uC. Liposome co-flotation was assayed as
in panel 3A. D–E) Loss of pr inhibition of E protein in the pH range of the late endocytic pathway. D) pH dependence of pr inhibition. E9 protein was
mixed with liposomes in the presence or absence of pr peptide (molar ratio ,12 pr/1E), treated at the indicated pH as in Fig. 3A, and E9- membrane
association determined by floatation assay as in Fig. 3A. E) Concentration-dependence of pr inhibition. E9 protein was mixed with liposomes and
treated at pH 5.75 or pH 5.0 in the presence of the indicated molar ratios of pr peptide to E protein. E9-membrane association was determined by
floatation assay as in Fig. 3A. For each pH, the E9 floatation efficiency was normalized to the amount of floatation in the top fraction in the absence of
added pr protein. Data in panels A–E are each a representative example of two independent experiments.
doi:10.1371/journal.ppat.1001157.g003
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substituted for DIII protein. The addition of pr peptide blocked

membrane interaction of DI/II when added prior to liposome

incubation (Fig. 3B, 3rd panel), but not after liposome incubation

(Fig. 3B, bottom panel).

The structurally related alphavirus protein SFV E1 DI/II is

monomeric and efficiently interacts with membranes at low pH

(80% cofloatation, Fig. 3C, middle panel). No inhibition occurred

when pr peptide was added prior to liposome addition (Fig. 3C,

bottom panel), in keeping with the lack of pr-SFV DI/II binding in

the SPR experiments discussed above. Thus, pr peptide specifi-

cally inhibits target membrane interaction of both monomeric and

dimeric forms of the DENV E protein.

E9 protein efficiently inserted into membranes over a wide range

of pH values from 6.25-4.5 (Fig. 3D–E). However, pr’s inhibition

of E membrane insertion was less efficient in the pH range

(pH 5.0) present in the late endocytic pathway (Fig. 3D–E). This

loss of pr inhibition at more acidic pH may be relevant to recent

studies of infection by immature DENV [42], as mentioned in the

discussion section below.

Effect of exogenous pr peptide on dengue virus fusion
and infection

All of the results above were obtained with soluble forms of the E

protein. In order to test the ability of exogenous pr peptide to

interact with and inhibit intact DENV, we took advantage of a

previously described assay that monitors low pH-triggered fusion of

DENV with cells [41]. In this fusion-infection assay, virus is pre-

bound to target cells on ice, and then treated at 37uC for 1 min at

low pH to trigger virus fusion with the plasma membrane. This

fusion reaction is then quantitated by detecting the infected cells by

immunofluorescence. We tested the effect of pr peptide during this

1 min low pH treatment using DENV1 WP and DENV2 NGC.

The sequence of E DI/II is 68% identical between these two

serotypes. Both serotypes showed efficient fusion and infection after

treatment at pH 6.0, with about a 10-fold increase compared to

samples treated at pH 7.9 (Fig. 4). The addition of pr peptide during

the 1 min low pH treatment strongly inhibited DENV fusion and

infection. Inhibition was dose-dependent, with 45–49% inhibition

at 6 mM pr and 81–85-% inhibition at 30 mM pr. In contrast, pr did

not inhibit low pH-triggered fusion by the alphavirus SIN (Fig. 4).

Thus, exogenous DENV2 pr peptide can specifically interact with

mature DENV1 and DENV2 to block virus fusion and infection.

We did not observe inhibition when DENV was preincubated with

30 mM pr at pH 7.0 and then added to target cells in a standard

infection assay, suggesting that under these conditions an inhibitory

concentration of pr was not present during low pH-triggered fusion

reaction in the endosome. This result also indicates that the

presence of pr did not affect virus-cell binding.

Role of E H244 in pr-E binding
Although the interaction of pr with DENV can clearly prevent

virus-membrane interaction and fusion (this study and [35]), the

importance of pr in protecting DENV during exocytic transport

has not been defined. The binding interface between prM and E

contains three complementary electrostatic patches containing 11

residues [34] (see also Fig. S1). Sequence analysis shows that these

11 residues (Fig. 5A, numbered residues) are highly conserved

among the 4 DENV serotypes, and that D63 and D65 of pr, and

the complementary H244 on E protein are conserved among all

reported flavivirus sequences [34]. Optimal pr-E binding in vitro

occurred at ,pH 6.25 (Fig. 2), suggesting that protonation of

H244 could be involved in this pH-dependence. To test this we

substituted alanine for H244 in the DI/II protein. DI/II H244A

was produced in highly purified form with electrophoretic mobility

similar to that of the wild type (WT) protein in reducing and non-

reducing SDS-PAGE (Fig. 1C).

We first tested the effect of the H244A mutation on pr-E

binding. In agreement with our earlier results, WT DI/II protein

was efficiently pulled-down by pr-sepharose (Fig. 5B). Pull-down

was low pH-dependent and blocked by mAb 4G2 against the E

fusion loop at the DII tip. In contrast, almost no H244A DI/II

protein was pulled-down by pr-sepharose at either low pH or

neural pH (Fig. 5B). SPR analysis of WT DI/II protein showed

most efficient binding at pH 6.0, and binding was blocked by pre-

incubating the DI/II protein with mAb 4G2 (molar ratio 1:1)

before dilution into SPR buffer (Fig. 5C, upper panel). Equivalent

concentrations of H244A DI/II protein showed greatly reduced

binding to pr compared to that of WT protein (Fig. 5C, lower

panel). Although H244A binding was decreased, the residual

binding was still blocked by mAb 4G2 and had an acidic pH

optimum. This suggests that binding also involves other residues in

the pr-E interface, such as the complementary residues identified

in the structural studies and shown in Fig. 5A.

We then asked if the H244A DI/II protein was still active in

binding to target liposomes. WT or mutant DI/II proteins were

mixed with liposomes at low pH in the presence of DIII protein to

stabilize the core trimer. Both proteins efficiently bound liposomes

in a DIII-dependent reaction (Fig. 6), indicating that the mutant

protein retains its ability to insert into target membranes and form

a core trimer. In agreement with the results in Fig. 3C, floatation

of the WT protein was blocked by inclusion of pr during the

membrane insertion step (Fig. 6). In contrast, the efficiency of

floatation of the H244A mutant protein was 43% in the absence of

pr and 47% in the presence of pr. Thus, the H244A mutation did

not inhibit E-membrane interaction but made that interaction

insensitive to the presence of pr.

H244A mutation inhibits DENV secondary infection
Since the E H244A mutation disrupts E protein’s interaction

with pr, we used this mutation to address the importance of pr in

Figure 4. Pr peptide inhibits DENV fusion and infection. Serial
dilutions of the indicated viruses were pre-bound to BHK cells by
incubation for 90 min on ice at pH 7.9. The cells were then treated for
1 min at 37uC in the presence of the indicated concentration of pr
peptide using buffer at pH 6.0 to trigger virus fusion with the plasma
membrane, or control buffer at pH 7.9. Cells were then incubated for
48 h in the presence of NH4Cl to prevent secondary infection. Infected
cells were quantitated by immunofluorescence, and the titers
normalized to the pH 6.0 sample in the absence of pr. Each bar shows
the average and range of duplicate wells. Representative example of
two independent experiments.
doi:10.1371/journal.ppat.1001157.g004
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protecting DENV during transport through the exocytic pathway.

We introduced the E H244A mutation into the infectious clone of

DENV1 WP. WT and mutant viral RNAs were prepared by in

vitro transcription and were electroporated into BHK cells. After

culture for 3 d at 37uC, both WT and mutant RNA-electropo-

rated cells expressed abundant E protein as detected by

immunofluorescence microscopy (Fig. 7). Parallel cultures were

incubated for 6 d and progeny virus in the culture media was

detected by infectious center assays on indicator BHK cells. WT-

infected cells produced infectious progeny virus with a titer of

,1.56105 IC/ml. However, two independent infectious clones of

the H244A mutant produced no detectable progeny virus, even

though the viral RNAs mediated efficient primary infection as

shown in Fig. 7. This agrees with previous studies indicating lethal

effects of an H244A mutation on DENV2 [43].

Role of E H244 during virus assembly and secretion
The absence of secondary infection by the H244A DENV1

mutant could be due to decreased virus particle production and/or

production of particles that are non-infectious. Efficient DENV

particle production is dependent on E protein folding, particle

budding into the ER, and subsequent particle egress through the

secretory pathway. To investigate these issues, we took advantage

of the ability of the flavivirus prM and E proteins to assemble into

virus-like particles (VLP) in the absence of other viral components

or virus infection [44,45,46]. The VLP system avoids complica-

tions arising from selection of revertants of deleterious virus

mutations such as H244A. Flavivirus VLP bud into the ER in the

immature prM form, undergo furin maturation during transport

through the secretory pathway, and display similar low pH-

Figure 6. H244A E protein interacts with membranes and is
resistant to inhibition by pr. WT or H244A DENV2 DI/II proteins
(40 mg/ml) were mixed with DIII or BSA (200 mg/ml) in the presence or
absence of pr peptide (200 mg/ml). Liposomes were added at a final
concentration of 1 mM, and the samples were incubated at pH 5.75 for
a total of 60 min at 28uC. Samples were analyzed by floatation on
sucrose gradients at pH 5.75 as in Figure 3A. Data are a representative
example of two independent experiments.
doi:10.1371/journal.ppat.1001157.g006

Figure 7. DENV E H244A mutation inhibits virus infection. RNAs
derived from the WT and E H244A mutant DENV1 WP infectious clones
were electroporated into BHK cells. Cells were cultured for 3 d and
infected cells were detected by immunofluorescence. In parallel, cells
were cultured at 28uC for 6 d and progeny virus in the culture medium
was quantitated using infectious center assays on indicator BHK cells.
Progeny virus titers are shown in the box below each fluorescence
image. Results are given for two independent infectious clones of
H244A, indicated as (2) and (4). Bar represents 30 mm.
doi:10.1371/journal.ppat.1001157.g007

Figure 5. DENV E H244 is a key residue in pr-E binding. A)
Sequence comparison of selected regions of the pr and E proteins from
the 4 serotypes of DENV. The specific strains are DENV1 WP, DENV2
NGC, DENV3 H87 and DENV4 H241. Based on the pr-E protein structure
[34], potential key residues in pr-E interaction are indicated by their
numbers in the DENV2 NGC proteins. B) H244A mutation inhibits pr-E
binding in pull-down assay. WT or H244A mutant forms of DI/II were
assayed for binding to pr-sepharose beads as in Fig. 2A. C) H244A
mutation inhibits pr-E binding in SPR assay. WT or H244A mutant forms
of DI/II were assayed for binding to pr at various pH values using SPR as
in Fig. 2C, shifting to buffer alone at 300 s. Where indicated, mAb 4G2
(molar ratio 1:1) was pre-incubated 15 min at room temperature with
DI/II proteins at pH 6.0 prior to assay. Data are a representative example
of two independent experiments.
doi:10.1371/journal.ppat.1001157.g005
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dependent fusion activity as infectious virions [44,47]. The VLP

system has been used extensively to follow the process of flavivirus

particle production and the role of prM in this process

[37,44,45,48].

We established stable HEK 293 cells that inducibly express the

DENV1 WT or H244A prM-E proteins. After 36 h induction with

tetracycline, both WT and H244A cells show abundant intracellular

expression of the DENV1 E protein as detected by immunofluo-

rescence, while the parent cell line is negative for E expression

(Fig. 8A). To evaluate whether WT and H244A E proteins were

correctly folded, cells were induced for 36 h, lysed, and immuno-

precipitated with a rabbit polyclonal antibody to E DIII, and with

two conformation-specific mAbs. mAb 4E11 recognizes a discon-

tinuous epitope on DENV E DIII and requires proper DIII disulfide

bond formation for recognition [49,50]. mAb 4G2 recognizes the

fusion loop at the tip of flavivirus E DII and its epitope is sensitive to

reduction [51]. Expression studies have shown that the 4G2 epitope

is not formed if the E protein is expressed in the absence of prM

[52], indicating that this epitope is particularly useful for diagnostic

tests of prM’s chaperone interaction with E (see also reference [37]).

As shown in Fig. 8B, lysates from cells induced to express prM plus

WT or H244A E proteins showed strong reactivity with all three

antibodies. Quantitation of multiple experiments confirmed that

WT and H244A E proteins were comparably recognized by the

4E11 and 4G2 mAbs. Thus, by these criteria H244A E protein

interacts with prM protein and is correctly folded. This result also

agrees with our finding that truncated H244A E protein expressed

with prM in the S2 cell system was fully active in low pH-dependent

membrane binding and trimerization, suggesting correct folding

(Fig. 6).

Figure 8. DENV E H244A mutation inhibits release of virus-like particles via a low pH-dependent mechanism. A) WT and H244A mutant
E proteins are comparably expressed. Stable cells inducibly expressing the WT or H244A mutant forms of prM-E were treated with tetracycline for
36 h at 37uC. E protein expression was detected by immunofluorescence and the nuclei were stained with DAPI. Fluorescence images are shown at
the same magnification and exposure time. Bar represents 30 mm. B) WT and H244A mutant E proteins are comparably immunoprecipitated by
conformation-specific mAbs. Stable cells inducibly expressing the WT or H244A mutant forms of prM-E were treated with tetracycline for 36 h at
37uC. E proteins in the cell lysates were immunoprecipitated by Sango, a rabbit polyclonal antibody to DIII, and by the mouse mAbs 4G2 and 4E11, as
indicated at the top of the panel. Samples were then analyzed by SDS-PAGE and western blot using mouse anti-DENV2 Ab for the Sango samples and
Sango for the mAbs samples. Asterisks indicate the positions of the IgG and IgG heavy chain, which cross-react in the western blot. Equivalent sample
input was evaluated by western blot for b-actin (lower panel). C) Effect of low pH on WT and H244A VLP production. WT and H244A mutant cells were
incubated with tetracycline for 2 h and then in this medium plus 20mM NH4Cl where indicated for a total of 36h. VLP released in the culture media
were pelleted by ultracentrifugation, and E proteins in the cell lysates were immunoprecipitated using mAb 4G2. VLP and lysate samples were
analyzed by SDS-PAGE and western blot using Sango. 5-fold more culture media from the H244A cells than the WT cells were loaded. Data are
representative examples of two or more independent experiments.
doi:10.1371/journal.ppat.1001157.g008
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We then used the inducible cells to examine VLP production.

Expression was induced for 36 h. The cells were then lysed and

the E proteins immunoprecipitated, and the VLP in the culture

media were pelleted by ultracentrifugation. Analysis by western

blotting showed strong E protein expression in both WT and

H244A cells, and no expression in the parent cells (Fig. 8C). The

WT cells released E protein in VLP, but VLP release from cells

expressing the H244A mutant E protein was greatly reduced

(Fig. 8C, - media samples). This result is in keeping with the

hypothesis that the H244A cells assemble VLP in the neutral pH

environment of the ER but that VLP release is inhibited by the

lack of pr protection from the low pH of the secretory pathway. To

test this idea, we induced WT and H244A prM-E expression and

cultured the cells in the presence of 20 mM NH4Cl to neutralize

the acidic pH in the Golgi and TGN compartments (Fig. 8C,

+NH4Cl lanes). The cellular expression level of either E protein

was not significantly affected by NH4Cl treatment, and WT VLP

production was similar in NH4Cl-treated cells and untreated cells.

However, production of VLP containing the H244A mutant E

protein was increased 4–7 fold in NH4Cl-treated cells. While

H244A VLP production was still significantly decreased compared

to that of WT, it was selectively rescued by NH4Cl treatment.

Discussion

During translation of the flavivirus polyprotein, prM is the first

protein translocated into the ER lumen, where it acts as a

chaperone during the folding of the subsequently translocated E

protein [4,37,44]. In addition to this important role of prM during

E protein synthesis, a variety of data suggest that the interaction of

pr peptide with the viral E protein protects flaviviruses from low

pH during their transport through the exocytic pathway

[34,35,36]. Here we showed that a recombinant pr peptide was

efficiently folded, glycosylated, and secreted from 293T cells in the

absence of its normal prM context and furin processing.

Recombinant pr bound to soluble E proteins at low pH, inhibited

E-membrane insertion, and interacted with mature dengue virus

to block fusion and infection. Alanine substitution of the conserved

E H244 within the pr-E interface disrupted pr-E binding in vitro

and blocked secondary virus infection. VLP production was

inhibited by the H244A mutation and partially rescued by pH

neutralization with NH4Cl. Together our data demonstrate the

critical role of pr in protecting DENV from exocytic low pH.

Properties of pr-E binding
The in vitro interaction of pr with various truncated forms of E

protein was strongly pH-dependent, with a pH optimum of ,6.25.

In situ measurements indicate that the pH of the TGN is ,6 [53],

while the pH optimum of DENV2 NGC fusion is ,6.2 [41]. The

low pH of the TGN is critical for the rearrangement of immature

DENV to allow furin cleavage, but once the virus is processed it

becomes fusion-active in this same pH range. Thus the pH

dependence of the pr-E interaction appears optimized to protect

DENV during its continued transit through the secretory pathway.

Pr’s inhibition of E membrane insertion was less efficient at a pH

value (pH 5.0) similar to that in the late endocytic pathway

(Fig. 3D–E). This loss of pr inhibition at more acidic pH could

help to explain the recent finding that infection by immature

DENV is enhanced by antibodies to prM [42]. The antibody-

bound immature virus is likely to be endocytosed and processed by

cellular furin in the endocytic pathway [54]. The lower pH

conditions of the late endocytic pathway could then cause the loss

of pr inhibition and allow virus fusion.

The structure of furin-cleaved DENV at pH 6.0 shows that pr is

bound to the virion through interactions with the DII tip of one E

protein and DI on the neighboring E monomer [35,36]. This

suggested that pr might primarily block virus-membrane interac-

tion by preventing dissociation of E dimers, a required first step in

the fusion pathway [55]. Our results show efficient binding of pr to

the dimeric form of the DENV E protein, but also to the

monomeric DI/II form. We do not know if the E9 protein dimer is

stabilized by pr interaction or if the dimer dissociates prior to

interaction with pr, and experiments to address these points were

inconclusive (data not shown). The similar pH dependence of pr

binding to monomeric and dimeric E proteins suggests that pr may

bind the same site in both cases. mAb 4G2 against the fusion loop

inhibited pr interaction with E DI/II, confirming that pr was

binding to the DII tip rather than to other sites on expressed E

proteins. In keeping with its binding site in the vicinity of the

fusion loop, pr peptide blocked the membrane insertion and

liposome co-floatation of E9 and DI/II proteins. Prior studies

showed that a monomeric DI/II protein with a single Strep affinity

tag stably inserts into liposomes at either neutral or low pH [30],

and pr blocked this insertion even at pH 8.0 where its interaction

with DI/II was suboptimal (data not shown). Thus, while the pr-E

interaction is strongly low pH-dependent, its functional inhibition

of membrane insertion can still be observed at neutral pH in the

presence of excess pr.

Effects of E protein H244 mutations
Several other studies have addressed the role of E H244 in the

flavivirus lifecycle. Experiments in TBEV evaluated particle

production and membrane fusion activity using a VLP system

[56]. Mutation of H248 (TBE numbering) to A or I blocks VLP

secretion, in agreement with our results. However, an H248N

mutant efficiently produces VLP, and these particles show WT

levels of fusion activity. WNV E H246A or Q mutations inhibit

release of infectious reporter virus particles from cells, as do a

number of other substitutions at this position [57]. Replacement of

H246 with aromatic residues such as phenylalanine allows both

particle release and infectivity. An H244A mutation in DENV2

NGC inhibits infectious virus production [43]. E H244 and its

interacting partners D63 and D65 on pr are conserved within the

flaviviruses, and thus these data from several flaviviruses plus our

DENV results support an important role for the E 244 position.

However, a histidine residue at this position does not seem to be

strictly required for particle production, suggesting that substitu-

tions such as 244F and 244N can support the interaction of E with

pr.

In contrast to the block in production of H244A VLP, the

H244A DI/II protein was efficiently secreted from cells. Mutant

protein secretion was somewhat reduced, with the final yield of

DI/II H244A about half that of the WT protein in two separate

preparations (data not shown), suggesting some effects of non-

optimal pr interaction. However, unlike the E protein in virus or

VLP, the truncated DI/II protein lacks the TM region and does

not mediate membrane fusion, and thus may be relatively

independent of the pH-protection function of pr. The purified

WT and mutant DI/II proteins were able to bind liposomes and

form core trimers that were stabilized by DIII (Fig. 6). Thus, the

mutant protein is correctly folded and active in membrane

insertion. Studies with conformation-specific mAbs also provided

evidence for the correct folding of H244A E protein (Fig. 8B).

Together, these results suggest that the H244A E protein is still

able to access the chaperone functions of prM, while its decreased

pr binding indicates that it can no longer utilize the pH protection

functions of pr.
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These data are consistent with the idea that, similar to WT E,

the mutant protein is assembled with prM into VLP in the ER.

The membrane insertion and trimerization activity of H244A

suggest that the full-length mutant protein would be fusion-active

on such VLP once they are transported from the neutral pH of the

ER to the low pH of the Golgi and TGN [31]. Thus, the decreased

release of H244A VLP and its partial rescue by neutralization of

the exocytic pathway support a critical role for pr in protecting

DENV from exocytic low pH, and suggest that virus/VLP fuses in

the TGN in the absence of pr-E interaction. Rescue of H244A

VLP production by NH4Cl was clearly incomplete. This may be

due to complex aspects of both virus and cell, such as direct effects

of the H244A mutation on particle assembly in the ER, or

difficulties in blocking fusion of a virus with the relatively high pH

threshold of DENV.

Implications of the in vitro pr-E interaction
Several strategies have been used to block flavivirus and

alphavirus fusion reactions and thus inhibit virus infection. SFV

and DENV fusion are specifically blocked by exogenous DIII,

which binds to the core trimer and prevents the foldback of

endogenous DIII and hairpin formation [41]. A later stage in

DENV fusion is targeted by a stem-derived peptide, which binds

to the ectodomain trimer in which DIII has folded back but stem

packing has not yet occurred [58]. These virus protein-protein

interactions can be reconstituted in vitro [29,30,58], opening the

possibility of using them as screens for small molecule inhibitors of

virus fusion and infection.

The in vitro reconstitution of the pr-E interaction using soluble

components could also act as a screen for small molecule inhibitors

of this important flavivirus protein-protein interaction. Such

inhibitors could act at multiple points in the virus lifecycle. During

virus protein biosynthesis, an inhibitor could block the chaperone

interaction of prM with E, leading to misfolding of E and its

elimination by the ER quality control pathway. An inhibitor of pr

interaction could make E protein susceptible to premature fusion

in the TGN and could thus block virus production similar to the

H244A mutation. It is also possible that small molecule inhibitors

of pr-E binding could interact directly with the DII tip on mature

virus particles, perhaps stabilizing the dimer and/or blocking

membrane insertion of the fusion loop, thereby blocking virus

fusion. Thus the in vitro system we describe here has the potential

to identify molecules that could aid in the study of the flavivirus

lifecycle and that could act to inhibit specific steps.

Effects of pr on virus fusion
Previous studies showed that after cleavage endogenous pr is

retained on the virus particle if the virus is maintained at acidic pH

[35]. Under these conditions, the virus-pr complex does not bind

target membranes, while virus from which pr is first released at

neutral pH efficiently binds membranes upon shift to acid pH.

Thus, the bound endogenous pr inhibits virus-membrane

interaction and presumably blocks virus fusion [35]. Our results

demonstrated that even after maturation to fully infectious DENV

particles, exogenous pr could add back to the virus and inhibit low

pH-triggered virus fusion and infection. The flavivirus membrane

fusion reaction is very rapid, occurring within seconds of low pH

treatment [47]. Recombinant DENV2 pr peptide inhibited fusion

by both DENV1 and DENV2, suggestive of a fairly broad

spectrum inhibition in agreement with the strong sequence

conservation at the pr-E interface [34].

The structure of the flavivirus E protein in its pre-fusion and

post-fusion conformations defines the dramatic conformational

changes between these two states. Many questions about the

intermediates that connect the pre- and post-fusion conformations

remain. In particular, it will be important to define the membrane

protein rearrangements in the context of the highly organized

flavivirus particle. For example, a neutralizing E mAb that blocks

virus fusion was used to trap a West Nile virus fusion intermediate

[59]. It will be interesting to evaluate if exogenous pr peptide could

also be used as a novel probe to capture intermediates in the

flavivirus fusion pathway.

Materials and Methods

Cells, viruses and antibodies
BHK-21 cells and C6/36 mosquito cells were cultured as

described previously [60]. 293T cells and T-RExTM-293 cells were

cultured as previously described using tetracycline-deficient fetal

calf serum for the latter cells [61]. The DENV2 New Guinea C

(NGC) strain and the DENV1 Western Pacific (WP) strain were

propagated in C6/36 cells in DMEM containing 2% heat-

inactivated fetal calf serum and 10 mM Hepes, pH 8.0, as

previously described [41,62]. Sindbis virus expressing green

fluorescent protein was obtained as an infectious clone (a kind

gift from Dr. Hans Heidner) and propagated in BHK cells [63].

4G2 is a mouse monoclonal antibody (mAb) that recognizes the

fusion loop of flavivirus E proteins [51,64]. mAb prM-6.1

recognizes a linear epitope on prM, and was a kind gift of Drs.

Chunya Puttikhunt and Nopporn Sittisombut [40]. 4E11 is a

mouse mAb that recognizes DIII of DENV E protein and

neutralizes all 4 serotypes of dengue virus [49,50], and was a kind

gift of Dr. Fernando Arenzana-Seisdedos (Institute Pasteur, Paris).

The anti-DIII polyclonal antibody Sango was raised by immuni-

zation of a rabbit with purified DENV2 DIII protein [30].

Western blot detection of truncated E proteins used 4G2 or Sango

antibodies. A mAb to b-actin was obtained from Sigma and used

to confirm equivalent loading of cell lysate samples. Immunoflu-

orescence detection of DENV-infected cells used the antibody to

DIII or mouse polyclonal anti-DENV2 hyperimmune ascitic fluid

(obtained from Robert B. Tesh, University of Texas Medical

Branch), with Alexa Fluor 488 or rhodamine-conjugated second-

ary antibodies (Molecular Probes).

Protein expression, purification, and quantitation
The sequence encoding residues 1–86 of pr was amplified by

PCR of an expression plasmid for DENV2 NGC prM-E DI/II

[30]. The PCR product was ligated into the pPUR vector

(Clontech), with the 21-residue TPA signal peptide [65] fused at

the N-terminus and a tandem Strep tag at the C terminus (Fig. 1).

The plasmid, referred to as pPUR-TPA-pr-STST, was transfected

into 293T cells using polyethylenimine (PEI, Polysciences). For

optimal protein production, 3.56106 cells were plated per 10 cm

dish and cultured for 24 h in 10 ml of complete medium. 7.5 mg

plasmid in 1 ml DME was mixed with 30 mg PEI, incubated

10 min, then added drop wise to the cell culture medium. After

12 h, the medium was changed to 10 ml DME plus 2% serum.

The culture medium was collected after 48h and again after 72h.

Pr was purified by affinity chromatography on a Strep-Tactin

column from IBA BioTAGnology and by gel filtration using a

Sephadex G75 column [30]. Final yields were ,2 mg purified

protein/1 liter culture supernatant.

Truncated DENV E proteins (Fig. 1) were obtained by

inducible expression in Drosophila S2 cells and purified by affinity

chromatography as previously described in detail [29,30]. The

H244A mutation was introduced into the DI/II protein by in vitro

mutagenesis, and S2 cell expression and purification were

performed as above. DENV2 NGC DIII (Fig. 1) was previously
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referred to as LDIIIH1CS [30], and contains domain III, the

linker between domain I and domain III, and the H1 and CS

regions of the stem domain. DIII was expressed in E.coli and

refolded as previously described [41]. SFV E1 DI/II protein was

produced as previously described [29]. All purified proteins were

stored in TAN buffer (20 mM Triethanolamine[TEA], pH 8.0;

130 mM NaCl) at 280uC.

SDS-PAGE analysis was performed using 10–12% acrylamide

gels with a Bis-Tris buffer system (Invitrogen). Western blots

were performed with Alexa Fluor 688-conjugated secondary

antibodies (Molecular Probes), and were quantitated using an

Odyssey Infrared Imaging system and Odyssey InCell Western

software (LI-COR Biosciences) [30]. Standard curves with

purified E proteins confirmed the linearity of this analysis (data

not shown).

Pull down assay
Pr or BSA was coupled to NHS-activated sepharose 4 fast flow

(GE Healthcare) as described in the manual. In brief, sepharose

was washed with 1mM HCl, and incubated with 660 mg pr or

BSA/ml in 0.2 M NaHCO3, 0.5 M NaCl, pH 8.3 at room

temperature for 1.5 hr. The reaction was quenched with 0.1M

Tris-HCl pH 8.5 for 30 min and free protein removed by washing

with PBS. About 1mg of protein was coupled to 1ml beads. For the

pull-down assay, 3 mg DI/II protein was pre-incubated where

indicated with 24 mg 4G2 (molar ratio 1:2) or control mAb for

10 min at room temperature, and then incubated for 1 h on a

rocker at room temperature with 10 ml of pr- or BSA-sepharose in

a buffer containing 20 mM MES, 20 mM TEA, 130 mM NaCl,

0.2% Tween 20 at pH 8.0 or 6.25. The beads were then washed

twice with the corresponding buffer and the bound DI/II was

analyzed by SDS-PAGE and western blot.

Surface plasmon resonance assays
SPR studies were performed on a BIAcore 2000 instrument (GE

Healthcare). Purified recombinant pr was immobilized on a CM5

biosensor chip by primary amine coupling as described in the

manual. In brief, pr peptide was diluted to 10 mg/ml in 10 mM

sodium acetate pH 4.7 and pre-concentrated on the chip surface.

The chip was then activated by a mixture of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide,

followed by quenching with 1M ethanolamine at pH 8.5. Under

these conditions, pr was immobilized to a final density of 600 or

1000 response unit (RU). A control cell was mock-coupled with

protein-free solutions. To test interaction, truncated E proteins

were diluted to 1.2 mM in a MES/TEA buffer (20 mM MES,

20 mM TEA, 130 mM NaCl) at a pH range of 6.0 to 8.0, and

flowed over the chip for 300 s at 0.3 ml/min, followed by buffer

alone at the same flow rate. After each round, the chip was

regenerated by washing with 50 mM NaOH in 1 M NaCl. The pr

chip showed undiminished E binding activity for at least 50

rounds.

Liposome floatation assay
Liposomes were prepared by freeze-thaw and extrusion through

200 nm polycarbonate filters [66], and were stored at 4uC in TAN

buffer under N2 and used within 2 weeks of preparation. Liposomes

were composed of a 1:1:1:3 molar ratio of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine (POPE), sphingomyelin (bovine

brain) (Avanti Polar Lipids; Alabaster, AL), and cholesterol

(Steraloids, Inc.; Wilton, NH), plus trace amounts of 3H-cholesterol

(Amersham; Arlington Heights, IL).

Protein-membrane interaction was monitored using a liposome

co-floatation assay [29,30]. E9 or DI/II proteins at a final

concentration of 50 mg/ml were incubated in TAN buffer (pH 8.0)

for 5 min at 28uC in the presence of 200 mg pr peptide/ml as

indicated. Liposomes were then added to a final concentration of

1mM lipid and the samples were adjusted to pH 5.75 by the

addition of 0.3 M MES or maintained at pH 8.0, and the

incubation continued at 28uC for 30–60 min. The samples were

then adjusted to 20% sucrose and loaded on top of a 300 ml

cushion of 40% sucrose, then overlaid with 1.2ml 15% sucrose and

200 ml 5% sucrose. All sucrose solutions were at the same pH as

the samples, and were wt/wt in TAN buffer at pH 8.0 or in MES

buffer (50 mM MES, 100 mM NaCl) at pH 5.5. Gradients were

centrifuged for 3 hr at 54,000 rpm at 4uC in a TLS55 rotor, and

fractioned into the top 700 ml, middle 400 ml and bottom 1 ml.

The 3H-cholesterol marker was quantitated by scintillation

counting. 200 ml of each fraction were precipitated with 10%

trichloroacetic acid and analyzed by SDS-PAGE and western

blotting [29]. Purified human secreted placental alkaline phos-

phatase with a ST affinity tag (Seap) was used as a control protein

[67], and was a kind gift from Yves Durocher, Biotechnology

Research Institute, Montreal.

Fusion-infection assay
The fusion-infection assay was performed essentially as

described previously [41]. In brief, BHK cells grown on 96-well

plates were washed twice with ice cold binding medium (RPMI

without bicarbonate, 0.2% BSA, 10 mM Hepes, and 20 mM

NH4Cl, pH 7.9). Virus stocks were diluted in binding medium and

incubated with cells on ice for 3 h with gentle shaking. Cells were

washed twice with binding medium to remove unbound virus and

pulsed for 1 min at 37uC in 100 ml RPMI without bicarbonate,

containing 0.2% BSA, 10 mM Hepes and 30 mM sodium

succinate at pH 6.0 or 7.9, containing the indicated concentration

of pr peptide. Infected cells were incubated in MEM plus 2% FCS

and 50 mM NH4Cl for 4 h at 37uC, and then at 37uC for 2 d in

the presence of 20 mM NH4Cl. The number of infected cells was

quantitated by immunofluorescence using mouse polyclonal anti-

DENV2 antibody. Infection observed at pH 7.9 represents virus

that is endocytosed and fuses during 1 min at this pH.

Generation of DENV1 E H244A mutant
The DENV1-WP infectious clone (reference [68], a kind gift

from Dr. Barry Falgout) was digested with KpnI and a 3.3kb

fragment including the E sequence was sub-cloned into the

pGEM3Z vector to generate pGDENV1 3.3. pGDENV1 3.3 was

used as a template to generate the E H244A mutation, using

circular mutagenesis as previously described [69]. A 2.6kb BstB1/

XhoI fragment containing the H244A mutation was sub-cloned

into the DENV1-WP infectious clone to obtain DENV1-E

H244A. The mutation was confirmed by restriction analysis and

sequencing of the complete prM-E region. Two independent

infectious clones were used to confirm the phenotype.

The WT and the mutant infectious clones were linearized by

Sac II digestion and used as templates for in vitro transcription

[70]. RNAs were electroporated into BHK cells and cells were

cultured overnight at 37uC followed by 6 d at 28uC in MEM

containing 2% FBS and 10 mM HEPES, pH 8.0. Progeny virus in

the medium was quantitated by infectious center assay on

indicator BHK cells, using mouse polyclonal anti-DENV2

antibody. To detect primary infection, aliquots of the electropo-

rated cells were plated on coverslips, cultured 3 d at 37uC, and

processed for immunofluorescence microscopy as above.
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Expression of prM-E and VLP production
WT and E H244A mutant DENV1 prM-E sequences were

PCR-amplified from the pGDENV1 3.3 subclones described

above, and cloned into pcDNA4/TO (Invitrogen). These

constructs were transfected into T-RExTM-293cells using Lipo-

fectamine 2000 (Invitrogen) and selected in T-REx HEK medium

containing 125 mg/ml Zeocin, all as previous described [61].

To test E protein folding and expression, 16106 WT and

mutant E expressing cells were seeded in 10 cm plates, cultured for

24h, and then E protein expression was induced by culture for

36 h in 1.5 mg/ml tetracycline in DME medium with 10% FCS at

37uC. Cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4,

150mM NaCl, 1% NP40, 0.5% Na-deoxycholate, 0.1% SDS,

1mM PMSF, 16 Roche complete protease inhibitor cocktail) on

ice for 1 hr. The cell lysates were cleared by centrifugation for

30 min at 10,0006g and protein concentrations were quantitated

and normalized. E proteins were immunoprecipitated from cell

lysate samples (500 mg total cellular protein) using 20 mg purified

mAb 4G2 or mAb 4E11 and 20 ml protein-G sepharose, or 30 ml

Sango antibody and 20 ml protein-A sepharose. 4E11 and 4G2

immunoprecipitated samples were blotted with Sango. Sango

immunoprecipitated samples were blotted with mouse anti

DENV2 serum.

For VLP secretion studies, 2–36106 cells were seeded in 10 cm

plates, cultured for 24h, and then induced by culture for 36 h in

1.5 mg/ml tetracycline in DME medium with 10% FCS at 37uC.

The culture media were centrifuged at 10,0006g for 30 min to

remove cell debris. VLPs were then pelleted through a 0.5 ml

sucrose cushion by centrifugation at 54,000 rpm for 2 h at 4uC
using a TLS55 rotor. To test the effect of neutralizing the pH of

acidic cellular compartments, cells were seeded and induced as

above. After 2 h of induction the media were changed to DME

medium containing 20 mM HEPES pH 8.0, 2% FCS, and

1.5 mg/ml tetracycline plus 20 mM NH4Cl as indicated, and the

incubation continued for a total of 36 h. E proteins in the cell

lysates were immunoprecipitated using mAb 4G2. VLP and lysate

samples were then analyzed by SDS-PAGE and western blot using

Sango.

Supporting Information

Figure S1 Open-book view of pr-E interface. Pr peptide is

shown in cyan. DI, DII and DIII of E9 protein are colored red,

yellow and blue, and the fusion loop at the DII tip is labeled. The

important charged residues in the pr-E interface are numbered

and shown as stick drawings in blue (positive) or red (negative). In

this structure from DV2 16681, E9 residue 71 is a Glu, while the

corresponding residue in NGC E9 protein is an Asp. Figure

prepared from Protein Data Bank accession number 3C5X [34]

using PyMOL.

Found at: doi:10.1371/journal.ppat.1001157.s001 (0.39 MB PDF)
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