
Retinal dystrophies are debilitating disorders of the 
visual function that primarily affect the ocular retina. Among 
the inherited retinal dystrophies, retinitis pigmentosa (RP: 
OMIM 268000) contributes significantly to the total number 
of cases of blindness worldwide. RP, first described by the 
German physician Donders in 1857, refers to retinal degenera-
tion with bone spicule-like pigmentation in the midperipheral 
fundus simulating inflammation [1]. The presenting visual 
symptom is usually night blindness, followed by loss of 
peripheral visual fields and progressing to loss of central 
vision, often ending in complete blindness [2]. RP primarily 
affects the rod photoreceptors with cone receptors becoming 
compromised only as the disease progresses [3]. Ocular find-
ings comprise atrophic changes of the photoreceptors and the 
retinal pigment epithelium (RPE), followed by the appearance 
of melanin-containing structures in the retinal vascular layer 
[3]. The fundus appearance typically includes attenuated 
arterioles, bone spicule-like pigmentation, and waxy pallor 

of the optic disc. Affected individuals often have decreased or 
non-detectable rod responses in electroretinographic (ERG) 
recordings in the early stage of the disease, progressing to 
absent responses as the cones become compromised [3].

RP affects about 1 in 5,000 individuals worldwide, 
making it the most common inherited retinal dystrophy 
[4,5]. RP is genetically heterogeneous and can be inherited 
in an autosomal dominant, autosomal recessive, or X-linked 
recessive fashion. Autosomal dominant RP (adRP) comprises 
15%–20% of all cases, autosomal recessive RP (arRP) 
comprises 20%–25% of cases, and X-linked recessive RP 
comprises 10%–15%. The remaining 40%–55% of cases, in 
which family history is absent, are called simplex (SRP), but 
many of these may represent autosomal recessive RP [6-10]. 
A large number of loci or genes have been associated with RP, 
including 36 for autosomal recessive RP in which the gene 
has been identified to date (RetNet).

Here we report two multiple-generation consanguineous 
Pakistani families with seven and six members affected 
by autosomal recessive retinal degeneration, respec-
tively. Genome-wide scans localized the disease gene to 
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Purpose: To localize and identify the gene and mutations causing autosomal recessive retinal dystrophy in two consan-
guineous Pakistani families.
Methods: Consanguineous families from Pakistan were ascertained to be affected with autosomal recessive retinal 
degeneration. All affected individuals underwent thorough ophthalmologic examinations. Blood samples were collected, 
and genomic DNA was extracted using a salting out procedure. Genotyping was performed using microsatellite markers 
spaced at approximately 10 cM intervals. Two-point linkage analysis was performed with the lod score method. Direct 
DNA sequencing of amplified genomic DNA was performed for mutation screening of candidate genes.
Results: Genome-wide linkage scans yielded a lod score of 3.05 at θ=0 for D17S1832 and 3.82 at θ=0 for D17S938, 
localizing the disease gene to a 12.22 cM (6.64 Mb) region flanked by D17S1828 and D17S1852 for family 61032 and 
family 61227, which contains aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), a gene previously implicated 
in recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. Sequencing of AIPL1 showed a 
homozygous c.773G>C (p.Arg258Pro) sequence change in all affected individuals of family 61032 and a homozygous 
c.465G>T (p.(H93_Q155del)) change in all affected members of family 61227.
Conclusions: The results strongly suggest that the c.773G>C (p.R258P) and c.465G>T (p.(H93_Q155del)) mutations in 
AIPL1 cause autosomal recessive retinal degeneration in these consanguineous Pakistani families.
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chromosome 17p with two-point lod scores of 3.82 and 2.45 
at θ=0, respectively. Fine mapping showed that the arRP 
locus cosegregates with markers in a 12.22 cM (6.64 Mb) 
interval containing the aryl hydrocarbon receptor interacting 
protein-like 1 (AIPL1) gene, in which affected individuals in 
family 61032 have a p.R258P and individuals in family 61227 
a p.(H93_Q155del) homozygous missense mutation.

METHODS

Clinical ascertainment: Two hundred consanguineous 
Pakistani families with non-syndromic RP were recruited 
to participate in a collaborative study between the Center 
of Excellence in Molecular Biology, Lahore, Pakistan, 
and the National Eye Institute, Bethesda, MD, to identify 
genes causing congenital cataract and retinal degeneration 
when mutated. This study was approved by the Institutional 
Review Board (IRB) of the National Centre of Excellence in 
Molecular Biology and the CNS IRB at the National Insti-
tutes of Health. Participating subjects gave informed consent 
consistent with the tenets of the Declaration of Helsinki.

Family 61032 is from the Punjab province of Pakistan, 
and family 61227 is from the Sindh province. A detailed 
medical history was obtained by interviewing the patients 
and their family members. Ophthalmological examinations 
were performed either at the Rehmatullah Benevolent Trust 
(LRBT) Hospital or at the NCEMB, Lahore, Pakistan. The 
diagnosis of retinal degeneration was based on night blindness 
beginning in early childhood, progressive loss of peripheral 
vision, attenuation of retinal vessels and pigmentary retinop-
athy on fundus examination, and decreased or extinguished 
rod responses on electroretinogram. Electroretinogram 
responses were recorded using ERG equipment manufactured 
by LKC (Gaithersburg, MD) according to the standards of 

the International Society for Clinical Electrophysiology 
(ISCEV) [11]. Scotopic responses were recorded under dark 
adapted conditions using a single bright flash stimulus at 
0 dB whereas the photopic responses were recorded under 
light adapted conditions using a 30 Hz flicker stimulus to 
a background illumination of 17–34 cd/m2. Normal ranges 
calculated from 22 previous tracings of individuals of 
average age 41 years (14 years) using the same equipment 
under similar conditions in the Lahore facility are as follows: 
a wave: average amplitude=–196.9 (53.2) μV, latency=22.5 
(1.6) ms; b wave amplitude=483.2 (81.3) μV, latency=44.8 
(3.3) ms; flicker amplitude=107.5 (27.0) μV, latency=25.7 (2.5) 
ms. Comparable ERG tracings from control individuals of 
similar ages obtained under similar conditions at the same 
facility can be found [12-15]. Blood samples were collected 
from affected and unaffected family members. ACD antico-
agulated venous blood samples were collected from affected 
and unaffected family members. DNA was extracted by a 
method described by Grimberg and colleagues [16].

Genotype analysis: Genome-wide linkage scans were 
performed with 382 highly polymorphic fluorescent markers 
from the ABI PRISM Linkage Mapping Set MD-10 (Applied 
Biosystems, Foster City, CA) with an average spacing of 10 
cM. Based on the results of the initial genome-wide linkage 
scan, four markers (D17S1828, D17S1832, D17S1805, and 
D17S1791) were selected from the Marshfield map for fine 
mapping. Multiplex PCR were performed as previously 
described [17]. Briefly, each reaction was performed in 
a 5 μl mixture containing 40 ng genomic DNA, various 
combinations of 10 μM dye-labeled primer pairs, 0.5 μl 10X 
GeneAmp PCR Buffer II, 0.5 μl 10 mM dNTP mix, 2.5 mM 
MgCl2, and 0.2 U of Taq DNA polymerase (Applied Biosys-
tems). Amplification was performed in a GeneAmp PCR 

Table 1. Primers (5′-3′) used for sequencing of AIPL1

EXON1
AIPL1-E1-FW TCCTCCTGGCTGGGTAAATC
AIPL1-E1-RV TTTTGGCACAGCTGAAAGC

EXON2
AIPL1-E2-FW ATGGGGTGAACTGAGTGAGC
AIPL1-E2-RV GCTTGAGTCCCAGCTTTCC

EXON3
AIPL1-E3-FW GCATAGTGAGGGAGCAGGAT
AIPL1-E3-RV TGGCTTATGAACCCTCTCGT

EXON4
AIPL1-E4-FW AAGCATGACTTCAGGGAGATG
AIPL1-E4-RV GGGAGAAGGTCAGCCATGA

EXON5
AIPL1-E5-FW TGCAGACCAAGGTCAGAGG
AIPL1-E5-RV GGTGGAGACAAGGTTTGGTG

EXON6
AIPL1-E6-FW GGGATGGGGGATACAGAGAG
AIPL1-E6-RV CATGGGTGTGTCTGACTTTGA

http://www.molvis.org/molvis/v20/1
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1828
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1832
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1805
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1791
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System 9700 (Applied Biosystems). Initial denaturation was 
performed for 5 min at 95 °C, followed by 10 cycles of 15 s 
at 94 °C, 15 s at 55 °C, and 30 s at 72 °C and then 35 cycles 
of 15 s at 89 °C, 15 s at 55 °C, and 30 s at 72 °C. The final 
extension was performed for 10 min at 72 °C and followed 
by a final hold at 4 °C. PCR products from each DNA sample 
were pooled and mixed with a loading cocktail containing 
HD-400 size standards (Applied Biosystems). The resulting 

PCR products were separated in an ABI 3130 DNA sequencer 
and analyzed by using GeneMapper 4.0 software package 
(Applied Biosystems).

Linkage analysis: Two-point linkage analysis was performed 
using the FASTLINK version of MLINK from the LINKAGE 
Program Package version 5.1 [18,19]. Maximum lod scores 
were calculated using ILINK. Autosomal recessive RP was 

Figure 1. Pedigree drawing and 
chromosome 17p13 haplotypes 
of two familes. (A) family 61032 
and (B) family 61227. Squares are 
males, circles are females, filled 
symbols are affected individuals, 
double line between individuals 
indicates consanguinity and 
diagonal line through a symbol 
is deceased family member. The 
haplotypes of 7 adjacent chro-
mosome 17p13.2 microsatellite 
markers are shown. Alleles forming 
the risk haplotype are shaded 
black, alleles co-segregating with 
RP but not showing homozygosity 
are shaded grey, and alleles not 
co-segregating with RP are shown 
in white.

http://www.molvis.org/molvis/v20/1
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analyzed as a fully penetrant trait with an affected allele 
frequency of 0.001. The marker order and distances between 
markers were obtained from the Marshfield database and 
the National Center for Biotechnology Information (NCBI) 
chromosome 17 sequence maps. For the initial genome scan, 
equal allele frequencies were assumed; for fine mapping, 
allele frequencies were estimated from 100 unrelated and 
unaffected individuals from the Punjab province of Pakistan.

Mutation screening: Candidate genes were chosen from a 
6.82 cM (4.7 Mb) interval on chromosome 17p flanked by 
markers D17S1828 and D17S1805. Primer pairs for individual 
exons were designed using the primer3 program. Individual 
exons of AIPL1 were amplified with PCR using the primer 
pairs shown in Table 1. Amplifications were performed in 10 
μl reactions containing 40 ng of genomic DNA, 8 picomoles 
of each primer, 2.5 mM of each dNTPs, 2.5 mM MgCl2, and 
0.2 U Taq DNA polymerase in the standard 1X PCR buffer 
provided by the manufacturer (AmpliTaq Gold Enzyme; 
Applied Biosystems). PCR amplification consisted of a 
denaturation step at 96 °C for 5 min, followed by 30 cycles, 
each consisting of 96 °C for 45 s followed by 57 °C for 45 s 
and at 72 °C for 1 min. PCR products were purified using 
the AMPure XP system (Beckman Coulter Biomek NX, 
Brea, CA). The PCR primers for each exon were used for 
bidirectional sequencing using the Big Dye Terminator Ready 
reaction mix according to the manufacturer’s instructions 
(Applied Biosystems). Sequencing products were purified 
using the Agencourt CleanSEQ system (Beckman Coulter 
Biomek NX). Sequencing was performed on an ABI PRISM 
3130 Automated sequencer (Applied Biosystems). Sequencing 
results were analyzed using Mutation Surveyor v3.30 (Soft 
Genetics, State College, PA) or Lasergene 8.0 (DNASTAR, 
Madison, WI).

Molecular modeling: The tetratricopeptide (TPR) repeat 
domains of wild-type and R258P AIPL1 were modeled using 
SWISS-MODEL. The 117 aa sequence extending from V180 
to S296 was used in a BLAST search to identify the monomer 
template 3rkv.1.A solved at a resolution of 2.41  Å. The 
template shared 31% sequence identity with the AIPL1 TPR 
domain and had coverage of 99%. Analysis was performed 
in automatic mode using default parameters. The domain 
structure of AIPL1 was taken from NCBI and UniProtKB/
Swiss-Prot (Q9NZN9.2).

Splice site prediction: Splice site prediction was performed 
with the Berkeley Drosophila Genome Project Neural 
Network splice site prediction algorithm [20] and the Tech-
nical University of Denmark Center for Biologic Sequence 
Analysis NetGen2 Server [21] using default settings. The 
Berkeley Drosophila Genome Project Neural Network splice 
site prediction algorithm identified neither the wild-type nor 
the mutant intron 3 5′ (donor) splice site, suggesting that even 
the wild-type might be a weak splice site. However, the Tech-
nical University of Denmark Center for Biologic Sequence 
Analysis NetGen2 Server implementation identified the 
wild-type splice site with a confidence level of 0.88. Using 
this algorithm, a score of 95% predicts splice sites that with 
high confidence, while nearly all true donor sites yield scores 
of 50% or greater. No other potential donor splice sites were 
identified in the surrounding 400 bp.

RESULTS

The pedigree in family 61032 showed an autosomal reces-
sive inheritance pattern with a pseudodominant effect in the 
offspring of affected individuals 8 and 9, while the pedigree 
of family 61227 showed a straightforward autosomal reces-
sive inheritance pattern in which one affected individual 
was the product of a first-cousin mating (Figure 1). Affected 

Table 2. Clinical characteristics of affected individuals in families 61032 and 61227

Family ID Gender Age at Examination (yr) Age at Onset 
(yr) First Symptom Visual 

Acuity Nystagmus

61032 8 M 56 4 NB NPL yes
61032 11 M 16 3 NB CF* no
61032 12 M 22 4 NB CF* no
61032 13 F 19 3 NB HM* yes
61032 14 M 17 5 NB CF* no
61032 15 M 29 4 NB HM* yes
61032 19 F 21 3 NB CF* yes
61227 7 M 30 <4 NB LP yes
61227 8 M 28 <4 NB LP yes

*no peripheral vision; NB: night blindness; PL: light perception; NPL: no perception of light; CF: counting fingers; HM: hand motion

http://www.molvis.org/molvis/v20/1
http://research.marshfieldclinic.org/
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1828
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1805
http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
http://www.cbs.dtu.dk/services/NetGene2/
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individuals from both families have no recollection of having 
vision or carrying out common early visual activities. All 
affected individuals in family 61032 were diagnosed with RP 
in the early years of their lives, experiencing night blindness 
beginning at 3–5 years of age, suggesting the onset of retinal 
degeneration at or before that time. Vision of all affected 
individuals at the time of examination was limited to light 
perception or hand motion with no peripheral vision. Indi-
viduals 8, 13, 15, and 19 showed nystagmus while individuals 

11, 12, and 14 did not. Affected individuals in family 61227 
also showed signs of retinal degeneration early in life. They 
were not examined until approximately 25–30 years of age, 
but at that time showed only light perception. Both had 
horizontal nystagmus (Table 2). According to the patients’ 
medical records and history, the disease in all affected 
individuals progressed from night blindness with gradual 
decreasing visual acuity and progressive loss of peripheral 
vision. Fundus photographs were available only for members 

Figure 2. Fundus photographs of 
family of members of family 61032. 
A–B: Oculus dexter (OD) and 
oculus sinister (OS) of an affected 
58-year-old individual (08). C–D: 
OD and OS of an affected 21-year-
old individual (19). E–F: OD and 
OS of an unaffected 19-year-old 
individual (20). Fundus photo-
graphs of both affected individuals 
show bone spicule-like pigmenta-
tion that is more prominent in the 
midperiphery, pale waxy disc, and 
attenuated arterioles. The fundus 
photographs of the unaffected indi-
vidual show no signs of retinitis 
pigmentosa (RP).

http://www.molvis.org/molvis/v20/1
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of family 61032. Affected individuals showed typical signs 
of RP, including waxy pale optic discs, attenuation of retinal 
arteries, and bone spicule-like pigment deposits in the midpe-
riphery of the retina (Figure 2A-D). No attenuation of retinal 
arteries and bone spicule-like pigment deposits were detected 
in the fundus photographs of the unaffected individuals in 
the family (Figure 2E–F). ERG recordings, also available 
only for individuals in family 61032, documented extensive 
loss of rod and cone function typical of advanced arRP in 
affected members as shown in Figure 3A-H, whereas the 
unaffected family members including carriers were within 
normal ranges with all amplitudes above average and laten-
cies below average, thus showing no changes characteristic 
of RP (Figure 3I-L). Taken together, the ophthalmological 
examinations in both families showed typical features of 
retinal dystrophies and fulfilled the diagnostic criteria of 
RP. However, given the uncertainty in the age of onset, we 

cannot conclusively differentiate between Leber congenital 
amaurosis (LCA) and autosomal recessive RP.

Initially, all previously reported retinitis pigmentosa 
loci were excluded for linkage with a lod < −2 using primer 
pairs for markers specific for known loci. Linkage scans in 
both families localized the disease region to chromosome 
17 (Table 3). During a genome-wide scan for family 61032, 
a lod score greater than 2.0 was obtained only for marker 
D17S938 with a lod=3.82 at θ=0 in family 61032 (Figure 4). 
Only seven additional markers gave lod scores greater than 0, 
D1S2797, D2S160, D4S1539, D6S287, D10S547, D13S285, and 
D18S478, each of which yielded a lod=1.2. In contrast to the 
chromosome 17 locus (see the following paragraph and Figure 
1), examination of these regions indicated that the positive lod 
scores resulted from uninformative individuals who under-
went obligate recombination events with nearby markers. In 
addition, among the markers selected for fine mapping of the 
chromosome 17 locus, D17S1832 yielded a lod score of 3.05 

Figure 3. Electroretinography responses of members of 61032. Electroretinogram recordings of individual 08 (affected, 56 years old): A: 
Oculus dexter (OD) combined rod and cone response, B: OD cone response, C: Oculus sinister (OS) combined rod and cone response, and 
D: OS cone response; individual 19 (affected, 21 years old): E) OD combined rod and cone response, F: OD cone response, G: OS combined 
rod and cone response, and H: OS cone response; and individual 20 (unaffected, 19 years old): I: OD combined rod and cone response, J: 
OD cone response, K: OS combined rod and cone response, L: OS cone response.

http://www.molvis.org/molvis/v20/1
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at θ=0 (Table 3). Thus, two-point linkage mapping in family 
61032 localized the causative gene to a 12.22 cM (6.64 Mb) 
region flanked by D17S1828 and D17S1852. Analysis of these 
markers in family 61227 showed maximum lod scores of 3.66 

with D17S1832 and D17S1805. However, obligate recombi-
nation events were not present in this region, and occurred 
only with D17S1852, 16 cM (10 Mb) centromeric of AIPL1. 
Maximum lod scores of 4.26 and 4.04 were obtained with the 

Figure 4. Graphical illustration of the two point lod scores obtained across 22 chromosomes during the genome-wide scan (note: lod scores 
less than -2 are considered exclusionary and shown as -2 for graphical purposes). We identified a single marker showing significant linkage 
with a lod score 0f 3.82 at θ =0 for D17S938.

Figure 5. Sequence chromatograms 
and alignment of AIPL1 Arg 258 in 
19 species. A: Electropherograms 
show the normal control sequence 
(left), carrier sequence (middle) 
and affected sequence (right) 
surrounding the AIPL1 c.773G>C 
mutation. B: Amino acid sequence 
alignment around the AIPL1 R258 
residue (red) in 21 species ranging 
from human to zebrafish. R258 is 
part of a highly conserved region, 
suggesting that the R258P change 
would be highly deleterious for 
protein structure and enzymatic 
activity.

http://www.molvis.org/molvis/v20/1
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1828
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1852
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1832
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1805
http://www.ncbi.nlm.nih.gov/unists/?term=D17S1852
http://www.ncbi.nlm.nih.gov/unists/?term=D17S938


Molecular Vision 2014; 20:1-14 <http://www.molvis.org/molvis/v20/1> © 2014 Molecular Vision 

9

AIPL1 c.773G>C and c.465G>T mutations in families 61032 
and 61277, respectively.

Visual inspection of the haplotypes supports the results 
of the linkage analysis in both families. In family 61032, there 
was a proximal recombination between individuals 18 and 8 
at D17S1828 (Figure 1A). Similarly, there was a distal recom-
bination between individuals 9 and 12 at D17S1852 (Figure 
1A). This places the disease locus in a 12.22 cM (6.64 Mb) 
interval flanked by markers D17S1828 and D17S1852. Lack 
of homozygosity in affected individuals 8, 11, 12, 13, 15, and 
19 at markers D17S1805 and D17S1791 further suggests that 
the pathogenic mutation lies proximal to marker D17S1805, 
in a 6.82 cM (4.7 Mb) interval flanked by markers D17S1828 
and D17S1805. Alleles for D17S1832 and D17S938 are homo-
zygous for all affected individuals. In family 61227, no telo-
meric recombination could be identified, but a centromeric 
recombination occurred between D17S1791 and D17S1852 in 
individuals 1 and 12 (Figure 1B). Although consanguinity 
in the mating between individuals 1 and 2 could not be veri-
fied by family history, homozygosity for nearby markers and 
the AIPL1 mutation (see below) in all affected individuals 
strongly suggest a common origin for the causative mutation. 
Thus, lack of homozygosity for marker D17S1852 in affected 

individuals 3, 4, 7, 8, and 9 suggests the marker lies in a 12 
cM (7 Mb) region flanked by D17S1828 and D17S1852.

There are three known candidate genes in the overlap-
ping linked regions on chromosome 17p13.1, guanylate 
cyclase 2D (GUCY2D), AIPL1, and phosphatidylinositol 
transfer membrane-associated family member 3 (PITPNM3). 
The sequence changes identified in GUCY2D and PITPNM3 
in both families were either known single nucleotide poly-
morphisms or noncoding polymorphisms. Sequencing of all 
coding exons, exon-intron boundaries, and the 5′ untranslated 
region of these genes showed a single novel missense muta-
tions in each family in AIPL1 (Figure 5 and Figure 6). All 
affected individuals in family 61032 carry a homozygous 
G>C single base change at this position in exon 5 (c.773G>C, 
p.R258P). This sequence change was not seen in 100 ethni-
cally matched controls or in the 1000 Genome or dbSNP 
databases. The amino acid sequence in the entire region 
surrounding the mutation is relatively well conserved, and 
R258 is conserved among all mammals, with conservative 
changes (Q and N) in the chicken and zebrafish, respectively 
(Figure 5). The c.773G>C, p.R258P change is estimated to 
be possibly damaging by PolyPhen-2, tolerated by SIFT, and 
neutral by CONDEL, which incorporates information from 

Figure 6. Sequence chromato-
grams and predicted effects of the 
splice site mutation. A: Sequence 
chromatograms of an unaffected 
individual, a heterozygote carrier, 
and an affected individual showing 
the c.465G>T mutation in relation 
to the exon and consensus splice 
site, with encoded amino acids 
shown above the DNA sequence. 
B: Exon structure of the AIPL1 
gene with the c.465G>T mutation 
shown at the end of exon 3 and 
the predicted skipping of exon 3 
in the spliced mRNA. C: Protein 
and domain structure of the AIPL1 
protein with the predicted in-frame 
p.(H93_Q155) deletion shown in 
red.
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the PolyPhen-2, SIFT, and MutationAssessor programs. 
However, this change lies within the second repeat unit of 
the TPR domain of the AIPL1 protein (Figure 7A). The R258P 
mutation is predicted by molecular modeling to disrupt the 
end of the second helix of the second TPR repeat domain, 
altering the secondary structure of this and the surrounding 
amino acid residues from an alpha helix to a turn structure, 
a significant change for the highly conserved TPR domain 
(Figure 7B).

Affected individuals in family 61227 are all homozygous 
for the c.465G>T sequence change. This sequence change was 
not seen in 100 ethnically matched control individuals nor 
does it occur in the 1,000 Genome or dbSNP databases. This 
nucleotide change alters a highly conserved Q155 amino acid 

to a histidine. This residue is conserved among mammals 
except the armadillo and shows only conservative changes 
through reptiles and fish, and is predicted to be damaging by 
SIFT [22], probably damaging by PolyPhen2 [23], and neutral 
by Condel [24]. However, the sequence change also alters the 
5′ (donor) splice site for intron 3, reducing the score on the 
NetGen2 server from 0.88 to “not detectable”. No other likely 
donor splice sites were identified in the surrounding 400 bp; 
thus, this sequence change is predicted to result in in-frame 
skipping of exon 3 with a resulting p.(H93_Q155del) in-frame 
deletion in the AIPL1 protein.

Figure 7. AIPL1 protein domains, structure, and the effect of the R258P mutation. A: AIPL1 domains including the FKBP-type peptidyl-
prolyl cis-trans isomerase (FKBP_C, yellow) domain, The tetratricopeptide repeat (TPR, green) domain, with three individual repeat 
domains (TPR1, TPR 2, and TPR 3, smaller green rectangles above the ruler), individual TPR motifs (blue tics above the TPR domain), and 
binding surfaces (maroon tics above the TPR domain). B: Modeled structures of theR258 (left) and P258 (right) 117 amino acid AIPL1 TPR 
domains with alpha helices shown in pink, turns shown in blue, and random coils shown in white. The R258 and P258 residues are shown 
in ball-and-stick form in red. The insets at the bottom left corner of each panel show the R258 residue residing near the end of the alpha 
helix of the second TPR repeat domain, and the P258 residue disrupting the helical structure so that the helix is shortened and the P258 and 
adjacent residues assume a turn structure.
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DISCUSSION

Here, we report linkage of autosomal recessive retinal 
degeneration in two consanguineous Pakistani families to 
markers on chromosome 17p13.2. A genome-wide linkage 
scan in family 61032 excluded a large part of the genome 
and identified a single marker, D17S938, showing a lod score 
greater than 1.2. A maximum two-point lod score of 3.82 was 
obtained with D17S938 at θ=0, and the autosomal recessive 
RP locus cosegregates with chromosome 17p markers in a 
12.22 cM (6.64 Mb) interval flanked by markers D17S1828 
and D17S1852, and a lod score of 4.26 was obtained when 
analyzing the mutation as a linkage marker. This lies just 
above the 3 lod support limit, corresponding to a confidence 
limit of approximately 2×10−4. Lack of homozygosity in 
affected individuals for markers D17S1805 and D17S1791 
further suggests that the pathogenic mutation lies in a 6.82 
cM (4.7 Mb) interval f lanked by markers D17S1828 and 
D17S1805. The maximum lod score of 4.04 in family 61227 
yields similar results, although the predicted severity of the 
sequence change in this family provides additional assurance 
that disease in this family results from the AIPL1 mutation.

The presence of consanguinity in these families pres-
ents advantages and disadvantages for linkage analysis. 
Although consanguinity increases the power of linkage 
analysis dramatically, it is also increases the possibility that 
small homozygous regions will be shared between various 
members of the pedigree. If the region is small enough, it 
might be missed by the average 10 cM spacing of markers 
from the ABI MD-10 panels (Applied Biosystems) used in 
the genome-wide linkage screen. However, inheritance of 
the IBD mutation through a common founder in the previous 
four generations increases the probability of a fairly large 
linked region, and the use of two point rather than multipoint 
analysis decreases the chance of missing linked loci within 
5–10 cM of a marker, even in the presence of a double recom-
bination event.

Three known candidate genes, GUCY2D, AIPL1, and 
PITPNM3, reside in the critical interval. The former two 
genes have been associated with LCA (autosomal reces-
sive) and autosomal dominant cone-rod dystrophy (adCRD) 
[25,26], while the latter has been associated with dominant 
CRD only [27,28]. No previously reported recessive RP loci 
are located in this critical interval, although AIPL1 previously 
has been shown to cause LCA, autosomal dominant RP, and 
adCRD [26].

Given that genes associated with LCA (RPE65, TULP1, 
and RDH12) have also been implicated in retinitis pigmen-
tosa [29-32], we sequenced the coding exons of GUCY2D, 
PITPNM3, and AIPL1, and identified only homozygous 

c.773G>C (p.R258P) missense and c.465G>T splice muta-
tions in AIPL1. The clinical symptoms, age of onset, and 
the mode of inheritance in family 61032 are unambiguously 
consistent with autosomal recessive retinal degenerations, but 
given the clinical data available, it is difficult to distinguish 
LCA from arRP in these families. In family 61032, according 
to the history, the affected individuals developed their first 
recognized symptom, night blindness, after 3 years of age, 
although nystagmus, which frequently accompanies the early 
or congenital onset of blindness seen in LCA, occurred in 
individuals 8, 13, 15, and 19 but not in individuals 11, 12, 
and 14 in this family. In addition, according to the history 
and the medical records, the affected family members had 
good central vision during the first decade of life. This 
would be unusual for LCA, which is most often diagnosed 
in the first 6 months of life and characterized by the pres-
ence of nystagmus, poor visual acuity (VA), and a severely 
reduced or nondetectable electroretinogram at early stages 
[33-35]. Preservation of even the amounts of visual perception 
seen in the affected patients in this family at 16–29 years 
of age would be unusual in LCA. In addition, the clinical 
course of RP in these patients appeared to differ from that 
of classical AIPL1-related LCA in that the latter tend to have 
early and severe macular involvement [36-38]. Although the 
fundus photos from affected individuals show some macular 
changes (Figure 2), they are typical of those we have seen in 
other Pakistani families with arRP caused by various genes 
[14,15,39-41], and the clinical course including the initial 
symptom of night blindness and preservation of central 
vision through childhood is typical of relative preservation of 
macular function seen in RP rather than the early and severe 
macular involvement typical of LCA. Overall, this family 
certainly shows early onset retinal degeneration, lying in the 
clinical spectra of arRP and LCA. The retinal degeneration 
seen in family 61032 might correlate with the mutation in this 
family being a missense rather than nonsense or deletion and 
being predicted to be less severe by the various bioinformatic 
analyses. In contrast, the clinical history, signs, and symp-
toms of the affected individuals in family 61227 are more 
consistent with LCA, although once more it is difficult to 
place their phenotype definitively in either category.

AIPL1 encodes the aryl hydrocarbon receptor protein-
like 1, found exclusively in rod photoreceptors in the human 
adult retina [42]. Aipl1 knockout mice show normal develop-
ment of the outer nuclear level, but early degeneration of rods 
and cones with disorganized and fragmented outer segments 
[43]. This appeared to occur through a reduction in rod cGMP 
phosphodiesterase (PDE6), a farnesylated protein regulating 
cGMP levels [43,44], although multiple phototransduction 
pathways appear to be affected [45]. In this regard, AIPL1 
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has been shown to bind NUB1 and inhibit NUB1-mediated 
degradation of FAT10 conjugated proteins [46]. Among other 
possible roles, AIPL1 appears to act as a chaperone, aiding 
the proper assembly of newly synthesized PDE6 synthesis 
and thus affecting PDE6 turnover and cGMP regulation [47]. 
Therefore, the R258P mutation might have a specific effect on 
one or more functions of AIPL1, accounting for the differing 
phenotype seen in this family.

The R258P mutation lies toward the end of the second 
helix of the second TPR repeat unit in the TPR domain, 
although not actually a TPR motif or on a predicted binding 
surface (Figure 7A). TPR domains have been shown to be 
involved in several functions centering on protein–protein 
interactions and including chaperone, transcription, and 
protein transport activities. Substitution of a small uncharged 
proline residue for the larger positively charged arginine is 
not conservative, with a Blosum62 score of −2. The dihe-
dral angles allowed by proline residues, which have stronger 
stereochemical constraints than any other amino acid residue, 
are not compatible with an alpha helical structure. Position 
258 is predicted to lie just at the edge of an alpha helical 
region, which the R258P change disrupts and shortens. 
However, it is not predicted to cause significant disruption 
of the overall protein fold (Figure 7B), perhaps explaining 
why the phenotypic effects of this substitution are those 
of retinitis pigmentosa and not as severe as some cases of 
LCA. In contrast, although the p.H93_Q155 deletion seen in 
family 61227 does not directly involve either the FKBP_C 
or TPR domains, the loss of 63 amino acids between these 
two domains would be expected to affect the protein fold and 
distort their relative orientation.

Identification of two new recessive retinal degenera-
tion loci in consanguineous Pakistani families emphasizes 
the genetic heterogeneity of this disorder. Further work on 
the functional aspects of this mutation promise to elucidate 
the multiple functions of AIPL1 in retinal photoreceptors, 
perhaps providing insights that will assist with eventual gene 
therapy [37]. Finally, identifying novel genes and mutations 
associated with autosomal recessive retinal degenerations 
will enhance our understanding of the disease at molecular 
level, leading to better treatments and therapeutics.
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