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Cytokine cascades exist in many autoimmune disorders which amplify and sustain the
autoimmune process and lead to chronic inflammatory injury to the host tissues.
Increasing evidence indicates that chondrocytes can interact with T cells, which may be
a crucial event in inflammatory arthritis. To address the reciprocal influences of cartilage-
reactive T cells and chondrocytes, we constructed cartilage-reactive T cells by developing
a type II collagen-specific chimeric antigen receptor (CII-CAR). An in vitro co-culture model
of CII-CAR-T cells and fresh cartilage was developed, in which CII-CAR-T displayed
specific proliferative capacity and cytokine release against fresh cartilage samples, and
chondrocytes could respond to CII-CAR-T cells by secreting IL-6. The proposed model
will help us to explore the possible cytokine cascades between cartilage-reactive T cells
and cartilage.

Keywords: cytokine cascade, type II collagen, chimeric antigen receptor T cell, inflammatory arthritis, cartilage
INTRODUCTION

Cytokines are important mediators of immunity and major drivers of autoimmunity. Once the
autoimmune process has been triggered, the cytokine cascades occur and play an important role in
the pathogenesis (1). Inflammatory arthritis, such as rheumatoid arthritis (RA) is one of the main
diseases that cause the loss of labor and disability in the population (2, 3). The cytokine network in
RA is complex; pro-inflammatory cytokines, including tumor necrosis factor (TNF)-a, interleukin
(IL)-6 and the mediators produced through downstream pathways constitute the milieu driving
neoangiogenesis. The neoangiogenesis can lead to the infiltration of a large number of inflammatory
cells in the joint (eg, T cells, B cells, macrophages, and neutrophils), which will further
cause cartilage destruction and bone erosion, and eventually lead to joint deformities and
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dysfunction (4–6). Especially T cell-mediated inflammation is
closely related to the occurrence and development of RA (7–10).

Under pathological conditions, T cells behave as a hub, in
which B cells, dendritic cells (DCs), and tissue-resident cells can
interact with T cells to intensify the process of RA (11–14).
Recent studies have shown that chondrocytes play an important
role in amplifying inflammatory responses during RA
development (15). Exploration of the amplifying inflammatory
responses produced by cartilage-reactive T cells and chondrocytes
might help reveal the effective clinical interventions and
treatment targets.

Both in vivo and in vitro models can be used for studying
disease mechanisms and preclinical testing, and play an
appropriate role in different situations. A simple but
appropriate in vitro model mediated by T cells and cartilage
that enables investigation into the cytokine cascades might be
used as a suitable and rapid tool to develop strategies for
inflammatory arthritis therapeutic application.

In this study, chimeric antigen receptor (CAR) was used to
construct easily obtainable cartilage-reactive T cells. Chimeric
antigen receptor-T cell (CAR-T) therapy is a novel immunotherapeutic
approach for treating cancer, with exciting initial successes targeting
hematologic malignancies (16, 17). The most prominent and
serious toxicity of CAR-T cell therapy is cytokine release
syndrome (CRS), a systemic inflammatory response caused by
cytokines such as IL-2, IL-6, TNF-a, IFN-g, etc., and these
cytokines also play a role in the occurrence and development of
inflammatory arthritis and other autoimmune diseases (18–20).
Swelling and pain in the large joints of the limbs which similar to
RA was reported in patients with CAR-T therapy (21). Type II
collagen (CII) is the main structural protein of articular cartilage,
accounting for about 85–90% of cartilage collagen (22). Although
CII is sequestered from the immune system under normal
physiological conditions, it can be exposed as a target for
autoimmune specific attack during the pathological process of RA
disease progression (23). To facilitate direct reflection of T cell-
targeted cartilage interactions, we constructed an anti-CII single-
chain antibody fragments (scFv)-CD137-CD3z second-generation
CAR vector (CII-CAR) and obtained CII-CAR-T cells by lentivirus
infection of CD3+ T cells in this study. These CII-CAR-T cells can
target cartilage to produce proinflammatory cytokines such as IL-2,
TNF-a and IFN-g, etc. These cytokines are also widely present in
the joint fluid of patients with RA (24, 25). Thus, we have
established a rapid model of T cell-mediated inflammation in
vitro, which provides a suitable experimental tool for studying the
cytokine cascades caused by the interaction between cartilage-
reactive T cells and chondrocytes.
MATERIALS AND METHODS

Cell Lines
Cell lines C28/I2 and 293T were generously provided by Dr Qiao
(School of Life Science and Technology, Harbin Institute of
Technology, Harbin, China), and cultured in Dulbecco’s
Frontiers in Immunology | www.frontiersin.org 2
Modified Eagle’s Medium supplemented with 10% fetal bovine
serum (FBS, Gibco) at 37 °C incubator in a 5% CO2 atmosphere.
Human Blood and Articular Cartilage
Samples
Human blood samples were obtained from healthy donors
ranging from 18 to 65 years of age. Peripheral blood
mononuclear cells (PBMCs) were isolated using Ficoll-Hypaque
(GEHealthcare Biosciences) by gradient centrifugation. Cells were
then frozen in FBS containing 10% dimethyl sulfoxide (Sigma-
Aldrich) and kept at −80°C. Cartilage was obtained from six
eligible male subjects undergoing total knee arthroplasty for
osteoarthritis (age range 56–66 years, median age 57 years), and
cartilage were obtained from normal-appearing areas of discarded
tissues according to the method of Zhou et al (26, 27). They were
cut to circular pieces with a 3.0 mm tissue punch and placed at the
bottom of 96-well plates for subsequent experiments. Freeze–
thawed cartilage (FT-cartilage) samples were subjected to three
rounds of freeze–thaw cycles at liquid nitrogen and 37°C water
bath to kill the chondrocytes (28, 29). The study was conducted
subject to the approval of the Institutional Review Board of
Harbin Medical University and in accordance with the
Declaration of Helsinki. Discarded articular cartilage after
surgery and peripheral blood samples were taken with written
informed consent of patients and donors.
Collagen II Immunofluorescence Staining
C28/I2 was cultured in 24-well plates; after fixing in 4%
paraformaldehyde for 10 min, cells were permeabilized with
0.5% Triton X-100 at room temperature for 20 min and sealed
with bovine serum albumin. Then, cells were incubated with
anti-collagen II antibody (Abcam) overnight at 4°C, Goat Anti-
Mouse Alexa Fluor® 647 secondary antibody (Abcam) was
added for 1 h at 37°C in the dark and counterstained with
DAPI. Finally, the photos were taken with fluorescence
microscopy (OLYMPUS, IX51).

Construction of CII-CAR
The gene encoding a scFv derived from a human anti-CII
antibody (clone 551-3) was generated by splicing the variable
region of the heavy chain to the variable region of the light chain
via a (Gly4Ser)3 linker. This was cloned in-frame to the CD8a
hinge and transmembrane domain. In this construct, the
transmembrane domain is followed by a 4-1BB intracellular
domain that serves as the co-stimulatory domain of the CAR,
terminating with the CD3z intracellular activation domain. The
complete CAR construct was sub-cloned into the lentiviral
expression plasmid, pCDH-CMV-MCS-EF1a-copGFP (SBI)
driven by a CMV promoter.

Primary Human T Cell Lentivirus
Transduction and CAR-T Cell Expansion
On day 0, 1.0 × 106 T cells were cultured in 1.5 ml of X-VIVO 15
(Lonza) supplemented with 5% FBS (Gibco) and IL-2 (500 U/ml)
December 2020 | Volume 11 | Article 568741
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and were stimulated with 100 ng/ml anti-human CD3 (clone
OKT3) and anti-human CD28 (clone CD28.2). After 24 h,
transduction was performed by first plating the lentivirus
particle supernatants onto a 24-well culture plate pretreated
with 20 mg/ml RetroNectin (Takara) and spinning at 2,000g
and 32°C for 2 h, followed by centrifugation of the activated T
cells onto the viral particle-coated plate at 1,000g and 32°C for
1 h. Virus medium was removed, and cells were re-suspended at
1 × 106 cells/ml in fresh T cell medium. To determine the virus
infection efficiency, CII-CAR was labeled with biotinylated
protein L (Genscript) and PE Streptavidin (BD) on day 3
following transduction (30). Cells were allowed to expand in
cultures until days 9 to 14. Cell cultures were monitored daily
during expansion, and additional media were added to maintain
a cell concentration of 1.0 × 106 cells/ml. For all experiments
using CII CAR-T cells, paired (from same donor) un-transduced
T cells, activated and cultured for equivalent time, were served
as control.

Flow Cytometry
For phenotypic analysis we used CD8, CD4, and CD3 mAbs
(BD) conjugated with FITC, PE or APC fluorochromes. Cell
apoptosis was qualified using an annexin V-fluorescein
isothiocyanate (FITC)/propidium iodide (PI) cell apoptosis kit
(BD). Samples were analyzed with a BD FACS Calibur system
equipped with the filter set for quadruple fluorescence signals
and the Cell Quest software (BD). For each sample, we analyzed a
minimum of 10,000 events.

Analysis of Cytokine Production
The cytokine level detection was performed with a Cytometric
Bead Array (CBA) Kit (BD). CII-CAR-T (2 × 105 cells/well) were
plated in the 96-well plates which were coated with collagen II
(50 mg/ml), collagen I (50 mg/ml), C28/I2 cells, prepared fresh
cartilage or FT-cartilage. After 24 h, supernatants from cell
cultures were collected to test the cytokine level. In all
experiments, T cells were also incubated in the 96-well plates
coated with collagen II as control. The tests were performed
according to the manufacturer’s protocols. The concentration of
each cytokine was calculated based on standard curves generated
from serial dilutions of cytokine standards provided by the
manufacturer. Data were analyzed using the FCAP Array
software (BD).

Specific Lymphocyte Proliferation Test
CII-CAR-T or T cells (2 × 105 cells/well) stained with
CellTrace™ Far Red reagents were plated in the 96-well plates
coated with collagen II (50 mg/ml) or two pieces of cartilage or
C28/I2 cells without IL-2 for 3 days, CII-CAR-T or T cells alone
were used as control. Cell proliferation was analyzed by flow
cytometry analysis.

Co-Culture of CII-CAR-T With C28/I2 Cells
C28/I2 cells were plated at a density of 20,000 cells per well in a
96-well plate and allowed to adhere overnight. 1 × 105 CII-CAR-
T cells were then added and allowed to incubate with C28/I2
Frontiers in Immunology | www.frontiersin.org 3
cells. X-VIVO 15 supplemented with 5% FBS was added as
control. After 24 h, supernatants from cell cultures were collected
to test the cytokine level.

For apoptosis assays, C28/I2 cells were plated at a density of
4 × 105 cells per well in a 6-well plate and allowed to adhere
overnight. 2 × 106 CII-CAR-T cells or T cells were then added
and allowed to incubate with C28/I2 cells. X-VIVO 15
supplemented with 5% FBS was added as control. After 72 h,
cells were collected and stained with CD3 before Annexin V-
FITC and PI staining. T cells were excluded from the
apoptosis analysis.

Effects of Culture Supernatant of
CII-CAR-T on Human Fresh Cartilage
and C28/I2 Cells
CII-CAR-T (2 × 106 cells/well) were plated in the 6-well plates
which were coated with CII (50 mg/ml) for 24 h. Supernatants
from cell cultures were centrifuged at 400 g for 5 min to pellet
cells, collect the recovered supernatants in a syringe, and filter
through a 0.45 mm filter (Millipore) to remove cellular debris. T
cells’ culture supernatant was also used as control. For
assessment of potential effects of the supernatants on human
fresh cartilage and C28/I2 cells, they were treated with the
supernatants for 24 h. For comparison, the FT-cartilage and
293T were used as control group. In addition, to confirm IL-6
can be produced by human fresh cartilage instead of FT-
cartilage, supernatant was added in the cartilage group for 5 h,
removed and washed with PBS three times, then replaced with
the serum-free medium for 24 h to detect the level of IL-6 in the
supernatant. To further explore the effects of TNF-a and IFN-g
on human fresh cartilage and C28/I2 cells, 5 ng/ml TNF-a or/
and 10 ng/ml IFN-g (sino biological) was added in culture
medium for 24 h for detection.

Statistics
All statistical analyses were performed using Prism software
(v6.0, GraphPad Software, La Jolla, CA). Data are summarized
as mean ± standard error mean (SEM). Student t-test was used to
determine statistically significant differences between samples.
When multiple comparison analyses were required, statistical
significance was evaluated by one-way ANOVA. All P-values
<0.05 were considered statistically significant.
RESULTS

Characterization of CII-CAR Construct
and Efficient Transduction of Primary
Human T Cells
We generated a novel CII-CAR lentivirus vector incorporating a
4-1BB co-stimulatory domain and CD3z activation domain
(Figures 1A, B and Figure S1). Primary human T cells were
activated and then transduced with lentivirus encoding CII-
CAR. Protein L is an immunoglobulin (Ig)-binding protein
that binds to scFv and Fab fragments. Using protein L, CII-CAR
December 2020 | Volume 11 | Article 568741
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transduced T cells exhibited specific staining pattern ranging from
20 to 50% of positive cells (Figure 1C). Similar CD4-to-CD8 ratios
were observed between CII-CAR-transduced and control (un-
transduced) T cells (Figure 1D). CII-CAR-T cells were expanded
in cultures for 9–14 days.

CII-CAR-T Cells Display Specific Cytokine
Release and Proliferative Capacity When
Stimulated by CII
To determine whether the CII-CAR-T cells are specific for the
proliferation and cytokine release to CII, we co-cultured
conventional T cells (Tcon) or CII-CAR-T cells with type I or
II collagen for 24h. Flow-based CBA assays demonstrated
effector cytokine release of IL-2 (P < 0.01), IFN-g (P < 0.001)
Frontiers in Immunology | www.frontiersin.org 4
and TNF-a (P < 0.001) were significantly increased when CII-
CAR-T cells were stimulated with CII but not CI, whereas Tcon
did not induce significant cytokine release (Figures 2A–F).
Meanwhile, CII-CAR-T cells had also specific proliferative
capacity to CII compared with CII-CAR-T cells alone (P <
0.01) (Figures 2G, H).

CII-CAR-T Cells Display Specific Cytokine
Release Capacity but No Obvious Effect
on Inducing Apoptosis When Co-Cultured
With Chondrocyte Cell Lines
Immunofluorescence staining images show that chondrocyte cell
line C28/I2 expressed CII (Figure 3A). When CII-CAR-T cells
were co-cultured with C28/I2 cells, the release of effector
A B

C D

FIGURE 1 | Construction and efficient transduction of CII-CAR. (A) CAR construct with CD8a leader, human anti-CII scFv, CD8a hinge and transmembrane
domain, intracellular 4-1BB co-stimulatory domain, and intracellular CD3z activation domain. (B) The CAR construct was subcloned into a lentivirus expression
plasmid following the CMV promoter and utilizing copGFP co-expression driven by the EF-1a promoter. (C) Efficient lentiviral transduction of primary human T cells
encoding CII-CAR. (D) Similar CD4/CD8 ratios in control and CAR transduced T cells.
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cytokines IL-6 and IFN-g increased significantly, while no
significant changes in IL-2 or TNF-a were observed (Figures
3B–E). To determine whether the CII-CAR-T cells can induce
chondrocyte cells to apoptosis, we co-cultured T cells or CII-
CAR-T cells at effector-to-target ratios (E:T = 5:1) with C28/I2
cells for 72 h. In flow-based assays experiment, no significant
difference were detected in the apoptosis level of T cells or CII-
CAR-T cells group compared with control group at 72 h (Figure
S2). Additionally, proliferation of CII-CAR-T cells and T cells
were inhibited when cocultured with C28/I2 cells in vitro
(Figures 3F, G).
Frontiers in Immunology | www.frontiersin.org 5
CII-CAR-T Display Specific Cytokine
Release and Proliferative Capacity
When Stimulated by Human Fresh and
FT-Cartilage
In order to determine whether CII-CAR-T cells will release
inflammatory cytokines against human articular cartilage,
circular pieces of fresh human articular cartilage were co-
cultured with CII-CAR-T or Tcon for 24 h in culture medium
containing 5% FBS without IL-2. It was found that
concentrations of IL-2 (p < 0.01), IL-6 (p < 0.001), TNF-a
(p < 0.001), and IFN-g (p < 0.001) in supernatants of CII-CAR-T
A B C

D E

G H

F

FIGURE 2 | CII-CAR-T cells display specific cytokine release and proliferative capacity when stimulated by CII. (A–F) Supernatants were collected after 24 h co-
culture of CII-CAR-T cells or Tcon in the presence of type I (50 mg/ml) or II collagen (50 mg/ml) and assayed for IL-2, IL-4, IL-6, IL-10, TNF-a, IFN-g release by CBA.
IL-2, TNF-a, and IFN-g release were significantly increased compared with control group. Data are represented as mean ± SE of three independent experiments,
*p < 0.05; **p < 0.01, ***p < 0.001. (G, H) CII-CAR-T or Tcon (1 × 105 cells) were labeled with Far Red, then co-cultured with CII in the absence of CD3/28 mAbs
and IL-2 for 3 days. The Far Red intensity in CII-CAR-T or Tcon cells was analyzed by flow cytometry, *p < 0.05; **p < 0.01, ***p < 0.001. Data are represented as
mean ± SE of three independent experiments.
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co-cultured with cartilage were significantly increased (Figures
4A, D–F). However, when FT-cartilage was co-cultured with
CII-CAR-T cells for 24 h, it was found that levels of TNF-a (p <
0.001) and IFN-g (p < 0.001) were still significantly higher, but
level of IL-6 was almost not detected in the supernatant (Figures
Frontiers in Immunology | www.frontiersin.org 6
4D–F). These results indicated that CII-CAR-T cells could
release inflammatory cytokines against both fresh and FT-
cartilage and indirectly indicated that living chondrocytes
might participate in the release of IL-6, which might enhance
the inflammation response. CII-CAR-T cells had also specific
A

B C

D E

F G

FIGURE 3 | CII-CAR-T display specific cytokine release when co-cultured by C28/I2 cell line. (A) Immunofluorescence staining images show the expression of CII
(red) and merged images (with DAPI, blue) in C28/I2. (B–E) Supernatants were collected after 24 h co-culture of CII-CAR-T cells or Tcon with C28/I2 and assayed
for IL-2, IL-6, TNF-a, and IFN-g release by CBA. (F, G) CII-CAR-T or Tcon cells (1 × 105) were labeled with Far Red, then co-cultured with C28/I2 cells in the
absence of CD3/28 mAbs and IL-2 for 3 days. CII-CAR-T or T cells alone were used as control. The Far Red intensity in CII-CAR-T or T cells was analyzed by flow
cytometry. *p < 0.05; **p < 0.01. Data are represented as mean ± SE of three independent experiments.
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proliferative capacity to fresh (p < 0.01) or FT- cartilage (p <
0.05) (Figures 4G, H).

Human Fresh Cartilage and C28/I2
Produce IL-6 When Stimulated by the
Culture Supernatant of CII-CAR-T
CII-CAR-T or T cells were co-cultured with CII in medium without
IL-2 for 24 h. Human fresh or FT-cartilage samples were treated by
Frontiers in Immunology | www.frontiersin.org 7
supernatants from CII-CAR-T or T cell cultures for 24 h (Figure
5A). The results showed that the collected CAR-T supernatant can
stimulate fresh cartilage to produce IL-6, and the level of IL-6 was
significantly higher than that stimulated by T cell supernatant
(Figure 5B) (p < 0.01). Furthermore, we used the supernatant to
pretreat the cartilage samples for 5 h and replaced with serum-free
medium to detect the level of IL-6 in the supernatant (Figure 5A).
The results showed that IL-6 in pretreatment group with CII-CAR-
A B

C D

E F

G H

FIGURE 4 | CII-CAR-T cells display specific cytokine release when stimulated by human fresh or FT-cartilage. (A–F). Supernatants were collected after 24 h co-
culture of CII-CAR-T cells or T con with fresh or FT-cartilage and assayed for IL-2, IL-4, IL-6, IL-10, TNF-a, and IFN-g release by CBA. (G–H) CII-CAR-T or T cells
(1 × 105 cells) were labeled with Far Red, then co-cultured with fresh or FT-cartilage in the absence of CD3/28 mAbs and IL-2 for 4 days. CII-CAR-T or T cells alone
were used as control. The Far Red intensity in CII-CAR-T cells or T cells was analyzed by flow cytometry. *p < 0.05; **p < 0.01; ***p < 0.001. Data are represented
as mean ± SE of three independent experiments.
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T supernatant was significantly higher than the control group
(Figure 5C) (p < 0.001). Finally, cartilage samples were directly
stimulated with 5 ng/ml TNF-a and/or 10 ng/ml IFN-g for 24 h.
The results showed that TNF-a can stimulate fresh cartilage
produce higher levels of IL-6 (p < 0.01) (Figure 5D), and the
trends were similar in C28/I2 cells treated by TNF-a (p < 0.001)
(Figure 5E). But the IL-6 level in the treatment group with TNF-a
was significantly lower than the treatment group with culture
supernatant of CII-activated CII-CAR-T (p < 0.05) (Figure S3).
In addition, the IL-6 level in the FT-cartilage group was not
increased significantly regardless of CII-CAR-T supernatant or
TNF-a and/or 10 ng/ml IFN-g treatment (Figures 5B–E).

DISCUSSION

Inflammation refers to a complex adaptive response by the host
in response to tissue injury or xenobiotic insult. However, the
Frontiers in Immunology | www.frontiersin.org 8
physiological inflammatory response differs remarkably from the
response that is typical of inflammatory arthritis (31).
Inflammatory arthritis occurs in many diseases and is
characterized by joint inflammation and damage (32, 33). An
important point to note is that cartilage participates in both
inflammatory and bone destruction phases (34). Chondrocytes
are only resident cells in the cartilage, which not only act as target
cells of inflammatory mediators, but also serve as effector cells
and play an important role in cytokine cascades (15, 35–38).
Insights into the cascades between chondrocytes and cartilage-
reactive T cells could be helpful to find new biological markers
and therapeutic targets of inflammatory arthritis. This study was
aimed to develop an in vitro model that helps to explore the
possible cytokine cascades between cartilage-reactive T cells
and cartilage.

We generated universal cartilage-reactive T cells by CAR
technology, and confirmed that CII-CAR-T cells display
A

B C

D E

FIGURE 5 | Human fresh cartilage and C28/I2 produce IL-6 when stimulated by CAR-T supernatants or cytokines. (A) Schematic representation of human fresh or
FT-cartilage and C28/I2 were stimulated by CAR-T supernatants or cytokines. (B) Fresh or FT-cartilage was treated with supernatants of CII-CAR-T cells (CAR-T
sup) or T cells (T sup) for 24 h, and IL-6 release was assayed by CBA. (C) IL-6 release in pretreatment groups was assayed by CBA. (D) IL-6 level produced by
fresh or FT-cartilage when stimulated with 5 ng/ml TNF-a and/or 10 ng/ml IFN-g for 24 h. (E) IL-6 level produced by C28/I2 and 293T cells when stimulated with 5
ng/ml TNF-a and/or 10 ng/ml IFN-g for 24 h. Spontaneous release of cytokines by cartilage or C28/I2 was used as control. *p < 0.05; **p < 0.01; ***p < 0.001. Data
are represented as mean ± SE of three independent experiments.
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specific cytokine release including IL-2, IFN-g and TNF-a and
proliferative capacity when stimulated by CII but not CI. But
when CII-CAR-T cells were co-cultured with C28/I2 cells, only
IL-6 and IFN-g was significantly increased, while there is no
significant change in IL-2 or TNF-a level. Additionally,
proliferation of CII-CAR-T cells and T cells was inhibited
when cocultured with C28/I2 cells, which may be caused by
inhibiting signal delivered when human articular chondrocyte
upon contact with T cell (39). Thus, C28/I2 cells might not be a
suitable component for the inflammatory model because CII-
CAR-T cells were not appropriately activated against to C28/I2.

To solve this problem, we co-cultured CII-CAR-T with fresh
cartilage, which is composed of extracellular matrix and only one
cell type, the chondrocytes that synthesize the matrix (40). As
expected, high levels of IL-2, IFN-g, TNF-a, and IL-6 were
detected in supernatant when CII-CAR-T co-cultured with fresh
cartilage, but IL-6 was almost not detected in supernatant when CII-
CAR-T co-cultured with FT-cartilage. CII-CAR-T cells also showed
stronger proliferation ability in the presence of fresh or FT-cartilage.
To further confirm that the chondrocytes in fresh cartilage respond
to CII-CAR-T cells by secreting IL-6, culture supernatant of CII-
activated CII-CAR-T which contains immune effector molecules
was used to stimulate fresh cartilage, and changes in IL-6 levels was
significantly increased compared with control groups.

Finally, when cartilage samples were stimulated directly with
TNF-a and/or IFN-g, it showed TNF-a could stimulate
Frontiers in Immunology | www.frontiersin.org 9
chondrocytes to produce IL-6, but synergy is not present
between TNF-a and IFN-g. However, the IL-6 level in the
treatment group with TNF-a was significantly lower than the
treatment group with culture supernatant of CII-activated CII-
CAR-T, which indicated that CII-CAR-T could produce other
effector molecules to stimulate chondrocytes to produce stronger
inflammatory responses. At least, IL-2, IL-6, TNF-a, IFN-g were
produced when co-cultures of CII-CAR-T cells and fresh
cartilage, and these cytokines also play roles in the occurrence
and development of inflammatory arthritis and other
autoimmune diseases (19, 20).

In RA, TNF-a and IL-6 are the two well-known cytokines
triggering synovitis and bone erosions. TNF-a is clearly a central
cytokine in RA pathophysiology, which has a pivotal role in the
initiation and amplification of the cytokine cascade (41–45), and
mediate a wide variety of effector functions relevant to the
pathogenesis of RA, including leukocyte and endothelial
activation, synoviocyte activation and survival, cytokine and
chemokine amplification, angiogenesis, and nociceptor
activation (46, 47). IL-6 is also a key cytokine in RA
pathogenesis and mediates pleiotropic functions rather similar
to those of TNF-a in the synovial environment (46, 47). Unlike a
number of other cytokines, IL-6 can activate cells through both
membrane-bound (IL-6R) and soluble receptors (sIL-6R), thus
widening the number of cell types responsive to this cytokine
(48–51). IL-6-mediated inflammation amplifier was reported as a
FIGURE 6 | Schematic representation of cytokine cascade and the positive feedback loop between autoreactive T cells and chondrocytes.
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key molecular mechanism in chronic inflammation (15, 52, 53),
which triggers a vicious circle of escalating RA disease activity
(51, 54, 55). IL-6 plus TNF-a or IL-6 plus IL-17 can trigger IL-6
amplifier, leading to positive feedback for IL-6 signaling (15). In
this model, CII-CAR-T produced TNF-a against cartilage
samples, then TNF-a could induce chondrocyte produce IL-6,
finally IL-6 plus TNF-a can lead to activation of IL-6 amplifier
(Figure 6). However, there are still other effectors in the
supernatant of CII-CAR-T that participate in the inflammation
response, and the model may serve as a useful tool to research
unknown cytokine cascades and synergy.

As in vitro models can only be used to investigate limited
numbers of cell type, it would be much better to explore the
immune cascades in vivo by using murine CII-CAR-T cells to
target murine cartilage protein. Although it might not be the best
to mimic the complex cellular and molecular interactions
involved in T lymphocyte response in arthritis, this in vitro
model is rapid, simple, and intuitive, which can be used as a
suitable tool to for studying the cytokine cascades caused by the
interaction between cartilage-reactive T cells and chondrocytes.
The study of CAR-T mediated cytokine responses in
chondrocytes may also contribute to the understanding of
serious arthritis symptoms caused by CAR-T therapy, and
more attention should be paid when CAR-T is used to treat
bone metastases or bone cancer. In addition, while CII-CAR to
be expressed on effector T cells can serve as a tool to study
inflammation, the expression on regulator T cells might be used
as a novel treatment for inflammatory arthritis (56, 57).
CONCLUSION

In this study, the rapid inflammatory model was established, and
it could intuitively reflect the cytokine cascade of TNF-a and IL-
6. However, we only examined limited variety of cytokines, and
more detailed detection should be conducted in the future. This
inflammatory model will be helpful in discovering other cytokine
cascades, which should contribute to find new markers and
therapeutic targets of inflammatory arthritis.
Frontiers in Immunology | www.frontiersin.org 10
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