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Abstract: β-carotene is the most abundant provitamin A carotenoid in human diet and 

tissues. It exerts a number of beneficial functions in mammals, including humans, owing to 

its ability to generate vitamin A as well as to emerging crucial signaling functions of its 

metabolites. Even though β-carotene is generally considered a safer form of vitamin A due 

to its highly regulated intestinal absorption, detrimental effects have also been ascribed to 

its intake, at least under specific circumstances. A better understanding of the metabolism 

of β-carotene is still needed to unequivocally discriminate the conditions under which it 

may exert beneficial or detrimental effects on human health and thus to enable the formulation 

of dietary recommendations adequate for different groups of individuals and populations 

worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor 

in mammals with the aim of identifying the gaps in knowledge that call for immediate 

attention. We highlight the main questions that remain to be answered in regards to  

the cleavage, uptake, extracellular and intracellular transport of β-carotene as well as  

the interactions between the metabolism of β-carotene and that of other macronutrients 

such as lipids. 
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1. Introduction 

Carotenoids are C40 tetraterpenoid pigments that are found in plants, fungi and bacteria. Mammals 

obtain carotenoids predominantly through foods of plant origin [1]. In plants, these compounds 

accumulate in the plastids giving the characteristic bright yellow, red and orange color to many fruits 

and vegetables [1]. In plants, they function as structural and functional accessories of the 

photosynthetic apparatus, specifically to serve as light-harvesting pigments and protect against 

photooxidative stress [2–4]. Plant carotenoids also function as precursors of various hormones and 

play a role in attracting pollinators and other agents that contribute to seed dispersal [5]. 

Decades of investigations have clearly shown that carotenoids obtained through the diet serve 

several beneficial functions in mammals, including humans, owing to their antioxidant properties, their 

ability to generate vitamin A as well as due to the emerging crucial signaling functions of their 

metabolites [6–9]. On the other hand, evidence for potential harmful actions of these compounds on 

human health also exists [10,11]. A complete understanding of the metabolism of these compounds is 

still needed to unequivocally determine the conditions under which these compounds may exert either 

beneficial or detrimental effects on human health. This knowledge will ultimately generate dietary 

recommendations adequate to different groups of individuals and populations worldwide. 

The major emphasis of this review will be on β-carotene, the most abundant carotenoid found in 

human diet and tissues [12,13], even though references to other carotenoids important in human 

nutrition and health will be also made wherever appropriate. Although several studies have reported 

the beneficial effects of β-carotene due to its antioxidant properties [14–16], in this review we will 

address crucial functions performed by this carotenoid owing to its provitamin A activity. We will 

provide a general overview of the main aspects of β-carotene metabolism in mammals to highlight 

what we believe are the major questions still left to be answered in this field of research. 

2. Carotenoid Classification 

Based on their chemical structure, carotenoids can be classified as carotenes and xanthophylls. 

Carotenes (like β-carotene, α-carotene and β-cryptoxanthin) are non-oxygenated carotenoids that may 

be linear or possess cyclic hydrocarbons at one or both ends of the molecule. Xanthophylls (like  

lutein, zeaxanthin, meso-zeaxanthin, astaxanthin and canthaxanthin) are oxygenated derivatives of 

carotenes [13,17]. Some of the carotenoids also serve as precursors of vitamin A, thus allowing their 

classification in provitamin A and non-provitamin A carotenoids. Provitamin A carotenoids yield 

vitamin A and its metabolites (retinoids) upon enzymatic and non-enzymatic cleavage, with β-carotene 

being the most abundant and well-characterized precursor of vitamin A in the human diet [1,18].  

β-carotene contains 40 carbons with 15 conjugated double bonds and 2 β-ionone rings at both ends of 

the molecule [1,19,20] (Figure 1). These structural properties make β-carotene highly hydrophobic and 

non-polar in nature. Overall, all carotenoids are highly hydrophobic molecules. 
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Figure 1. Summary of β-carotene metabolism. Symmetric oxidative cleavage of β-carotene 

at the 15,15′ double bond by the enzyme β-carotene-15,15′-oxygenase (CMOI or BCMO1 

or BCO1) generates two molecules of retinaldehyde. Retinaldehyde can be oxidized into 

retinoic acid by members of the aldehyde dehydrogenase 1 family of enzymes (ALDH 1 or 

RALDH). Further oxidation of retinoic acid by enzymes that belong to the cytochrome 

P450 (CYP) 26 family converts retinoic acid into more polar compounds, including 4-oxo 

retinoic acid, which are believed to be transcriptionally inactive. Alternatively, different 

forms of alcohol dehydrogenase (ADH) from the MDR superfamily, and a variety of 

retinol dehydrogenases (RDH) from the SDR superfamily can reduce retinaldehyde to 

retinol, which can be further esterified into retinyl esters by the enzyme lecithin:retinol 

acyltransferase (LRAT). In addition, apocarotenals can be generated from β-carotene. The 

cleavage at the 9′,10′ double bond is catalyzed by β-carotene 9′,10′-oxygenase 2 (CMOII or 

BCDO2 or BCO2) and leads to the formation of β-apo-10′-carotenal (indicated by  

an asterisk) and β-ionone. Asymmetric cleavage at other double bonds may occur  

non-enzymatically or may be enzyme catalyzed. Some of the potential apocarotenals 

generated by asymmetric cleavage of β-carotene are depicted in the figure. The dashed 

arrow indicates that apocarotenals can be ultimately converted into one molecule of 

retinaldehyde. The mechanism of this conversion has not been completely elucidated. A 

chain shorthening mechanism has been proposed. However, recent reports from von 

Lintig’s and Harrion’s groups suggested that apocarotenoids can be cleaved by CMOI to 

yield retinaldehyde. 

 

3. β-Carotene as a Source of Retinoids 

Out of the several hundred carotenoids that have been identified in nature only a few are abundantly 

present in the human diet and detected in human bloodstream and tissues. These are α-carotene,  

β-carotene and β-cryptoxanthin (provitamin A carotenoids); and lycopene, lutein, zeaxanthin and 

meso-zeaxanthin (non-provitamin A carotenoids) [13]. 
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About 30% of the dietary vitamin A intake in western countries is contributed by β-carotene, but in 

the developing countries it represents the most abundant, and in some instances the sole source of 

vitamin A [9,21]. β-Carotene, predominantly found in nature as all-trans β-carotene, is the only 

carotenoid that can yield 2 molecules of retinaldehyde upon its symmetrical cleavage by the enzyme  

β-carotene-15,15′-oxygenase (CMOI or BCMO1 or BCO1) [13,22,23]. However, β-carotene can also 

be cleaved asymmetrically by the enzyme β-carotene-9′,10′-oxygenase (CMOII or BCDO2 or BCO2), 

to generate a β-ionone ring and apocarotenals, which can be ultimately converted to one molecule of 

retinaldehyde [13,22,23]. The mechanism of the latter conversion has not been completely elucidated 

(Figure 1). 

Retinaldehyde formed upon the cleavage of provitamin A can be oxidized by the action of enzymes 

of the retinaldehyde dehydrogenase family (RALDH or ALDH 1 family) to generate all-trans retinoic 

acid, the biologically active form of vitamin A [24]. Retinoic acid acts predominantly, even though not 

exclusively, as a transcriptional regulator [25,26]. It functions as a ligand for specific nuclear 

receptors, retinoic acid receptor (RAR) or retinoid X receptor (RXR) that form homo- or hetero-dimers 

to regulate the transcription of several hundred target genes [25,26]. When the production of retinoic 

acid in tissues exceeds certain limits, enzymes that belong to the family of cytochrome P450 can carry 

out its oxidative degradation to generate more polar compounds, like 4-hydroxy or 4-oxo retinoic acid, 

which are believed to be transcriptionally inactive [27] (Figure 1). 

Alternatively, retinaldehyde can be reversibly reduced to retinol [24], the alcohol form of vitamin 

A, which is most commonly referred to as “vitamin A” [28]. Various members of the retinol 

dehydrogenase family of enzymes catalyze this reaction [24]. Retinol can then be esterified mainly by 

the action of lecithin:retinol acyltransferase (LRAT) to generate retinyl ester, which is the storage  

form of vitamin A in various tissues, predominantly liver, but also lung, adipose tissues, heart and 

kidney [29–31] (Figure 1). LRAT constitutes about 90% of the catalytic activity utilized for retinyl 

ester formation, especially in the liver [28]. Indeed, mice lacking LRAT have no detectable retinyl 

ester stores in their livers [30,31]. Unlike LRAT, that uses lecithin as a fatty acid donor, another retinyl 

esterase utilizes acyl CoA to catalyze the formation of retinyl esters from retinol (acyl CoA:retinol 

acyltransferase, ARAT). Such retinyl esterase activity has been reported in rat liver microsomes [32], 

in the rat intestine [33], in the human intestinal Caco-2 cell line [34] and more recently in the mouse 

embryo [35]. However, the molecular identity of the enzyme that exhibits such activity is yet to be 

confirmed. The enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) has been shown to 

function as an ARAT that esterifies retinol to retinyl esters in murine skin [36] and intestine [37], 

under conditions in which dietary retinol exceeds the capacity of LRAT to esterify it. 

4. The β-Carotene Cleavage Enzymes 

In humans and mice, both β-carotene cleavage enzymes (CMOI and CMOII) are expressed in 

various adult tissues, including liver and adipose, as well as in the developing tissues such as placenta, 

yolk sac and the embryo [38–44]. These enzymes can carry out the bioconversion of β-carotene to 

vitamin A in situ, suggesting that β-carotene can serve as a local source of retinoids at various sites 

within the body. 
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β-carotene-15,15′-oxygenase (CMOI)–CMOI is a cytosolic enzyme with a strong substrate 

specificity, being able to interact only with carotenoids such as β-carotene with at least one  

non-substituted β-ionone ring [45]. CMOI is the main enzyme that cleaves β-carotene to generate 

vitamin A in vivo in adult tissues [46,47]. Indeed, when fed a diet containing β-carotene (at a final 

concentration of 1 mg/g of diet) as a sole source of vitamin A for 16 weeks, mice lacking CMOI 

(CMOI−/−) were unable to cleave dietary β-carotene and accumulated this carotenoid in large 

quantities in tissues, as seen by the orange color of the adipose tissues [46]. In accordance with this 

effect, vitamin A levels were significantly lower in various tissues including lung, kidney, testis and 

uterus of the knockout mice [46]. CMOI also plays a leading role in utilization of β-carotene by the 

developing tissues. Our laboratory generated a mouse strain lacking CMOI in the retinol-binding 

protein (RBP or RBP4) knockout background [44]. RBP is the sole specific carrier of retinol in the 

bloodstream where it is secreted from the liver to transport the stored vitamin A towards the periphery 

of the body [48]. The RBP−/− strain is an established model of embryonic vitamin A-deficiency [49]. 

β-Carotene supplementation of the CMOI−/−RBP−/− dams, carrying embryos expressing one copy  

of the enzyme (CMOI+/−RBP−/−), ameliorated the features of vitamin A deficiency of these  

embryos [44]. This study unequivocally confirmed that intact β-carotene can be taken up from the 

maternal circulation by the developing tissues and can be cleaved in situ by the action of embryonic 

CMOI to synthesize retinoids locally [44]. 

In the past few years, a role of CMOI in regulating lipid homeostasis has been proposed. This 

potential action is based on the observations that regardless of the vitamin A content of the diet, 

CMOI−/− mice accumulate lipids in the serum and liver, show altered hepatic expression of genes 

involved in fatty acid metabolism, and show increased mRNA levels of PPARγ-activated genes in 

visceral adipose tissue [46,50,51]. In addition, CMOI−/− mice are more susceptible to diet-induced 

obesity and develop a severe fatty liver phenotype accompanied by increased levels of serum free fatty 

acids and cholesteryl esters when maintained on a high-fat diet [46,50,51]. Further in vitro studies 

supported the hypothesis that retinoids, such as retinal and retinoic acid, formed upon the cleavage of 

β-carotene by CMOI may influence lipid metabolism in adipocytes by modulating PPARγ and RAR 

signaling pathways [50,51]. Nevertheless, it is still not clear whether CMOI affects lipid metabolism in 

various tissues in a similar manner and whether such action is independent of its ability to cleave  

β-carotene. Overall, the molecular mechanism underlying the proposed action of CMOI to modulate 

lipid metabolism has not been fully elucidated. In this regard, our laboratory has suggested that CMOI 

may perform alternative functions in addition to generating retinoids from β-carotene, at least during 

embryogenesis. We first showed that lack of this enzyme in the embryo led to reduced LRAT mRNA 

expression and activity, thus impairing retinyl ester formation [44]. More recently, we reported that 

embryonic CMOI influences the formation of fatty acyl esters derived not only from retinol, but also 

from cholesterol and diacylglycerols [35]. Long chain unsaturated fatty acid moieties of several lipid 

sub-classes were severely attenuated in the absence of embryonic CMOI. This observation points to an 

important and novel role of this enzyme in the homeostasis of specific lipids that are crucial for 

embryonic development, likely for the developing nervous system, where long chain polyunsaturated 

fatty acids are highly concentrated [52–54]. These data add an additional layer of complexity to the 

alternative function(s) that CMOI may play in the developing tissues and may provide additional clues 

to understand the cross-talk between lipid and carotenoid metabolism. 
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It remains to be elucidated whether this action of CMOI is restricted to the embryo or also takes 

place in adult tissues. Furthermore, it is important to understand the molecular mechanisms underlying 

this novel function of the symmetric cleavage enzyme. Based on several experimental findings, we 

proposed that multiple mechanisms could be involved. On the one hand, CMOI may influence the 

transcription of certain genes and may in turn affect the enzymatic activities of their corresponding 

proteins that catalyze the synthesis of retinyl ester, cholesteryl ester and triacylglycerols. Such candidate 

genes are LRAT, lecithin:cholesterol acyltransferase (LCAT), acyl CoA:cholesterol acyltransferase 1 

(ACAT1) and diacylglycerol O-acyltransferase 2 (DGAT2) [29,55–57]. On the other hand, CMOI may 

be more directly involved in these acyltransferase reactions acting, for example, as a lipid transporter. 

Overall, further studies are needed to elucidate the alternative function(s) of this enzyme in detail and 

its potential impact on human health. 

β-carotene-9′,10′-oxygenase (CMOII)–CMOII is a second mammalian carotenoid cleavage enzyme 

that was first characterized as being able to asymmetrically cleave β-carotene  in vitro and to cleave 

non-cyclic carotenoids like lycopene, both in vitro and in vivo [58,59]. Later, it was shown that CMOII 

has much broader substrate specificity with a higher preference to cleave carotenoids with 3-hydro-ionone 

rings, like xanthophylls lutein and zeaxanthin, and canthaxanthin with 4-oxo-substituted ring sites [60,61]. 

The contribution of the asymmetric cleavage by CMOII to generate vitamin A in vivo is thought to be 

minor compared to that of CMOI [22,60]. In the section below, we will discuss novel evidence in 

regards to this action recently reported by the von Lintig group [45]. 

CMOII has recently been shown to behave like an oxidative stress-regulated protein that protects 

mitochondria from the carotenoid-activated apoptotic cascade [60,61]. Therefore, CMOII seems to act 

as a carotenoid scavenger and a gatekeeper of apoptotic pathway in mitochondria, which is the site of 

its subcellular localization [60,61]. Data in the literature indicate that such scavenging action of CMOII 

could also be directed towards the synthetic retinoids like 4-oxo-fenretinide (4-oxo-4HPR) [61]. Whether 

other retinoids could be similarly scavenged remains to be addressed. We find the work by Hammerling 

and colleagues intriguing in this regard. These researchers have identified retinol as a crucial component 

of the mitochondrial PKCδ signalosome [62–64]. In its activated state, PKCδ signals to the pyruvate 

dehydrogenase complex for enhanced production of acetyl CoA from pyruvate, thus increasing both 

respiration and ATP synthesis. Within the signalosome, vitamin A acts as a co-factor for redox 

activation of PKCδ by functioning as an electron carrier, similar to ubiquinone in the electron transfer 

chain, by virtue of its conjugated double bond system [62–64]. Hammerling and colleagues proposed 

that handling electrons by this highly adaptable system of conjugated double bonds provides the 

central chemical feature underlying the physiological properties of retinoids and carotenes. Given 

these findings and the mitochondrial localization of CMOII, we wonder whether by scavenging 

carotenoids and/or other retinoids, CMOII can also participate in maintaining the function of the 

mitochondrial PKCδ signalosome and if so, what would be the impact of this action on human health.  

β-Apocarotenoids–it is well established, that in addition to the symmetric cleavage by CMOI, enzymatic 

and non-enzymatic cleavage of β-carotene at non-central double bonds can also occur [13]. The products 

of these reactions are β-apocarotenals and β-apocarotenones, whose biological functions in mammals 

have only begun to being elucidated. Shmarakov and colleagues reported the detection of various  

β-apocarotenals, including apo-8′-, apo-10′-, apo-12′-, and apo-14′-carotenal, in a mouse diet 

formulated using β-carotene beadlets and in the beadlets themselves [65]. It is now confirmed that  



Nutrients 2013, 5 4855 

 

β-carotene-containing animal diets and any dietary source of β-carotene also contains β-apocarotenoids [6]. 

Interestingly, Harrison and colleagues [66] demonstrated that β-apo-14′-carotenal, β-apo-14′-carotenoic 

acid, and β-apo-13-carotenone antagonized all-trans retinoic acid-induced transactivation of all three 

RARs, at nM concentrations, likely by directly competing with retinoic acid for high affinity binding 

to purified receptors. Finally, these β-apocarotenoids inhibited the retinoic acid-induced expression of 

retinoid responsive genes in HepG2 cells [66]. In a previous study, the same authors also showed that 

β-apo-13-carotenone, β-apo-14′-carotenal and β-apo-8′-carotenal antagonized the activation of RXRα 

by 9-cis retinoic acid, with various degrees of potency [67]. Moreover, Ziouzenkova and colleagues 

demonstrated that β-apo-14′-carotenal inhibited agonist-induced RXRα, PPARα and PPARγ activation 

very effectively and that this β-carotene metabolite decreased adipogenesis in a concentration 

dependent manner by regulating the expression of genes that are known targets of PPARγ in 3T3-L1 

cells [68]. Together these data strongly support the notion that specific β-apocarotenoids function as 

antagonists of nuclear receptors and specifically exert an anti-vitamin A activity. It has been proposed 

that this latter action of the β-apocarotenoids could be responsible of the detrimental effects of high 

doses (30 mg/day) of β-carotene in human clinical trials of cancer prevention, such as the CARET 

trial, which had to be stopped early due to the increased incidence of lung cancer in the supplemented 

smoker subjects [11]. Similarly, the ATBC study showed that pharmacological doses of β-carotene  

(20 mg/day) in combination with alpha-tocopherol (50 mg/day) did not prevent lung cancer in older 

heavy smoker men but rather increased lung cancer incidence in these subjects [10]. In both cases, the 

high dose of β-carotene, coupled with the increased oxidative stress of smoking, would lead to 

enhanced eccentric cleavage of β-carotene thus generating a mixture of cleavage products that would 

disrupt the retinoid signaling [66,69]. 

It has been proposed that the asymmetric cleavage of β-carotene enables the production of  

β-apocarotenoids [70]. However, the in vivo contribution of CMOII to this process has not been 

unambiguously demonstrated or ruled out. A very recent report from von Lintig and colleagues has 

started to shed light on this issue [45]. By using specific knockout mice for the two β-carotene 

cleavage enzymes, as well as in vitro experiments, these authors reported that CMOII catalyzes the  

in vivo production of a specific β-apocarotenoid, apo-10-carotenol, which can be esterified by LRAT. 

Apo-10-carotenol in turn can trigger RBP release and can be taken up by target cells via the  

RBP-specific receptor STRA6 [45]. Even more interestingly, the authors showed that apo-10-carotenol 

can be metabolized by CMOI to be converted to retinaldehyde, and that CMOI can cleave other  

β-apocarotenoids as well. This latter finding confirms an earlier literature report showing that the 

concentration of β-apocarotenoids in serum and tissues of CMOI−/− mice fed a diet supplemented 

with β-carotene tended to be greater than those of wild-type mice under a similar dietary regimen [65]. 

While these data were consistent with the elevated levels of CMOII expression reported in the  

CMOI−/− liver (increased β-apocarotenals formation through eccentric cleavage), they also raised the 

possibility that CMOI could cleave β-apocarotenoids [65]. In another recent report, Harrison and  

co-workers also demonstrated that CMOI catalyzes the oxidative cleavage of β-apo-8′-carotenal to 

yield retinaldehyde. However, the shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal,  

β-apo-14′-carotenal) did not show Michaelis-Menten behavior under the conditions tested [71]. Von 

Lintig and colleagues provided evidence that CMOII alone does not significantly contribute to  

β-carotene homeostasis in vivo and suggested that it is unlikely that the asymmetric cleavage enzyme 
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is a component of a pathway for the production of β-apocarotenoid signaling molecules that could 

interact with nuclear receptors [45]. In contrast, they proposed a coordinated action of CMOI and 

CMOII (“stepwise cleavage”) in generating retinoids from asymmetric provitamin A carotenoids such 

as β-cryptoxanthin [45]. These studies have paved the road to new areas of investigation. What is the 

relationship between the actions of the two cleavage enzymes in regards to their different subcellular 

localization, and to the consequent shuttling of carotenoids and their derivatives is certainly the next 

crucial question to answer. 

5. Intestinal Absorption of β-Carotene and Its Plasma Levels 

The small intestine is responsible for absorbing dietary lipids and lipid-soluble vitamins, including 

β-carotene, to subsequently deliver them to the peripheral tissues. Even though the human intestine 

abundantly expresses the main β-carotene cleavage enzyme CMOI, complete intestinal conversion of 

all of the ingested β-carotene to vitamin A practically does not occur. Indeed, about 17%–45% of the 

ingested β-carotene is released into the human circulation in its intact, uncleaved form [22,72,73].  

A variable enzymatic activity of CMOI associated with a number of polymorphisms in the CMOI gene 

seems to be responsible for the less efficient cleavage in some individuals [74–77]. In contrast, mice 

and other rodents are considered very efficient cleavers of ingested β-carotene in the intestine, and 

only upon intake of supra-physiological quantities, this provitamin A carotenoid can be detected in 

their circulation [78]. Other animal models such as Mongolian gerbils [79,80], domestic ferrets [81–83] 

and pre-ruminant calves [84–86] also absorb dietary β-carotene in its intact form and have plasma and 

tissue distribution of the provitamin A similar to humans. In humans, the concentration of intact  

β-carotene in the plasma is a good indicator of bioavailability of ingested β-carotene [87,88], which 

represents the amount of the provitamin A absorbed by the intestinal epithelia that is available for the 

use by the body. In addition to the above-mentioned polymorphisms in the CMOI gene, single nucleotide 

polymorphisms (SNPs) in genes involved in lipid metabolism, such as apolipoprotein B (apoB), A-IV 

(apoA-IV), scavenger receptor B I (SR-BI) and lipoprotein lipase (LPL), have also shown to affect the 

plasma levels of β-carotene and individual carotenoid status [89–93]. The proteins encoded by these 

genes are likely involved in controlling transport and uptake of β-carotene. In addition to genetic 

factors, the bioavailability of β-carotene seems to be also affected by the nature of food matrix, fat 

content of the diet, type of fat, digestibility of fat-soluble components in the diet, bile acids, interactions 

with other carotenoids and individual variations due to endogenous activity of the digestive enzymes [94]. 

Further details on the mechanisms of intestinal absorption of dietary β-carotene and the various factors 

that influence this process to ultimately regulate β-carotene bioavailability are provided by E. Reboul 

in a review article of this special issue [95]. 

6. Transport of β-Carotene in the Bloodstream 

It has long been established that β-carotene (like other carotenoids), being highly lipophilic and 

non-polar, is transported in the circulation in association with various classes of lipoproteins. It could 

likely be incorporated into the hydrophobic core of various lipoprotein particles such as chylomicrons 

and their remnants, VLDL, IDL and LDL along with other lipids such as cholesteryl esters and retinyl 
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esters [96–99]. These lipoproteins facilitate its transport from the intestinal barrier to various tissues of 

the body, as well as its transfer across tissues. 

Plasma response upon oral β-carotene dose was studied by Johnson and Russell in 1992 in male 

subjects [96]. They observed an early rise (3–6 h post consumption) in the β-carotene concentration in 

chylomicrons. These levels peaked at 6 h and dropped afterwards due to clearance from the circulation. 

β-Carotene in the VLDL fraction was elevated through 3 days post-consumption, due to hepatic  

re-secretion of these particles. Relatively low amounts of β-carotene were associated with IDL and the 

highest increase in β-carotene concentration was observed in LDL at 2–2.5 days post consumption. 

HDL particles also contained β-carotene at later time points [96]. The results from this study suggested 

that β-carotene can be incorporated into all the classes of lipoproteins to a varying degree and its 

incorporation at various time points indicates a dynamic exchange of this provitamin A carotenoid 

among various lipoproteins [96]. A similar study by Traber and colleagues [100] also showed the first 

appearance of the provitamin A carotenoid in chylomicrons upon oral β-carotene administration in  

9 human subjects. It was followed by a rise in β-carotene concentrations in VLDL at later time 

intervals. β-carotene was detected in the HDL only upon chylomicron clearance up to 11 h  

post-consumption, whereas its concentrations in the LDL increased for up to 48 h [100].  

Ribaya-Mercado and colleagues reported that upon β-carotene consumption, LDL fractions in the 

plasma of 10 women subjects showed the highest rise in β-carotene levels followed by a rise in HDL 

and VLDL fractions [101]. Overall, these findings are in agreement with earlier reports showing that 

about 60%–70% of intact β-carotene is transported in LDL in the human circulation [97]. In the fasting 

circulation, β-carotene is mainly associated with VLDL and LDL, the lipoproteins containing apoE 

and apoB moieties [99], and in the postprandial circulation β-carotene in the triglyceride-rich fraction, 

i.e., VLDL and chylomicrons, is considered a marker of intestinal β-carotene absorption [102]. 

Among other species, ruminants are considered a good model to study carotenoid transport as they 

are inefficient cleavers of intestinal carotenoids just like humans and have similar plasma and tissue 

distribution of carotenoids. Oral administration of β-carotene in calves followed by analysis of their 

plasma lipoproteins showed higher percentage of β-carotene associated with LDL [86]. Ashes  

et al. [103] reported HDL as the β-carotene carrier in the bovine circulation. We wonder what would 

be the distribution of β-carotene within lipoproteins in the mouse, given that this rodent has a higher 

prevalence of HDL in the bloodstream. Overall, studies in various mammalian species emphasize that 

β-carotene can be transported in association with various lipoproteins in the circulation, even though 

different lipoproteins may preferentially transport this provitamin A carotenoid in different species. 

This possibility raises one more time the issue of identifying the most appropriate model to study  

β-carotene transport in mammalian systems. 

7. Tissue Uptake of β-Carotene 

β-carotene can be acquired from the bloodstream by various tissues within the body, to be stored or 

be readily metabolized. In mammals, liver is a major organ that accumulates large quantities of  

β-carotene, followed by adipose tissue, kidney, skin and lung [104,105]. However, other tissues 

including adrenal gland, testes, and mammary gland can also store this provitamin A carotenoid [106]. 

In addition, β-carotene is also detected in placenta, yolk sac and embryo [44,107]. Unlike other 
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carotenoids, such as lutein, zeaxanthin and meso-zeaxanthin that exclusively accumulate in the 

macular region of the retina [108,109], β-carotene has a much broader distribution within the body that 

correlates with the wide expression of the cleavage enzymes in various tissues. Current knowledge in 

regards to the mechanism of tissue uptake of β-carotene in vivo in mammals is still rather scarce and 

calls for further studies. 

Since β-carotene and other carotenoids are transported in the circulation in association with 

lipoproteins, lipoprotein receptors are the proteins of interest that could mediate the tissue uptake of 

these micronutrients. The uptake of dietary β-carotene by the enterocytes has been discussed in detail 

by E. Reboul [95] in this special issue. Briefly, we would like to highlight that evidence indicates SR-BI, 

the specific receptor for HDL [110], as a key player in the intestinal absorption of β-carotene [92,111–113]. 

Intestinal uptake and β-carotene conversion into retinoids have been shown to be regulated by a 

feedback mechanism depending upon the vitamin A status. Indeed, both these processes are attenuated 

when dietary vitamin A is in excess to prevent accumulation of toxic levels of retinoids [112]. At the 

molecular level, this response is mediated by ISX, an intestinal specific transcription factor that 

negatively regulates the expression of both CMOI and SR-BI [112]. ISX expression is upregulated by 

retinoic acid [114,115]. Thus, when intestinal retinoic acid levels are high, as in the case of excessive 

intake of vitamin A, ISX levels increase to downregulate the expression of SR-BI and CMOI [112]. We 

refer the reader to the above-mentioned review [95] for additional information on the potential role of 

other key players in lipid metabolism in the intestinal uptake of β-carotene and other carotenoids. The 

main evidence for the involvement of such candidate proteins, including CD36, apolipoproteins B, E 

and CIII, LPL and ABC transporters, comes from in vitro studies or from human studies that have 

identified gene polymorphisms linked to different levels of circulating carotenoids. The molecular 

proofs of the unequivocal role of these other lipid transporters in modulating β-carotene uptake are  

still missing. 

Even though it is generally recognized that the liver can take up various carotenoids, including  

β-carotene, to metabolize these molecules or re-secrete them in VLDL, whether the lipoprotein 

receptors on liver parenchymal cells such as SR-BI, low-density lipoprotein receptor (LDLr) or LDLr 

related protein-1 (LRP1) mediate carotenoid uptake has not been studied. In particular, LDLr aids in 

the endocytosis of the majority of lipoproteins in the circulation due to its high affinity to both apoB 

and apoE containing lipoproteins [116]. Thus, we speculate that LDLr could play an important role in 

the uptake of β-carotene, at least in the liver. 

In a recent report from our laboratory, we provided evidence that LRP1 and possibly LPL, the 

enzyme that hydrolyzes triglycerides within lipoproteins, may mediate the placental uptake of intact  

β-carotene from the maternal circulation [107]. A single β-carotene supplementation by intraperitoneal 

injection at mid-gestation of wild-type dams, maintained on a regimen of copious vitamin A intake  

(29 IU vitamin A/g diet), induced a marked reduction of placental mRNA levels of LRP1. A similar 

effect was not observed in maternal liver, suggesting a tissue-specific response to β-carotene availability. 

LRP1 has high affinity for apoE-containing particles, such as VLDL, chylomicrons and their remnants, 

indicating that at least under this experimental condition, β-carotene may be predominantly incorporated 

in apoE-containing lipoproteins and that LRP1 may mediate its uptake at the placental barrier. We 

proposed that the down-regulation of LRP1 mRNA expression may result in a potential feedback 

mechanism that prevents the placenta from acquiring excessive maternal circulating β-carotene when 
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the dams are on a regimen of copious vitamin A intake [107]. In the same report, we also analyzed 

placental uptake of β-carotene in dams lacking LRAT and RBP (LRAT−/−RBP−/−) maintained on a 

regimen of copious vitamin A intake, as indicated above. Under the above-mentioned dietary conditions, 

LRAT−/−RBP−/− mice can be considered a model of marginal vitamin A deficiency due to their 

extremely low concentration of hepatic retinoid stores and serum retinol-RBP that make them highly 

susceptible to developing signs of vitamin A deficiency [117]. In this model, the enhanced accumulation 

of β-carotene in the placenta was accompanied by the upregulation of placental LPL mRNA, suggesting 

a potential critical role of LPL in mediating placental uptake of the provitamin A carotenoid, at least in 

response to a tenuous vitamin A status [107]. Intriguingly, placental LPL has already been shown to 

facilitate uptake of postprandial retinoids [118]. 

Overall, more studies are needed to elucidate the tissue-specific mechanisms of uptake and subsequent 

metabolism of β-carotene. 

8. Intracellular Trafficking of β-Carotene 

Very little is known in regards to how β-carotene is transported within the mammalian cells, despite 

the importance of this process that could influence intracellular accumulation and metabolism of  

this provitamin A carotenoid. Most of the current knowledge in this area pertains to the intracellular 

trafficking of carotenoids other than β-carotene and even in this case, many questions remain 

unanswered. Bernstein and colleagues have devoted considerable efforts in understanding the 

intracellular trafficking of lutein and zeaxanthin in the macula of the human eye where these 

carotenoids are highly concentrated [108,109]. Uptake of lutein and zeaxanthin circulating in the 

bloodstream should occur first in the retinal pigment epithelium (RPE), where SR-BI could likely be 

involved. Very recent data suggest that the interphotoreceptor retinoid-binding protein (IRBP), that 

shuttles retinoids from the RPE to the retina, can also facilitate the transfer of xanthopylls, even though 

the authors did not completely rule out a direct delivery of lutein and zeaxanthin to the macula via the 

retinal circulation [119]. In the retinal cells, CD36 could mediate the uptake of these carotenoids, but 

specific binding proteins for zeaxanthin (Glutathione S-transferase P1 isoform, GSTP1; [120]) and 

lutein (StARD3, a member of the steroidogenic acute regulatory domain -StARD- protein family; [121]) 

working in concert with tubulin [122,123] ultimately seem to facilitate the selective delivery and 

accumulation of these carotenoids within the macula. Similar mechanisms are employed by 

invertebrates, such as the silkworms, to deliver lutein to the silk gland where a specific cell surface 

uptake protein, Cameo2, and a specific carotenoid binding protein, CBP, are needed [124,125]. 

9. Conclusions 

Although this year marks the century of vitamin A research, there are still various aspects of the 

mammalian metabolism of its main precursor, β-carotene, which are not fully understood. β-Carotene 

bioconversion by its cleavage enzymes has been studied extensively. Interesting recent studies have 

shown that the expression and activity of its main cleavage enzyme CMOI in the intestine are 

regulated by diet and genetics. Investigations from our laboratory revealed that in addition to its 

cleavage activity, this enzyme may contribute to retinyl as well as cholesteryl ester formation in mouse 

embryos. Whether this effect is tissue specific and whether CMOI exerts this function by a direct 



Nutrients 2013, 5 4860 

 

involvement in the esterification process or by acting as a facilitator of it are yet to be elucidated. On 

the other hand, the metabolic pathway of vitamin A formation by asymmetric β-carotene cleavage due 

to CMOII is not fully understood. In addition, β-apocarotenoids, the products of such cleavage are 

recently shown to modulate nuclear receptor signaling. It needs to be confirmed whether antagonistic 

activity of β-apocarotenoids to RXR signaling is responsible for detrimental effects of high doses of  

β-carotene as observed in the CARET study. It also remains to be explained whether the two β-carotene 

cleavage enzymes interact and whether the nature of such interaction is synergistic or discordant. 

Furthermore, the mechanisms of uptake of β-carotene have been studied mainly in the intestine and 

SR-BI has been shown to be the mediator of such process. It is not fully known whether the uptake of 

intact β-carotene from the circulation in other tissues is a protein mediated process and if so, which are 

the key proteins involved in such process. Studies from our laboratory have suggested a role of LRP1 

and LPL in mediating placental uptake of this carotenoid from the circulation, at least under certain 

experimental conditions. However, the molecular details of the receptor mediated β-carotene uptake 

need to be investigated.  

Current knowledge regarding intracellular carotenoid trafficking is limited to xanthophylls and is 

virtually missing in regards to β-carotene. Some studies have speculated a protein facilitated transport 

of β-carotene in the cells, however the existence of such a transport mechanism needs to be 

unequivocally confirmed.  

Filling the gaps in knowledge highlighted in this review will enable a thorough understanding of the 

metabolism of β-carotene in mammals and ultimately provide the appropriate tools to formulate 

adequate dietary recommendations that will enhance the beneficial effects and reduce the detrimental 

consequences of β-carotene intake throughout the life cycle. 
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