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Abstract

Recent studies have proposed that one can summarize brain activity into

dynamics among a relatively small number of hidden states and that such an

approach is a promising tool for revealing brain function. Hidden Markov

models (HMMs) are a prevalent approach to inferring such neural dynamics

among discrete brain states. However, the impact of assuming Markovian

structure in neural time series data has not been sufficiently examined. Here,

to address this situation and examine the performance of the HMM, we com-

pare the model with the Gaussian mixture model (GMM), which is with no

temporal regularization and thus a statistically simpler model than the

HMM, by applying both models to synthetic time series generated from

empirical resting-state functional magnetic resonance imaging (fMRI) data.

We compared the GMM and HMM for various sampling frequencies, lengths

of recording per participant, numbers of participants and numbers of inde-

pendent component signals. We find that the HMM attains a better accuracy

of estimating the hidden state than the GMM in a majority of cases. How-

ever, we also find that the accuracy of the GMM is comparable to that of the

HMM under the condition that the sampling frequency is reasonably low

(e.g., TR = 2.88 or 3.60 s) or the data are relatively short. These results sug-

gest that the GMM can be a viable alternative to the HMM for investigating

hidden-state dynamics under this condition.

Abbreviations: EM, expectation–maximization; EPI, echo planar imaging; FOV, field of view; fMRI, functional magnetic resonance imaging; GMM,
Gaussian mixture model; HCP, Human Connectome Project; HMM, hidden Markov model; ICA, independent component analysis; MEG,
magnetoencephalography; PCA, principal component analysis; ROI, region of interest; TR, repetition time.
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1 | INTRODUCTION

Brain dynamics are a product of large-scale networks
realized by interaction of functionally specialized regions
in the brain (Deco et al., 2015; Fox et al., 2005; Raichle
et al., 2001; Sporns, 2011). Such dynamics have
been considered to underpin the integration of
information (Tononi et al., 1998), cognitive functions
(Bressler & Menon, 2010) and their impairments
(i.e., neuropsychiatric disorders) (Menon, 2011). Under-
standing dynamical coordination of brain regions neces-
sitates data-analysis methods that reduce the dimension
of large-scale neural data, which are often provided in
the form of multivariate time series, without losing much
information. Widely used examples include independent
component analysis (ICA) (Calhoun & Adalı, 2012) and
network analysis (Bassett & Sporns, 2017; Sporns, 2011).

One approach to investigating integrated dynamics of
multivariate time-varying neural signals is to assume a
relatively small number of latent states and summarize
the multidimensional brain activity data at each time
point into one of these states. One can estimate time
series of the latent state by, for example, the hidden
Markov models (HMMs) (Baker et al., 2014; Brookes
et al., 2018; Nielsen et al., 2018; Ryali et al., 2016; Taghia
et al., 2017; Vidaurre, 2021; Vidaurre, Abeysuriya,
et al., 2018; Vidaurre et al., 2016; Vidaurre et al., 2017;
Vidaurre, Hunt, et al., 2018; Warnick et al., 2017),
dynamic functional connectivity (Allen et al., 2014;
Calhoun et al., 2014; Nielsen et al., 2018) and energy
landscape analysis (Ezaki et al., 2017; Watanabe, Hirose,
et al., 2014; Watanabe, Masuda, et al., 2014). This strategy
allows us to continue to work on the same time domain
as the original data and therefore to, for example,
compute transition rates between the latent states and
interpret state transition events, rather than to reduce the
data to static measures (e.g., functional connectivity) or
transform the data to the frequency domain implicitly
assuming stationarity of the time series. State-transition
dynamics have been reported to be closely related to
various functions of the brain, including executive
function (Ezaki et al., 2018), decision-making (Taghia
et al., 2018), and to psychiatric conditions such as autism
(Watanabe & Rees, 2017) and schizophrenia (Kottaram
et al., 2019). For example, Ezaki et al. (2018) analysed
resting-state functional magnetic resonance imaging
(fMRI) data obtained from healthy humans using the
energy landscape analysis. They showed that the ease of

state transitions between synchronized activity patterns
of specific regions of interest (ROIs) explained age-related
changes in executive functions. Taghia et al. (2018)
applied a Bayesian switching linear dynamical systems
model to fMRI data obtained from participants
performing an n-back working memory task. They found
a task-specific hidden state and dynamical switching path
of the estimated hidden states. Using the energy
landscape analysis, Watanabe and Rees (2017) showed
that high functioning autistic adults had atypically stable
brain dynamics with lower transition rates among
different brain systems and longer dwelling time and that
such over-stability was predictive of both their symptom
severity and unique cognitive skills. For resting-state
fMRI data obtained from individuals with schizophrenia,
Kottaram et al. (2019) reported aberrant transition
dynamics among latent states estimated by an HMM.
Relevance of hidden states to task-related data in a super-
vised setting has also been reported. Vidaurre, Hunt,
et al. (2018) found hidden states representing task-related
brain states using magnetoencephalography (MEG) data
during a button press task.

Among these methods, the HMMs have been widely
used for studying fMRI (Ryali et al., 2016; Vidaurre, 2021;
Vidaurre et al., 2017; Vidaurre, Hunt, et al., 2018;
Warnick et al., 2017) and MEG (Baker et al., 2014;
Brookes et al., 2018; Taghia et al., 2017; Vidaurre,
Abeysuriya, et al., 2018; Vidaurre et al., 2016; Vidaurre,
Hunt, et al., 2018) data recorded from the human brain.
The HMM is a model comprising a set of probability dis-
tributions of the observables each of which corresponds
to a latent (i.e., hidden) state and the transition probabili-
ties between the pairs of latent states. By assumption, the
state-transition dynamics of an HMM are Markovian,
that is, with no memory effect longer than a single time
step. HMMs have been useful in modelling neural
dynamics for the following reasons. First, they can be
applied to relatively high-dimensional time series (Baker
et al., 2014; Brookes et al., 2018; Vidaurre, Abeysuriya,
et al., 2018; Vidaurre, Hunt, et al., 2018). Second, they
can detect changes in signals without delay in the form
of changes in the latent state, which is not straightfor-
ward with dynamic functional connectivity calculated
with sliding time windows (Vidaurre, 2021; Vidaurre,
Abeysuriya, et al., 2018).

The HMM modelling is based on the implicit assump-
tion that the stochastic rule of state transitions depends
on the last state and not on the states in the further past.
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In fact, the practical impacts of this temporal assumption
have not been well studied at least with fMRI data. The
potential deviation of the data from the assumed
Markovian temporal structure may be detrimental to the
HMM modelling.

The same analysis pipeline to infer hidden states of
the time series data (Figure 1) can be realized by a simple
static mixture model that does not impose any temporal
(HMM-like) regularization. Mixture models have been
used in neuroimaging research for detecting activation of
brain regions (Everitt & Bullmore, 1999; Hartvig &
Jensen, 2000) and clustering them into larger ROIs
(G�orriz et al., 2009). In Everitt and Bullmore (1999) and
Hartvig and Jensen (2000), for example, a mixture model

with two probability distributions corresponding to acti-
vation and deactivation of each voxel, respectively, was
used to classify the state of the voxels. The mixture
models have also been used for capturing the state transi-
tions in neuroimaging data. For example, Nielsen
et al. (2018) used mixture models for clustering the
dynamic functional connectivity patterns. Vidaurre (2021)
proposed mixture models for the principal component
analysis (PCA) (as well as their HMM variants) to capture
dynamic functional connectivity. Because mixture
models do not assume any temporal structure, they are
not influenced by the sampling frequency and therefore
may serve as useful baseline models with which to assess
the efficiency of fitting HMMs. If state transitions in the

F I GURE 1 Overview of the estimation of hidden-state dynamics using Gaussian mixture models (GMMs) and hidden Markov models

(HMMs). (a) A multivariate time series in discrete time such as functional magnetic resonance imaging (fMRI) data. (b) One fits a GMM

with two components to the multivariate time series data shown in (a). The case of N = 2 is schematically shown. The estimation of the

GMM enables us to associate one of the hidden states (shown in colour) to the data point at each discrete time, xt. Using the estimated

GMM, one can estimate the time course of the hidden state. (c) One fits an HMM with two hidden states to the same data. In general, how

the data points are clustered into two hidden states is different between the GMM and HMM. Using the estimated HMM, one can estimate

the time course of the hidden state
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given data are considerably influenced by the current
state, an HMM is expected to perform better than a mix-
ture model. In contrast, if state transitions do not depend
on the current state, mixture models may outperform
HMMs because of their relative simplicity. In general,
complex models may overfit to the data, and their model
estimation algorithms are often computationally costly
and may end up converging to local optima.

On these grounds, we compare the HMM and Gauss-
ian mixture model (GMM) in the present study. We used
the GMM because, in HMMs applied to neuroimaging
data, the Gaussian distribution is widely used as the
probability distribution conditioned on the hidden state
(Baker et al., 2014; Brookes et al., 2018; Ryali et al., 2016;
Taghia et al., 2017; Vidaurre, Abeysuriya, et al., 2018;
Vidaurre et al., 2016; Vidaurre et al., 2017; Vidaurre,
Hunt, et al., 2018; Warnick et al., 2017). Then, if we
ignore state-transition dynamics as described by a hidden
Markov process, the distribution of signals as estimated
by the fitting of an HMM is a GMM.

We compare HMMs and GMMs on synthetic data sets
that we generate from human resting-state fMRI data.
Empirical resting-state fMRI data vary in the time resolu-
tion, corresponding to the TR (i.e., repetition time), the
length of the recording time (i.e., number of image vol-
umes) and the number of participants. Therefore, we
examine how these three factors influence the perfor-
mance of the HMMs and GMMs in estimating the hidden
states of fMRI signals over time. We show that, while the
HMM outperforms the GMM when the sampling fre-
quency is high (e.g., TR = 0.72 s), the advantage of the
HMM diminishes as the sampling frequency decreases
(i.e., larger TR). In addition, when the recording time is
short (i.e., a small number of volumes or participants),
the GMM more robustly estimates the hidden states than
the HMM especially when the dimension of the signal is
large. Our results provide quantitative guidance on when
HMMs work better than GMMs or vice versa.

2 | MATERIALS AND METHODS

An overview of the analysis pipeline is shown in
Figure 1.

2.1 | Gaussian mixture model

Assume that there are tmax observations of N-dimensional
data, xt (t = 1, …, tmax) (Figure 1a). Our GMM assumes
that each observation, xt, is generated from one of the
two Gaussian distributions (Figure 1b). We set the num-
ber of states to two for simplicity. The probability density

of the observed data conditioned on the state is given by
N μst ,Σst

� �
, where st� {1, 2} is the hidden (i.e., latent)

state, N denotes a N-dimensional multivariate Gaussian
distribution, and μst and Σst are the mean and covariance
matrix of the Gaussian distribution under hidden state st,
respectively. The marginal probability distribution of xt is
given by

P xtð Þ¼
X2
s¼1

πsN xtjμs,Σsð Þ, ð1Þ

where πs is the probability that hidden state s is taken.
One estimates πs, μs and Σs (s=1, 2) by maximizing the
log-likelihood function given by

lnP x1,x2,…,xtmax π,μ,Σj Þ ¼
Xtmax

t¼1

ln
X2
s¼1

πsN xtjμs,Σsð Þ
( )

:

 
ð2Þ

We used the expectation–maximization (EM) algo-
rithm, which is typically used for maximizing
Equation (2) (Dempster et al., 1977; Lindsay, 1995).

Then, the time course of the hidden state, bst (t= 1, …,
tmax), given the observations is estimated by

bst ¼ argmax
s

P sjxtð Þ¼ argmax
s

bπsN xt,bμsjbΣs

� �
P2

r¼1bπrN xt,bμrjbΣr

� � , ð3Þ

where bπs,bμs and bΣs are the maximum likelihood estima-
tor obtained by the EM algorithm.

We analyse the data using the GMM package in
scikit-learn (Pedregosa et al., 2011). We used the default
setting of scikit-learn for determining the initial condi-
tions for the EM algorithm.

2.2 | Hidden Markov model

We consider HMMs with Gaussian components
(Ephraim & Merhav, 2002) (Figure 1c). The model
assumes that each of the N-dimensional observations xt
(t = 1, ..., tmax) is generated from one of the two Gaussian
distributions, as in GMMs, and that st (t = 1, � � �, tmax)
obeys first-order Markovian dynamics given by

P stjs1, � � �,st�1ð Þ¼P stjst�1ð Þ: ð4Þ

To estimate the HMM, we used an EM algorithm
known as the Baum–Welch algorithm (Baum et al., 1970).
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We used the Viterbi algorithm (Viterbi, 1967) to estimate
the time course of the hidden state given the observations.
We estimated HMMs for our data using a python package
hmm-learn (https://hmmlearn.readthedocs.io/), which
was originally developed as part of scikit-learn
(Lindsay, 1995). We used the default setting of hmm-learn
for determining the initial conditions for the EM
algorithm.

The EM algorithm does not guarantee the exact opti-
mization due to local minima. Therefore, for both GMM
and HMM, we carried out the optimization procedure
10 times and adopted the model that attained the largest
likelihood. In the present study, all the estimations
successfully converged.

2.3 | Resting-state fMRI data

We used ‘S1200 extensively processed rfMRI data’ pro-
vided by the Human Connectome Project (HCP, https://
www.humanconnectome.org/) (Van Essen et al., 2012).
The data collection was approved by the local ethics com-
mittees that participated in HCP, and all participants pro-
vided written consent. The data set includes the group
ICA data for 1003 participants (22–35 years old,
534 females). In this section, we briefly describe the
preprocessing procedure to obtain this data set. See Smith
et al. (2013), Griffanti et al. (2014) and Salimi-Khorshidi
et al. (2014) for the details of the preprocessing.

The participants completed four sessions of 15-min
echo planar imaging (EPI) sequence on a 3T Siemens
Connectome-Skyra (TR = 0.72 s, TE = 33.1 ms, 72 slices,
2.0 mm isotropic; field of view (FOV) = 208 � 180 mm)
and a single T1-weighted sequence (TR = 2.4 s,
TE = 2.14 ms, 0.7 mm isotropic, FOV = 224 � 224 mm).
Each session yielded 1200 volumes (i.e., observations) of
EPI images. The fMRI data were first minimally
preprocessed according to Smith et al. (2013). Then, arte-
facts were removed using ICA + FIX (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014) and inter-
participant registration of cerebral cortex using MSMAII
(Glasser et al., 2016; Robinson et al., 2014). Then, the
group ICA was performed by the MELODIC’s incremen-
tal group PCA algorithm (Beckmann & Smith, 2004;
Hyvärinen, 1999). The group ICA was carried out for
dimensions (i.e., number of independent components)
N = 15, 25, 50, 100, 200 and 300. We did not use group-
ICA data generated with N=100, 200 and 300 because of
high computational cost for estimating the models used
in the present study.

We fed the fMRI data to algorithms for estimating
GMMs or HMMs after concatenating the observed signals
obtained from all the sessions from a single participant

into one sequence and then the sequences obtained from
all the participants into one sequence. In the
concatenated data, the final volume of Sessions 1, 2 and
3 is followed by the first volume of Sessions 2, 3
and 4, respectively, although different sessions are not
causally related to each other. In practice, the influence
of the concatenation on the estimation of the HMM is
considered to be negligible because each session is suffi-
ciently long (i.e., 1200 volumes) (Vidaurre, Abeysuriya,
et al., 2018; Vidaurre et al., 2017).

2.4 | GMM-based synthetic time series

We prepared synthetic fMRI data with an underlying
hidden-state dynamics for each of N (= 15, 25 and 50) as
follows. First, we fit the GMM with two hidden states to
the entire N-dimensional fMRI data that are composed of
1200 volumes � 4 sessions � 1003 participants. As a
result, we obtained the mean vector and covariance
matrix of each Gaussian distribution, which we denote
by bμGMM

k and bΣGMM
k (k= 1, 2) and the probability of

appearance of each state, πk (see Equation 1). Then, by
maximizing the likelihood given by Equation (2) given
the estimated model, we estimated the hidden states for
the first session (but not for the second to fourth sessions)
of the fMRI recording, which we denote by bsGMM

p,t � 1,2f g
(with t= 1, …, 1200), for each participant p (with p= 1,
…, 1003).

Second, using bsGMM
p,t , bμGMM

k and bΣGMM
k (k=1, 2), we

generated N-dimensional (= 15, 25 or 50) synthetic
signals, xGMM

p,t for p= 1, …, 1003 and t= 1, …, 1200,
that is,

xGMM
p,t �N bμGMM

k ,bΣGMM
k

� �
, k¼bsGMM

p,t : ð5Þ

Then, we subsampled the signals generated by
Equation (5) to prepare synthetic signals with typical
lengths of a resting-state fMRI recording, that is, T = 5,
10 and 14.4 min, npat participants and a sampling fre-
quency of TR = 0.72, 1.44, 2.16, 2.88 and 3.60. Note that
T = 14.4 min is the original length of a single session in
the HCP data. We used the subsampled data to test the
performance of the GMM and HMM.

We generated synthetic fMRI data with the given TR
value and the number of participants, npat, by
subsampling as follows. Consider the case T = 10 min.
First, for each participant p (with p = 1, …, npat), the sam-
ples xGMM

p,t (t= 1, 2, …, 833) with the associated hidden
state labels bsGMM

p,t provide test data with TR= 0.72 s. Note
that, given TR= 0.72 s, time t = 833 corresponds to
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10min starting from the first volume, that is, t = 1. To
generate test data with TR= 1.44 s, we use subsampled
data xGMM

p,1 ,xGMM
p,3 ,xGMM

p,5 ,…,xGMM
p,833 , which is of length 416.

Similarly, the subsampled series xGMM
p,1 ,xGMM

p,4 ,…,xGMM
p,832

defines synthetic data of length 278 with TR= 2.16 s; the
series xGMM

p,1 ,xGMM
p,5 ,…,xGMM

p,833 defines synthetic data of
length 209 with TR= 2.88 s; and the series
xGMM
p,1 ,xGMM

p,6 ,…,xGMM
p,831 defines synthetic data of length

167 with TR= 3.60 s. We apply the same subsampling
method to generate synthetic data with a range of TR
when the assumed recording time is different (i.e., T= 5
or 14.4min). For example, if T= 5min, which corre-
sponds to t = 416, the data for TR= 1.44 s are given by
xGMM
p,1 ,xGMM

p,3 ,…,xGMM
p,416 .

2.5 | HMM-based synthetic time series

We also used another set of synthetic time series data,
which we call the HMM-based synthetic time series.
Similarly to the generation of the GMM-based synthetic
time series, we fitted the HMM with two hidden states
and the corresponding Gaussian distributions to
the entire fMRI data composed of 1200 volumes � 4
sessions � 1003 participants. The fitting yielded the mean
vector and covariance matrix of the N-dimensional
Gaussian distribution corresponding to each state, which

we denoted by bμHMM
k and bΣHMM

k (k = 1, 2), the transition
rates between the two hidden states, and the probability
distribution of the initial state. Using the estimated HMM
and Viterbi algorithm (Viterbi, 1967), we estimated the
hidden state labels for the first session of each partici-

pant, which we denote by bsHMM
p,t (with p= 1, …, 1003 and

t= 1, …, 1200). The rest of the procedure is same as that
for the GMM-based synthetic time series.

3 | RESULTS

3.1 | Hidden states estimated from the
fMRI data

First, we compared between the GMM and HMM the
Gaussian distributions and the time courses of the hidden
state inferred from the empirical fMRI data. The
Gaussian distributions estimated for the GMM, parame-
trized by bμGMM

k and bΣGMM
k (with k = 1, 2), and those for

the HMM, parametrized by bμHMM
k and bΣHMM

k , were
similar to each other, but the means estimated by the
HMM were farther from 0 than those estimated by the
GMM (Figure 2a). Figure 2b compares the estimated time
courses of the hidden state for a single participant

between the GMM and HMM. Although the hidden state
is the same between the GMM and HMM in a majority of
times (77% for N = 15; 77% for N = 25; 82% for N = 50),
the GMM yielded more frequent state flips (the fraction
of times at which the state flipped was 0.17 for N = 15,
0.19 for N = 25 and 0.17 for N = 50) than the HMM (0.05
for N = 15; 0.04 for N = 25; 0.04 for N = 50). Consistent
with this observation, the probability distribution of the
duration of each hidden state has a higher mass at small
values for GMMs than HMMs (Figure 2c). Figure 2c
also indicates that the distribution of the duration of each
hidden state has a peak for the HMM but not for
the GMM.

In the next subsections, we compare the performance
of the GMM and HMM using the two types of synthetic
data (i.e., the GMM-based synthetic time series and the
HMM-based synthetic time series).

3.2 | Results for the GMM-based
synthetic time series

We fit the GMM and HMM to GMM-based synthetic time
series with various TR values, three values of the record-
ing time per participant (i.e., T), various numbers of par-
ticipants pooled (i.e., npat) and three values of N and
compared the accuracy of fitting. Note that the true hid-
den state at each time is available in this numerical
experiment. We defined the accuracy of estimation as the
fraction of times at which the estimated state is the same
as the true state. We show the accuracy of estimation for
T = 10 min in Figure 3. For both GMM and HMM, the
accuracy was low for a small number of participants
(npat < 10), increased as npat increased and saturated
before npat ≈ 20 at > 83%. In general, more participants
were required for attaining a given accuracy value when
N is larger or the sampling frequency is lower (i.e., the
TR is larger). For the HMM but not for the GMM, the
accuracy increased as the sampling frequency increased.
When the sampling frequency is high (i.e., small TR) and
npat is relatively large, the HMM outperformed the GMM
(Figure 3a). However, this advantage of the HMM dimin-
ishes when the TR is large, npat is small or N is large
(Figure 3a–e). For example, when N=25 and TR = 2.88 s,
the GMM outperformed the HMM for 1 ≤ npat ≤ 11
(Figure 3e).

For T = 5 and 14.4 min, the results were qualitatively
the same as those for T = 10 min (Figures S1 and S2).
Because T is proportional to the length of the data as npat
is, the accuracy is higher for a larger T value. It should
also be noted that, with T = 5 min, the GMM out-
performed the HMM in wider parameter regions than
with T = 10 min.
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3.3 | Results for the HMM-based
synthetic time series

We applied the same analysis as that in the previous
section to HMM-based synthetic time series. The accu-
racy of estimating the true hidden state is shown in
Figure 4 for the GMM and HMM estimators, various
values of TR, T = 10 min, various values of npat and three
values of N. The results were similar to those obtained

for the GMM-based synthetic time series. When TR is
large, N is large and npat is small, the accuracy of estima-
tion for the GMM was comparable to that for the HMM.
Otherwise, the HMM outperformed the GMM. With the
HMM-based synthetic time series, the HMM yielded a
higher accuracy than the GMM in a wider parameter
region than with the GMM-based synthetic time series.

We also carried out the same analysis with T= 5 and
14.4 min to confirm that the results were qualitatively

F I GURE 2 Comparisons between the Gaussian mixture model (GMM) and hidden Markov model (HMM) fitted to the functional

magnetic resonance imaging (fMRI) data. (a) Mean vectors (bμGMM
k vs. bμHMM

k ) and covariance matrices (bΣGMM
k vs. bΣHMM

k ). A circle represents

each entry of the mean vector or covariance matrix in the estimated GMM and HMM. The solid lines represent the diagonal. (b) A sample

time course of the estimated hidden state labels, bsGMM
p,t andbsHMM

p,t , for 10min and a single participant. (c) Distribution of the duration of a

hidden state, computed based on the entire sequences of the hidden state, bsGMM
p,t andbsHMM

p,t (1≤ p≤ 1003,1≤ t≤ 1200)
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the same as those with T = 10 min and that the accuracy
was larger for a larger T in general (Figures S3 and S4).

4 | DISCUSSION

We compared the performance of estimating the time
course of the hidden state between the GMM and HMM.
On the two types of synthetic time series that we tested,
the HMM inferred the true hidden state more accurately
than the GMM in the majority of cases. However, when

the length (i.e., npat � T) and sampling frequency of the
data are limited, the accuracy of estimation for the GMM
was comparable to or even better than that for the HMM.
The performance of the GMM and HMM estimators also
depended on the underlying dynamics of the hidden
state, that is, the type of synthetic time series.

The accuracy of estimating the hidden state using
HMMs depended on the sampling frequency of the data.
In practice, HMMs are efficient with a reasonable
sampling frequency with which the contribution of
the first-order dynamics dominates (Martinez-Diaz

F I GURE 3 Accuracy of estimating the hidden state for the Gaussian mixture model (GMM)-based synthetic time series for

T = 10 min. (a) TR = 0.72. (b) TR = 1.44. (c) TR = 2.16. (d) TR = 2.88. (e) TR = 3.60. The shaded regions represent one standard deviation
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et al., 2007). In our results, the HMM outperformed the
GMM in the case of the highest sampling frequency
(i.e., TR = 0.72 s) on both the GMM- and HMM-based
synthetic time series. Moreover, for the HMM-based
synthetic time series, the accuracy score for the HMM
was larger when TR was smaller (blue lines in Figure 3).
These results suggest that the HMM will probably per-
form better than the GMM if TR is less than 0.72 s. Note
that TR = 0.72 s or similar sampling frequencies are
becoming common in fMRI experiments. Furthermore,
with TR = 2.88 and 3.60 s, which also fall in a range of

TR that remains common in human fMRI experiments,
the HMM and GMM performed similarly given a
sufficient amount of data. This result suggests that, in
this situation, we may benefit from using the GMM,
which is conceptually, mathematically and algorithmi-
cally simpler than the HMM.

When the given data are short and sampled with a
low frequency (e.g., TR = 3 s), GMMs are probably more
advantageous than HMMs in that a GMM with the same
number of components as an HMM is better at avoiding
overfitting. Furthermore, GMMs seem to be also

F I GURE 4 Accuracy of estimating the hidden state for the hidden Markov model (HMM)-based synthetic time series for T = 10 min.

(a) TR = 0.72. (b) TR = 1.44. (c) TR = 2.16. (d) TR = 2.88. (e) TR = 3.60. The shaded regions represent one standard deviation

5412 EZAKI ET AL.



advantageous over HMMs when the given data are long
or the estimation procedure has to be run many times.
Up to our numerical effort, estimation of GMMs was at
least a couple of times faster than that of HMMs
including when we attempted to estimate models with
more than two states. This observation is consistent with
a previous study reporting that estimation of the HMM is
often computationally challenging when the data is long
or the number of participants is large (Vidaurre,
Abeysuriya, et al., 2018).

We refrained from optimizing the number of hidden
states. This is because there is no established way to do
so (Celeux & Durand, 2008; Pohle et al., 2017), although
some methods based on, for example, the free energy in
the variational Bayes (VB) algorithms (Rezek &
Roberts, 2005) and the number of appearances of each
state in the estimated hidden-state time courses
(Vidaurre, Hunt, et al., 2018) have practically been used.
(Also see Nielsen et al., 2018 for an infinite HMM
approach, which finds the appropriate number of hidden
states but is not computationally feasible in many
practical cases.) In previous studies using fMRI data, the
estimated numbers of hidden states are distributed in a
wide range, that is, between 5 and 19 (Kottaram
et al., 2019; Ryali et al., 2016; Scofield et al., 2019; Stevner
et al., 2019; Vidaurre, Abeysuriya, et al., 2018; Vidaurre
et al., 2017). In contrast to these studies, we assumed two
hidden states for the sake of simplicity. This choice was
also motivated by a previous study reporting that the hid-
den states were robustly agglomerated into two clusters
in human fMRI data and that the frequency of the two
states was heritable and related to cognitive measures
(Vidaurre, Hunt, et al., 2018). We also found in our previ-
ous work with energy landscape analysis that transitions
among two or three macroscopic states were correlated
with participants’ behaviour in a bistable visual percep-
tion task (Watanabe, Masuda, et al., 2014) and executive
function (Ezaki et al., 2018). Therefore, we believe that
characterizing brain dynamics by transitions among an a
priori determined small number of states, as we have
done in the present study, is a useful approach.

The performance of the GMMs and HMMs may
depend on various factors, which we have not examined
in this study, such as the preprocessing method, scanner
and tasks. In particular, the type of task is expected to
modulate the hidden-state dynamics and may inform the
choice of the model with state dynamics. We observed that
the duration of the hidden state is qualitatively different
between the GMM and HMM (Figure 3c). Note that vari-
ous generalizations of the HMM (i.e., hidden semi-Markov
models) (Yu, 2010) have been proposed to incorporate dif-
ferent types of the distribution of the duration. In the
absence of the ground-truth data for the hidden state

dynamics, which is generally the case, we do not have a
particular hypothesis regarding the shape of the distribu-
tion of the hidden state’s duration. Instead, in this study,
we focused on the effect of other key parameters on the
estimation accuracy of the GMM and HMM. Additional
information that accompanies recorded brain signals, such
as behavioural switches during a task, may help us to
better compare the GMM, HMM and their variants.
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