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Abstract

Electrical stimulation is one of the candidates for elongation-driven regeneration of dam-

aged peripheral nerves. Different organs and tissues have an inherent cell structure and

size. This leads to variation in the tissue-specific electrical properties of the frequency of

interfacial polarization. Although nervous tissues have a membrane potential, the electrical

reaction inside these tissues following electrical stimulation from outside remains unex-

plored. Furthermore, the pathophysiological reaction of an injured nerve is unclear. Here,

we investigated the electrical reaction of injured and non-injured rat sciatic nerves via broad-

band dielectric spectroscopy. Crush injured and non-injured sciatic nerves of six 12-week-

old male Lewis rats were used, 6 days after infliction of the injury. Both sides of the nerves

(with and without injury) were exposed, and impedance measurements were performed at

room temperature (approximately 25˚C) at frequencies ranging from 100 mHz to 5.5 MHz

and electric potential ranging from 0.100 to 1.00 V. The measured interfacial polarization

potentially originated from the polarization by ion transport around nerve membranes at fre-

quencies between 3.2 kHz and 1.6 MHz. The polarization strength of the injured nerves was

smaller than that of non-injured nerves. However, the difference in polarization between

injured and non-injured nerves might be caused by inflammation and edema. The suitable

frequency range of the interfacial polarization can be expected to be critical for electrical

stimulation of injured peripheral nerves.

Introduction

Injured peripheral nerves can be regenerated by elongation of axons [1]. Poor recovery of

damage to peripheral nerves is devastating for several patients, affecting their quality of life.

Although patients expect to return to the preinjury conditions, less than half of those
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undergoing nerve repair after peripheral nerve injury achieve good to excellent motor or sen-

sory functionality [1]. Satisfactory motor and sensory outcomes were reported in 52% and

42% of patients, respectively, in a previous study [2]. A 40-year compilation of data showed

that after direct nerve coaptation, 20%–40% of patients achieved a good recovery, however,

only few patients recovered fully [1, 3]. Furthermore, improvement in patient outcome by sur-

gical reconstruction of the injured nerve continues to pose practical challenges [4], and numer-

ous supportive technologies have been developed to tackle the challenges faced in peripheral

nerve repair therapies [1]. Electrical stimulation is one of the candidate therapies for elongat-

ing injured nerves [5]. A 20 Hz electrical stimulation was reported to be effective in promoting

the expression of the genes for brain-derived neurotrophic factors [6, 7]. Although nervous tis-

sues have a membrane potential [8], the electrical reaction inside the tissue upon electrical

stimulation from outside has not yet been investigated. Furthermore, the pathophysiological

reaction following electrical stimulation of injured nerves remains unclear.

The measurement of impedance of tissues has been done since a long time [9–11]. For

instance, electric impedance of the giant axon of squids was studied in 1930 [12, 13]. Recent

developments in technologies for the measurement of impedance allow in vivo functional

monitoring [14] and imaging of the fascicular organization of peripheral nerves [15]. Broad-

band dielectric spectroscopy (BDS) offers the broadest frequency range among all the methods

for detection of the molecular dynamics in materials. The BDS covers frequencies between

1 μHz and 100 GHz, which correspond to the time window between megaseconds and pico-

seconds [16]. Furthermore, this frequency range covers the molecular dynamics of solid and

liquid materials [17]. For BDS measurements, the material under test is sandwiched between

electrodes and an alternate or direct current voltage is applied. The relationship between

applied voltage and the induced electric current can be used to obtain the impedance and/or

admittance of the material. Next, the complex dielectric constants and/or complex electrical

conductivities can be obtained using the impedance or admittance and an electrode with

known geometrical capacitance. The rotational motion of molecules with a permanent dipole

moment can be observed as dielectric relaxation. Moreover, the translational motion of ionic

charges can be observed as conductivity. In materials with special compartments, the transla-

tional motion of charges induces polarization within a limited space, which can be observed as

interfacial polarization.

Different organs and tissues have inherent cell structures and sizes, which lead to variations

in the tissue-specific electrical properties of the frequency of interfacial polarization. In this

study, the variation in electrical properties of non-injured and injured peripheral nerves was

investigated. To the best of our knowledge, there are few reports investigating the electrical

properties of nerves using BDS. In this study, we aimed to clarify the electrical aspect of the

pathophysiology of peripheral nerve injuries in rats.

Materials and methods

Animals

Six 12-week-old male Lewis rats weighing 250–300 g (Shimizu Laboratory Supplies Co., Ltd,

Kyoto, Japan) were purchased and housed in standardized cages with a 12 h light/dark cycle

and free access to food and water. All procedures were approved by the Institutional Animal

Care and Use Committee of Kyoto University (MedKyo20027). The right sciatic nerve was

used as the injury model and the left one was used as the non-injured model to eliminate the

effects caused by differences between individuals. A crush injury was created in the right sciatic

nerve of anesthetized rats (induced with a mixed anesthetic: 0.15 mg/kg medetomidine, 2 mg/

kg midazolam, and 2.5 mg/kg butorphanol) as previously described [18]. This sciatic nerve
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crush injury protocol is utilized as a standard peripheral nerve injury model owing to its sim-

plicity and high reproducibility [19, 20]. The sciatic nerve was exposed by a lateral longitudinal

incision along the right thigh and was detached from the surrounding tissues. A 2 mm long

section of the nerve at the site below the gluteal tuberosity was crushed for 10 s using a needle

holder (No. 12501–13, Fine Science Tools Inc., North Vancouver, Canada). The proximal end

of the crush injury site was marked using a 9–0 nylon suture (T06A09N20-25, Bear Medic

Corporation), and the incision was closed using 4–0 nylon sutures (S15G04N-45, Bear Medic

Corporation).

BDS system

An LCR meter (1 mHz–5.5 MHz, NF corporation, ZM2376) and integrated circuit (IC) clips

were used for the measurement of impedance of the sciatic nerves (of rats, assigned names A

through F). The measurements were performed at room temperature (approximately 25˚C)

using a frequency (f) in the range from 100 mHz to 5.5 MHz and an electric potential in the

range from 0.100 to 1.00 V and assuming a parallel circuit of resistance (Rp) and capacitance

(Cp). The f dependence of Cp and Rp was obtained through the measurement of impedance.

Next, the dielectric constant (ε0), dielectric loss (ε@), resistivity (ρ), and electric conductivity

(σ) were obtained using Rp and Cp based on the distances of the clips as well as the diameter of

the nerves during each measurement.

Six days after the injury, rats were anesthetized, and both sides of the sciatic nerves were

exposed via a posterior longitudinal incision from the gluteal region to the popliteal fossa. The

sciatic nerve was then pinched with IC clips at two positions (separated by 3.5–11.6 mm). The

right sciatic nerve was used as the injury model and the left one was used as the non-injured

model. Impedance of the right sciatic nerve was recorded at three different positions: 1) injury

site, at which one IC clip was placed proximal to the injury site, and the other was placed distal

to the injury; 2) the proximal site, at which both IC clips were placed proximal to the injury

site; and 3) the distal site, at which both IC clips were placed distal to the injury. Spacers were

inserted in the clips to prevent nerve damage owing to the pinching pressure of the clips

(Fig 1).

Fig 1. Schematic illustration of nerves pinched by integrated circuit (IC) clips, with and without spacers. The left

illustration shows the IC clips without spacers, whereas the right illustration shows them with spacers. All impedance

measurements were performed with spacers.

https://doi.org/10.1371/journal.pone.0252589.g001
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In addition, during impedance measurements, a thin resin film was placed between the

nerve and muscle to prevent conduction to other areas (e.g., the muscles) through the conduc-

tive portions of the IC clips (Fig 2). However, this film was not used for the measurement of

impedance of rats A and B. For the measurement of impedance on the injured site of rat A, the

selected voltages were 1.0, 0.5, and 0.1 V. There were no differences in the obtained Cp and Rp

spectra caused by the differences in the selected voltages. For the other measurement, lower

voltages were used (0.5 and 0.1 V) to reduce the change caused by the applied voltages to the

nerve for which the impedance was measured. To obtain the geometric capacitances of the

nerves, their diameter was measured using a caliper with 0.05 mm graduations. However,

because the nerves are deformable, a measurement error of approximately 0.2 mm needs to be

considered.

Histological analysis

Following impedance measurement, a 5 mm long sciatic nerve specimen was dissected from

the proximal end of the crush injury site or from the same location of the non-injured nerve.

The sections were fixed with 1.44% paraformaldehyde and 1% glutaraldehyde in 0.036 M

phosphate buffer (pH = 6.8) at 4˚C overnight. Transverse sections were prepared as previously

described [18]. Semithin sections were stained with toluidine blue solution, and images were

obtained at ×100 magnification using a light microscope (Nikon ECLIPSE 80i, Tokyo, Japan).

Ultrathin sections were stained with uranyl acetate and lead citrate, and images were obtained

at ×2000 magnification using a transmission electron microscope (Model H-7000, Hitachi

High-Technologies, Tokyo, Japan).

Results and discussion

The different nerve conditions and impedance measurements are presented in S1 Table. The f
dependency of Cp and Rp for the measurements presented in S1 Table is shown in Fig 3. When

considering frequencies lower than 1.6 MHz, Cp and Rp increased with the decrease in fre-

quency for all data points. While the slope of Cp varies depending on frequency, the Cp slope

had a convex shape at approximately 100 Hz (log f = 2) and 30 kHz (log f = 4.5). Thus, the

Fig 2. Schematic illustration of the impedance measurements with resin film between the nerve and integrated

circuit (IC) clips.

https://doi.org/10.1371/journal.pone.0252589.g002
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Fig 3. Frequency dependence of nerve Cp and Rp.

https://doi.org/10.1371/journal.pone.0252589.g003
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steep slope at the higher frequency side of the convex Cp can be attributed to the presence of

dielectric relaxation.

Fig 4 shows the dependence of ε0 and ε@ of nerve on frequency. The ε0 and ε@ can be calcu-

lated based on the geometric capacitance of the C0 electrodes as follows:

ε0 ¼
Cp

C0

ð1Þ

ε″ ¼
1

2pfC0Rp
ð2Þ

Here, C0 was calculated using Eq (3).

C0 ¼ ε0

S
d

ð3Þ

where S represents the sectional area of the nerve and d is the distance between the IC clips. S
can be calculated as follows:

S ¼ p
F

2

� �2

ð4Þ

where F is the nerve diameter. The changes in slope were also observed in the frequency

dependence of ε’. For all samples, the dielectric relaxation process, which can be recognized as

a steep slope area, was observed in the frequency range from 10 kHz to 1 MHz. At frequencies

higher than 1.6 MHz, the increase in ε’ observed following an increase in frequency can be

attributed to an error in our measurements because of the effects of the distribution constant

circuit at high frequencies.

The frequency dependence of nerve resistivity (ρ) and conductivity (σ) is shown in Fig 5,

where ρ is calculated as:

r ¼ Rp
S
d

ð5Þ

Here, σ is the reciprocal of ρ, as:

s ¼
1

r
ð6Þ

For all the samples, the steep aspect of the σ and ρ slopes is induced by the occurrence of

dielectric relaxation at frequencies higher than 1 kHz. Within the 1 kHz to 100 Hz range, the

slopes are gentle, whereas they are steep for frequencies below 100 Hz. The values for frequen-

cies between 1 kHz and 100 Hz correspond to direct current (DC) and electrical conduction

by mobile ionic substances. However, electrode polarization occurred below 100 Hz, whereas

the ionic substances that contributed to DC conduction were immobilized at the interfaces of

the sample and electrodes (IC clips).

IC clips were used as electrodes for the measurement of impedance. The length of nerve

between the two IC clips was obtained with an error of approximately 10% or less. However,

the areas of the electrodes were not accurately obtained because of the use of IC clips. Gener-

ally, the structures of electrodes used for dielectric measurements are composed of parallel

plates or cylindrical cells, the dimensions of which can be determined accurately. Thus, the
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Fig 4. Frequency dependence of nerve dielectric constant, ε0, and dielectric loss, ε@.

https://doi.org/10.1371/journal.pone.0252589.g004
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Fig 5. Frequency dependence of nerve resistivity (ρ) and electric conductivity (σ).

https://doi.org/10.1371/journal.pone.0252589.g005
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absolute values of ε0, ε@, ρ, and σ are unreliable. To address this issue, ε0 was normalized by ε0

(f = 1.6 MHz), by dividing the ε0 (f) at all measured frequencies by their specific ε0 (f = 1.6

MHz), to identify the change in ε0 value from 10 kHz to 1.6 MHz, which corresponds to the

appearance of interfacial polarization in nerves. Here, following normalization, ε0 is repre-

sented as ε0norm (f). We selected an ε0 frequency of 1.6 MHz for normalization because there

was an error for ε’ frequencies higher than 1.6 MHz. Furthermore, the dielectric constant of

the nerve at frequencies higher than 1 MHz might be attributable to the dielectric constant of

water, which is expected to be identical for all measurements. Thus, the variation in nerve ε0 at

1.6 MHz (Fig 4) might be produced by the error in the measurement of the geometrical capaci-

tance of the electrode comprising the IC clips. Therefore, the ε0norm (f) using ε0 (f = 1.6 MHz)

might be useful for comparing the strengths of interfacial polarization between 10 kHz and 1.6

MHz. The frequency dependence of ε0norm (f) is shown in Fig 6. The non-injured nerves (blue

lines) show the largest normalized ε0 values at 10 kHz followed by the normalized ε0 (10 kHz)

values measured at the injury site (red lines), the proximal site (yellow lines), and the distal

site (orange lines).

Fig 6. Frequency dependence of nerve ε0 normalized.

https://doi.org/10.1371/journal.pone.0252589.g006

PLOS ONE Interfacial polarization of in vivo rat sciatic nerve with crush injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0252589 June 2, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0252589.g006
https://doi.org/10.1371/journal.pone.0252589


To examine the characteristics of interfacial polarization within the 3.2 kHz–1.6 MHz fre-

quency range, ε0norm (f = 3.2 kHz) was obtained as follows:

ε0norm f ¼ 3:2 kHzð Þ ¼
ε0ðf ¼ 3:2 kHzÞ
ε0ðf ¼ 1:6 MHzÞ

: ð7Þ

The values of ε’norm (f = 3.2 kHz) for all measured nerves are shown in Fig 7. The descend-

ing order of ε’norm (f = 3.2 kHz) values comprised the non-injured nerves (blue lines), the

injured sites (red lines), and the proximal and distal sites (yellow and orange lines,

respectively).

An injury reduces the strength of the interfacial polarization within this frequency range.

Interfacial polarization occurs in the material with a confined structure. The interfaces in the

nerves confine the space for translational motion of the ionic material in nerves. The large

amount of mobile ionic materials and/or the presence of a clearer interface contribute to

enhancing the strength of interfacial polarization. We inferred that the reduction in strength

might be induced by the reduction in interfaces, which are represented by the nerve mem-

brane. Based on the presence of interfacial polarization, the applied alternate voltage effectively

induced the translational motion of the ions in the nerve. We hypothesize that electrical

Fig 7. Plots of ε0 at 3.2 kHz normalized by ε0 (f = 1.6 MHz) of the nerves. The shapes indicate the applied voltage as 0.1 V (circles), 0.5 V (squares),

and 1.0 V (triangles).

https://doi.org/10.1371/journal.pone.0252589.g007
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stimulation using an alternating current with frequency in the range of interfacial polarization

may affect nerve regeneration.

Here, σ was normalized using σ (f = 1.6 MHz) to compare the variation in σ between sam-

ples stimulated within the 1.6 MHz to 1 kHz range. The frequency dependence of the normal-

ized σ is shown in Fig 8.

To characterize the contribution of the interfacial polarization of the nerve, the σ at 1 kHz,

which is the frequency corresponding to approximately the middle of the gentle slope in the

100 Hz–10 kHz range, was normalized by σ at 1.6 MHz as:

snorm f ¼ 1 kHzð Þ ¼
sðf ¼ 1 kHzÞ
sðf ¼ 1:6 MHzÞ

ð8Þ

The obtained σnorm (f = 1 kHz) is shown in Fig 9. In case of σnorm (f = 1 kHz), the larger

contribution of interfacial polarization represents a smaller value of σnorm (f = 1 kHz). The

Fig 8. Frequency dependence of nerve σ normalized by σ (f = 1.6 MHz).

https://doi.org/10.1371/journal.pone.0252589.g008
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smallest values of σnorm (f = 1 kHz) were observed for non-injured nerves (blue), followed by

those for injured nerves measured at the injury sites (red), and the proximal and distal sites

(yellow and orange, respectively). The differences between the injured and non-injured nerves

are rather unclear if compared with those observed in the ε0norm (f = 3.2 kHz).

Measurement of impedance within the 100 mHz–5.5 MHz frequency range was performed

on live injured and non-injured rat nerves to study the frequency dependence of Cp, Rp, ε0, ε@,
ρ, and σ. The dielectric relaxation process of interfacial polarization is expected to originate

from ion transportation-induced polarization within nerves and can be observed in the 3.2

kHz to 1.6 MHz frequency range. Although the absolute ε0 value could not be obtained

because of the use of IC clips, the ε0 normalized by the ε0 at 1.6 MHz value could be used. The

largest ε0norm (f = 3.2 kHz) values were observed for the non-injured nerves, followed by those

for the injured nerves measured at the injury site, the proximal, and distal sites. We show that

nerve injuries reduce the strength of the interfacial polarization.

The active potential of nerves has a 1 ms pulse width and it corresponds to 1 kHz. The fre-

quency range of the interfacial polarization was higher than that of the active potential. There-

fore, if the observed interfacial polarization originates from the polarization of ions around the

nerve membrane, a higher stimulus rate would affect nerve activation. The stimulation with an

Fig 9. Plots of σ at 1 kHz normalized by σ (f = 1.6 MHz) of the nerves. The shapes of the plots indicate the applied voltage as 0.1 V (circles), 0.5 V

(squares), and 1.0 V (triangles).

https://doi.org/10.1371/journal.pone.0252589.g009
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alternate voltage and frequency similar to the interfacial polarization is expected to effectively

induce polarization in nerves.

Following peripheral nerve injury, inflammatory cells, such as macrophages, are infiltrated

and axons distal to the injury site degenerate and are removed, whereas axons of the non-

injured nerve or those proximal to the injury remain normal [21]. Additionally, crush injuries

induce edema [22]. After injury, spaces resembling edema between the perineurium and the

nerve fascicle became enlarged (Fig 10B asterisk) and axons degenerate (Fig 10D). Inflamma-

tion induces the secretion of cytokines, such as TNF and IL-1 [23]. Such inflammatory cyto-

kines recruit inflammatory cells into the location of the injured nerve and induce axonal

degeneration [24]. Such pathological changes affect the composition of the nerve. Although

the axons proximal to the injured site should not degenerate, the values of ε’norm (f = 3.2 kHz)

at the proximal site are similar to those at the injured site or distal site (Fig 7). Inflammation

and edema affect impedance [25], which might explain the similarities between the proximal

site and the injured site [26, 27]. These results indicate that changes in impedance caused by

injury are because of inflammation or edema rather than axonal degeneration.

Impedance analysis is practically applicable in many fields, especially in clinical and health-

care fields. The assessment of body composition is useful for the diagnosis of sarcopenia [28,

29], and the mucosal impedance is useful for evaluating esophageal disease [30]. Recently,

applied impedance technologies have been used to evaluate cells [31] and detect bacteria [32].

The organs, tissues, and cells have their own protein compositions and characteristic electric

properties. The developed in vivo impedance measurement system for understanding the

Fig 10. Representative images of transverse sections of the sciatic nerve. (A, B) Semithin sections of non-injured (A)

and injured (B) sciatic nerve. Following injury, spaces between the perineurium and the nerve fascicle were enlarged

(asterisk). (C, D) Ultrathin sections of non-injured (C) and injured (D) sciatic nerves. The axons distal to injured site

are degenerated (Arrow).

https://doi.org/10.1371/journal.pone.0252589.g010
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pathophysiology of peripheral nerve injuries using BDS may provide novel insights for devel-

oping new therapeutics for nerve regeneration.

Conclusion

In this study, we measured the in vivo impedance of injured and non-injured nerves using

BDS. The dielectric relaxation process of interfacial polarization, which is expected to originate

because of the polarization by ions around the nerve membrane, was observed in the 3.2 kHz

to 1.6 MHz frequency range. This implies that a stimulus rate higher than 10 kHz would affect

nerve activation. The strength of injured nerve interfacial polarization was smaller than that

observed in nerves without an injury. This reduction in strength might be caused by the reduc-

tion in interfaces, which are represented by the nerve membrane. These results also illustrate

the capacity of BDS for use as a tool to understand the electrical aspect of the pathophysiology

of nerve injuries.
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