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Barley Products of Different Fiber Composition Selectively
Change Microbiota Composition in Rats

Cristina Teixeira,* Olena Prykhodko, Marie Alminger, Frida Fåk Hållenius,
and Margareta Nyman

Scope: Several dietary fiber properties are suggested to be important for the
profiling of the microbiota composition, but those characteristics are rather
unclear. Whether different physico-chemical properties of barley dietary fiber
influence the gut microbiota composition is investigated.
Methods and results: Seven diets containing equal amounts of dietary fiber
from barley malts, brewer’s spent grain (BSG), and barley extracts, resulting in
varying amounts of β-glucan, soluble arabinoxylan, and insoluble
arabinoxylan in the diets were given to conventional rats. Malts increased
microbiota alpha diversity more than BSG and the extracts. The intake of
soluble arabinoxylan was related to Akkermansia and propionic acid
formation in the cecum of rats, whereas β-glucan and/or insoluble
arabinoxylan were attributed to some potentially butyrate-producing bacteria
(e.g., Lactobacillus, Blautia, and Allobaculum).
Conclusion: This study demonstrates that there is a potential to stimulate
butyrate- and propionate-producing bacteria in the cecum of rats with malt
products of specific fiber properties. Moreover, BSG, a by product from beer
production, added to malt can possibly be used to further modulate the
microbiota composition, toward a higher butyric acid formation. A complex
mixture of fiber as in the malts is of greater importance for microbiota
diversity than purer fiber extracts.

1. Introduction

There is increasing evidence of a relation between the consump-
tion of dietary fiber and its effects on colonic microbiota compo-
sition, and consequently to human health.
Dietary fibers are indigestible food components reaching the

colon with the potential to be utilized by some species of the
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microbiota and promote the growth
of others, for example, through pH
changes and bacterial cross-feeding
mechanisms.[1,2] Upon microbiota
fermentation, dietary fibers can yield
different amounts and patterns of SCFA,
mostly acetic-, propionic-, and butyric
acids, which are rapidly absorbed by the
colonocytes into the circulation, serving
as energy source and precursors in
anti-inflammatory mechanisms.[3]

The characteristics of the dietary
fiber components reaching the colon
may affect the microbiota composition
differently, but this is not yet well un-
derstood. Some studies suggest that
an increase of Lactobacillus in human
feces[4] and in rat cecum[5] after con-
sumption of β-glucan are due to the
oligomeric form of β-glucan rather than
the polymeric form. According to in
vitro studies, some Bifidobacterium and
Lactobacillius strains can utilize xylan
oligosaccharides but not β-glucan.[6]

Furthermore, soluble arabinoxylan from
wheat are considered to be butyrogenic[7]

and propiogenic,[8] in humans and rats, respectively, and related
with the increase of Roseburia, Prevotella, and Bifidobacterium in
studies on rodents.[9,10]

Barley is one of the most well-adapted cereal crops to differ-
ent environmental conditions. There is growing interest for its
use in human nutrition, due to its high content of dietary fiber
and associated positive health effects, such as reduced risk of
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Table 1. Contribution of dietary fiber components from the barley products in the diets, g per 100 g dry weight.a)

Tipple malt Cinnamon malt Standard malt BSG Mixtureb) AX extract BG extract

Total Fiber 8 (20) 8 (33) 8 (10) 8 (2.8) 8 (10) 8 (87) 8 (49)

Arabinoxylan 2.6 (5.0) 2.3 (10) 3.2 (4.6) 3.0 (1.0) 2.8 (2.6) 5.7 (76) 2.2 (2.9)

β-glucan 1.3 1.4 0.3 0.1 0.6 0.1 4.8

β-glucan Mw (g mol–1) ×106 1.4 1.3 1.0 0.4 1.1 0.07 1.6

a)Values in parenthesis refer to the soluble proportion of the fiber (%); b)Composed of Tipple malt and BSG (70:30).

cardiovascular diseases, type 2 diabetes, and colorectal cancer.[11]

β-glucan is especially highlighted in this respect, but also ara-
binoxylan may be of interest, with physico-chemical properties
dependent on variety and processing conditions, and in this way
being a potential gut microbiota modulator.[12] Whole-grain bar-
ley and especially barley malt resulted in higher levels of Blautia
(butyrate-producer) in the hindgut of rats compared to a fiber-
free control diet, and also of Akkermansia,[12] a bacterium that has
been related to reduced mucosa inflammation.[13] A considerable
increase of butyric acid formation was found in rats fed withmalt
compared with whole-grain barley.[14] This was suggested to be
related to the changed characteristics of the β-glucan due to in-
creased β-glucanase activity during malting,[15] also causing the
increased number of Roseburia, Coprococcus, and Lactobacillus.[12]

However, a change of other components during this process such
as arabinoxylan cannot be excluded. Another interesting barley
product is brewer’s spent grain (BSG), a waste product from
brewing industry. BSG contains high amounts of hemicelluloses
and protein, depending on the barley variety and processing con-
ditions used. BSG was suggested to have hypocholesterolemic
effects,[16] influence lipid metabolism,[17] and to potentially act
as a growth stimulator of Bifidobacterium and Lactobacillus in the
distal colon.[18]

The aim of this study was to investigate whether barley malts
and BSG with different fiber characteristics (β-glucan, soluble
and insoluble arabinoxylan), could affect the microbiota compo-
sition, the potential for SCFA formation, especially butyric- and
propionic acid, and metabolic functions. For this purpose, con-
ventional rats were fed diets containing three barley malts from
different varieties or produced at different malting conditions,
a barley BSG, a mixture of malt and BSG, or a fiber-free con-
trol. Since arabinoxylan and β-glucan are two of the main dietary
fibers of interest in barley, groups fed diets containing extracts
from barley especially rich in these polymers were also included.

2. Experimental Section

2.1. Test Materials

Five barley malt products and two barley extracts were selected
and compared in the study due to their differences in contents of
arabinoxylan and β-glucan (Table 1): tipple malt (TM), cinnamon
malt (CM), standard malt (SM), BSG, a mixture of TM and BSG
(mixture), β-glucan rich extract (BG extract), and arabinoxylan
rich extract (AX extract).
TM and CMwere produced in a pilot plant at Lahden Polttimo

Oy (Lathi, Finland), under nontraditional steeping conditions to
preserve β-glucan content (35 °C and 0.4% lactic acid) and kilned

at 55−70−82 °C for 10−8−8 h, respectively. SM was steeped at
14.5 °C without lactic acid, and kilned at 55−86 °C for 20 h. BSG
was a by-product from the SMmilling, mashed at 20−70 °C, and
dried at 48−55 °C for a total of 20 h. Both SM and BSG were
provided by an affiliated company to Lahden Polttimo Oy (Viking
Malt AB, Halmstad, Sweden). To obtain a diet with intermediary
content of β-glucan and arabinoxylan in relation to themalt diets,
a Mixture containing 70% TM and 30% BSG was also included.
AX extract was purchased from Xylophane AB (Göteborg, Swe-
den) and BG extract from Lyckeby Starch AB (Kristianstad, Swe-
den), and used as reference samples, due to their high amounts of
arabinoxylan and β-glucan, respectively. AX extract was isolated
from barley husk involving extraction at elevated pH, and accord-
ing to the provider, resulting in AX of high molecular weight
(Mw;�70 kDa). BG extract was obtained bymechanical fractiona-
tion of barley kernels, mostly originating from the aleurone layer
cell walls and according to the provider, resulting in a β-glucan
with high Mw (1.6 × 106). The malt products were milled to a
particle size less than 0.5 mm for characterization analysis and
incorporated into test diets. The extracts were used as provided
in fine powder.

2.2. Diets

The design of the study resulted in eight diets (seven test diets
and one control), composed of 12% casein, 1.2% dl-methionine,
and 2% choline chloride (Sigma–Aldrich, St. Lois, MO, USA),
5% maize oil (Ica, Solna, Sweden), 10% sucrose (Dan Sukker,
Malmö, Sweden), and 0.8% vitamin and 4.8% mineral mixtures
(Lantmännen, Malmö, Sweden) (Table S1, Supporting Informa-
tion A). Furthermore, the seven test diets contained an equal
amount of dietary fiber (80 g kg−1 dry weight) resulting in an
amount of added barley product between 96 and 527 g kg−1.
Wheat starch was added to adjust for the dry matter content
and since it is completely digested, no fiber is delivered to the
colon and there is no contribution of SCFA from this source.[19]

The control diet contained wheat starch as substitute to the fiber
source (fiber-free diet). The diets were prepared in house by mix-
ing all the ingredients thoroughly in a mixer for 60 min, and
given in the form of powder.

2.3. Characterization of Test Materials

Soluble and insoluble dietary fiber contents were measured ac-
cording to an enzymatic gravimetric method.[20] The neutral
sugars of the isolated dietary fiber residues and fecal mate-
rial were analyzed using a gas-chromatographic method,[21] and
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arabinoxylan content was estimated as the sum of arabinose and
xylose in the fiber residues. The degree of fermentation was cal-
culated as in Equation (1), during the five days of the experimen-
tal period.

[
1 − (

grams of neutral sugars in faeces

/grams of neutral sugars consumed
)] × 100 (1)

The content of β-glucan was assessed with the mixed-linkage
β-glucan assay kit (K-BGLU, Megazyme International, Ireland).
The average β-glucanMw of extractable β-glucans was estimated
with high-performance size exclusion chromatography and flu-
orescence detection (HPSEC–FD) with Calcofluor post-column
complexation.[22] Resistant starch was estimated by the differ-
ence between total and available starch, obtained by an enzy-
matic assay with KOH and/or digestion with α-amylase and
amyloglucosidase.[23,24] The amylose content was quantified with
an amylose/amylopectin kit (Megazyme International, Ireland).
The crude protein was quantified with an elemental analyzer
(Flash EA 1112, Thermo Fisher Scientific Inc., Waltham, MA,
USA). All analyses were made at least in duplicate.

2.4. Animal Study

Male Wistar rats (n = 56) with weights between 70 and 98 g were
randomly divided into eight groups and caged individually. The
experiment lasted for 12 days, during which rats were fed the
test and control diets and the temperature and light were kept
constant: 21 °C and 12 h light cycle. The food was restricted to
12 g dry weight per day, and water was given ad libitum similar
to previous studies.[25] The design of the experiment has been
used in previous experiments, and has been shown to be enough
to study changes in total fermentation of dietary fiber and SCFA
formation (e.g., refs. [26–28]).
During the last 5 days of the experimental period, feces were

collected daily, freeze-dried, and milled before analysis of dietary
fiber. There were no feed residues during any of the experimental
days. After the experimental period, the rats were anesthetized by
cutaneous injection with amixture of Hypnorm, Dormicum, and
sterile water (1:1:2) at a dose of 0.15 ml per 100 g body weight.
The weights of cecal content and cecal tissue were noted. A por-
tion of the cecum content (apex) was stored at −80 °C for micro-
biota analysis, while the pH of the remaining cecal content was
measured and stored at –40 °C until analysis of SCFA.

2.5. Cecum Analyses

SCFA in the caecum content were analyzed by GC after themate-
rial was homogenized (Ultra Turrax T25 basic, IKAWERKE) and
centrifuged with 0.25 m HCl.[29]

The cecum apex was used for extraction of DNA and sequenc-
ing of V1–V3 region of 16S rRNA gene, which was performed
by GATC Biotech (Konstanz, Germany; www.gatc-biotech.
com) by using amplicon-based method. Forward and re-
verse sequence primers for amplification were 5′AGAGT
TTGATCCTGGCTCAG3′ and 5′ATTACCGCGGCTGCTGG3′,
respectively. Genome Sequencer Illumina HiSeq accredited

method was performed using HiSeq Rapid Run 300 bp paired-
end kit (Illumina, San Diego, California, USA). Raw sequenc-
ing data for both forward and reverse reads were received in a
FASTQ format, accompanied by a raw-data quality report for ev-
ery sample. Since the amplicons were sequenced in both direc-
tions, using Next-generation Sequencing Platforms that is only
able to generate relatively short read lengths (<500 bp), the read
pairs were merged to increase the overall read length by using
FLASH v1.2.11 software tool (The Center for Computational Bi-
ology, Johns Hopkins University) with maximummismatch den-
sity of 0.25. Next, combined pairs of every sample (89± 1%) with
mean length of 524 bp were processed for quality filtering and
accuracy of operational taxonomic units (OTU) assignment by
open-source bioinformatics pipeline, Quantitative Insights into
Microbial Ecology (QIIME v 1.9.1). A total number of 27 858 485
reads were generated after quality filtering for 56 samples with a
mean of 497 472.946 reads per sample (minimum 212 070 and
maximum 840 486). The sequences were grouped into OTUs
at a minimum of 97% similarity. Taxonomy was assigned us-
ing Greengenes database (v.13.8). In total, 431 observations were
obtained after removing singletons and low-abundance OTUs
(<0.0001) resulted in seven OTUs ID at phylum and 38 OTUs
ID at genus levels. Next, alpha and beta diversity was analyzed
at the even depth of 200 000 sequences per sample, retaining all
samples in the analysis. It is worth mentioning that the num-
ber of observations before filtering and cutoff steps was 3235,
giving zero approaching values for most of the taxonomic gen-
era. The raw data and biom summary tables with sample reads
and at genus level for each group before and after filtering are
available in the Supporting Information (B for raw data and C
for biom summary tables). Additionally, the QIIME statistics, in-
cluding test for alpha-diversity comparison and groups’ compar-
isons OTU frequencies (Kruskal–Wallis with Bonferroni correc-
tion) are also available in the Supporting Information D).

2.6. Prediction of Bacterial Metagenomes Using Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States

Potential metabolic functions from the gut bacteria were ana-
lyzed by inferring metabolic capacity from the 16S rRNA gene
sequencing data using an open-source software, Phylogenetic In-
vestigation of Communities by Reconstruction of Unobserved
States (PICRUSt).[37] Results were thereafter analyzed for statis-
tical significance using LEfSE with LDA score cutoffs of 2.0 (Fig-
ure S2a and S2b, Supporting Information A) and 3.0 (Figure 5).

2.7. Statistical Analyses

One-way analysis of variance and Tukey’s post-hoc tests were
used to evaluate the difference between the treatments, and post-
hoc Games–Howell test was used for nonhomogeneous data,
with significance at p < 0.05. Correlations were evaluated with
two-tailed Pearson’s tests: weak (±) 0.25–0.50; moderate (±)
0.50–0.75; strong (±) 0.75–1. Statistical analysis was performed
with SPSS Statistics. All weights are on dry weight basis, except
for cecal content, cecal tissue, and SCFA.
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3. Results and Discussion

3.1. Dietary Fiber

To investigate the possibility to modulate microbiota composi-
tion and metabolic effects with barley malt products, the diets
in the present study were designed to have the same quantity of
total fiber (80 g kg−1; Table S1, Supporting Information A), but
with different fiber characteristics of β-glucan and arabinoxylan
(Table 1).
Malts from the cultivar Tipple (TM), and Cinnamon (CM)were

selected due to their comparatively high β-glucan content (mean
1.4 ± 0.1 g per 100 g) and Mw (mean 1.3 ± 0.1 × 106 g mol−1),
and these products also contributed with higher proportions of
soluble fiber in the diets (20–33%) than SM (0.3 g per 100 g β-
glucan content, 1× 106 gmol−1 Mw, and 10% soluble fiber). The
reason to these differences is that SM is processed at traditional
malting conditions to provide highly degraded β-glucan (Ta-
ble 1). Another dissimilarity between the malts was that the CM
diet contributed with higher proportions of soluble arabinoxylan
(10%) than the TM and SM diets (mean 4.8± 0.2%). Contents of
protein, resistant starch, and amylose were very similar among
the malt products (Table S2, Supporting Information A).
BSG was obtained as a by-product from the mashing step of

themalting process, wheremost of the soluble compounds of the
malt are removed. As a result, the product had lower contents of
soluble fiber, soluble arabinoxylan, β-glucan, and β-glucan Mw
than the malts, but the contribution of total arabinoxylan to the
diet was similar as with the SM diet (3.1 ± 0.1 g per 100 g). The
diet composed of a mixture of TM and BSG (70:30) resulted in an
intermediary content of β-glucan and soluble arabinoxylan com-
pared to the other malts and BSG diets and was used to evaluate
the effect of adding BSG to malt.
To better understand the effect of arabinoxylan and β-glucan

on the gut microbiota composition, the effects of two barley-
based extracts rich in arabinoxylan (AX) or β-glucan (BG) were
studied. Diets containing AX and BG extracts had higher pro-
portions of soluble fiber (87% and 49%, respectively) com-
pared with the malts and BSG diets. The BG extract diet had
the highest β-glucan content (4.8 g per 100 g) of highest Mw
(1.6× 106 gmol−1), and the AX extract contributed with the high-
est proportion of soluble arabinoxylan (76%).

3.2. Animal Experiment

The rats remained healthy and were active throughout the study.
The daily feed intake was 12.0± 0.1 g dry weight, and the weight
gain 11−13 g per rat during the last 5 days of the experiment
(Table S3, Supporting Information A).
Cecal pHwas higher for rats fed TM, AX, and BG extracts com-

pared with BSG diet (mean 7.1 vs 6.3 with BSG). The cecal con-
tent was higher with AX and BG extracts than with the control
(2.0 and 1.6 g, respectively vs 0.9 g for the control, p < 0.05). The
fecal weight was higher in rats fed diets containing SM and BSG
(6.3 and 5.7 g, respectively), than in rats fed the mixture, TM,
and CM (4.6−5.0 g), AX extract (3.8 g), BG extract (2.9 g), and
the fiber-free control diet (1.5 g). This could be expected since
both SM and BSG contained higher amounts of insoluble fiber,

known be less fermented by the microbiota, mainly contributing
to fecal bulk.

3.3. Fermentation of Dietary Fiber Polysaccharides

Total dietary fiber fermentation was higher in rats fed diets con-
taining AX and BG extracts (86% and 85%, respectively), than
in those rats fed CM, TM, and mixture diets (36−44%), and SM
and BSG diets (21−23%) (Table S4, Supporting Information A),
which corresponded with the higher content of soluble fiber and
β-glucan content, and/or Mw in the diets (Table 1). Details of the
degree of fermentation for each neutral sugar are in Table S4,
Supporting Information A.

3.4. SCFAs in Cecum of Rats

Acetic, propionic, and butyric acid were the major SCFAs found
in the cecum of rats. As expected, the cecal content of total SCFA
was lower in rats fed the fiber-free control diet than in those fed
AX and BG extracts (38 vs mean 78 μmol, p < 0.05) (Table 3).
Acetic acid was higher in rats fed AX extract than those fed TM
(53 vs 31 μmol, p < 0.05), and also the content of propionic acid
compared with rats fed SM (14 vs 8 μmol, p < 0.05). Despite the
different fiber composition in CM compared with BSG (CM had
high proportions of β-glucan and soluble arabinoxylan, whereas
BSG had high proportions of insoluble arabinoxylan) both re-
sulted in the highest butyric acid content, and it was significantly
higher than in rats fed the control diet (7.3–6.7 vs 3.4 μmol,
p < 0.05).
Taking the characteristics of the fiber in consideration, diets

with more soluble arabinoxylan contributed to a higher propor-
tion of propionic acid in the cecum of rats (Table 1 and 3), which
was especially seen in rats fed AX extract. High proportions of
propionic acid in the cecum of rats have also been related to the
content of soluble arabinoxylans in a previous study.[8] Interest-
ingly, soluble fiber, soluble arabinoxylan, β-glucan, and β-glucan
Mw were all positively correlated with the proportion of propi-
onic acid, but negatively with acetic acid in the cecum of rats fed
malt/BSG diets (Table 2). No correlations were found with the
proportion of cecal butyric acid.
Due to practical reasons, to be able to finish the study for the

groups (two to three groups per day), we started early in themorn-
ing, and consequently the test diets were removed from some of
the rats more than 6 h before collection of the cecum content.
During this time the SCFA might already have been absorbed
and regressed to fasting levels, which may explain the compar-
atively lower values in the present study to studies with similar
design.[12,15]

3.5. Gut Microbiota Composition

3.5.1. Diversity

A microbial community with low alpha diversity (within sam-
ples) has been linked to obesity, Crohn’s disease, and ulcerative
colitis.[30,31] Notably, diets containing TM, SM, and mixture gen-
erally resulted in higher cecal alpha diversity within microbial
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Table 2. Correlation of dietary fiber intake with cecal proportion of SCFA and the most abundant phylum levels in rats fed the malt and BSG diets (tipple
malt, cinnamon malt, standard malt, standard BSG, and mixture).

% Soluble fiber Total arabinoxylan % Soluble arabinoxylan β-glucan β-glucan Mw

% Acetic −** +** −** −** −**

% Propionic ++*** −** ++*** ++*** +**

% Butyric NC NC NC NC NC

p Actinobacteria NC NC NC NC NC

p Bacteroidetes −** +** −* −* NC

p Firmicutes +* −** NC NC NC

a)*, **, ***, denotes significance at the level of p < 0.1, p < 0.05, p � 0.001, respectively (ANOVA); NC, no correlation; b)Plus/minus symbol indicates the positive/negative
correlation between SCFA and bacteria at different correlation coefficient ranks, in absolute values: + or −, 0.25< r < 0.50; ++ or − −, 0.50 < r < 0.75; +++ or − − −,
0.75 < r < 1.00.

Figure 1. Alpha diversity. Alpha diversity indexes of PD (phylogenetic di-
versity) whole tree in rats fed test diets containing barley products or a
control diet. Groups with different letters are significantly different. (TM,
tipple malt; CM, cinnamon malt; SM, standard malt; BSG, brewers’ spent
grain; Mix, mixture of TM and BSG 70:30; AX, arabinoxylan extract; BG,
β-glucan extract; CTRL, free-fiber control).

community than rats fed the control diet, or diets containing AX
or BG extracts (Figure 1). This suggests that amore complexmix-
ture of fibers as found in the malts promoted the growth of a
greater number of species, and would thus be interesting in re-
lation to some chronic diseases.
A clear clustering of groups in the principal coordinate

analysis (PCoA) of beta diversity (between samples from the
same habitat) showed that rats fed malts/BSG diets had rather
similar microbial communities, but was completely different
from the gut microbiota in rats fed Control, AX, and BG extracts
(Figure 2A), which also were markedly different from each other
(Figure 2B). Furthermore, between the malt/BSG products,
BSG displayed a distinct grouping compared with CM and SM
(Figure 2C and 2D), which could be related to the differences in
content of soluble arabinoxylan (Table 1).

3.5.2. Relation between Specific Dietary Fiber Components and
Microbiota Composition

The most abundant phyla in cecum of all groups were Firmi-
cutes (73−87%) and Bacteroidetes (9−24%) (Figure 3). Groups

fed BG extract and the fiber-free control had also rather high cecal
amounts of Actinobacteria (6% and 15%, respectively), while con-
siderably lower amounts of this phylum were found in caecum
of rats fed barley malt products and AX extract (1−3.5%). Verru-
comicrobia was exceptionally high in the cecum of rats fed AX ex-
tract compared with the other groups (6.9% vs �0.8%, p < 0.05).
The various diets thus appear to stimulate different bacterial

species (at phylum level), in the cecum of rats. By relating the
composition of the dietary fiber included in the diets with the
abundance of bacteria, Bacteroidetes were negatively correlated
with the intake of β-glucan, proportion of soluble fiber, and sol-
uble arabinoxylan (–0.314, –0.358, and –0.307, respectively) and
positively correlated with total amounts of arabinoxylan in the
diet (0.465) (Table 2). On the contrary, Firmicutes were positively
correlated with soluble fiber (0.304) and negatively correlated
with total arabinoxylan (–0.439). This may explain the differences
of Bacteroidetes in cecum of rats fed the malted products CM
and SM (9% vs 24%, respectively), where SM contained lower
proportions of β-glucan, soluble fiber, and soluble arabinoxylan
thanCM. Furthermore, the stimulation of Verrucomicrobia in ce-
cum of rats fed AX extract compared with the other groups, could
possibly be due to its high content of soluble arabinoxylan com-
pared with the other barley products.

β-glucan: Rats fed BG extract had highest cecal amounts of
the unclassified genera Ruminococcaceae (15% vs<7%, p < 0.05)
(Figure 4). Furthermore, Lactobacillus was one of the most abun-
dant genus in the cecum of rats fed malt/BSG diets and BG ex-
tract, and the amounts were positively correlated with β-glucan
content and Mw (Table S5, Supporting information A). Some
Lactobacillus strains have been found to grow in the presence of
oligosaccharides but not on polymeric β-glucan.[5,6] It may there-
fore be questioned, whether some Lactobacillus in rats fed CM
containing high β-glucan Mw have used β-glucans being de-
polymerized by other bacteria. Furthermore, β-glucan in barley
malt products might not be the only preferred substrate for Lac-
tobacillus. Interestingly, the BSG diet had the lowest content of
β-glucan, but Lactobacillus was one of the most abundant genera
in the cecum of rats fed this diet (27%). Also in other studies,
barley has shown to increase the number of Lactobacillus in com-
parison with wheat, a cereal low in β-glucan.[32]

By using the software tool LEfSe to compare bacterial taxa
at species level, we found that CM increased the relative abun-
dance of Lactobacillus reuteri (Figure S1, Supporting information
A), a probiotic used for treatment and prevention of rotaviral
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Figure 2. Beta diversity. Principal coordinate analysis of weighted Unifrac distancemetrics based on the taxonomic similarities between samples at genus
level. A) Groups fed test diets containing barley products or a fiber-free control group. Barley malt/BSG groups are different from groups fed CTRL, BG,
and AX. B) Groups fed CTRL, BG, and AX extract display different genus profile. C) BSG is different from SM, and (D) groups fed BSG are different from
CM. (TM, tipple malt; CM, cinnamon malt; SM standard malt; BSG, brewers’ spent grain; Mix, mixture of TM and BSG 70:30; AX, arabinoxylan extract;
BG, β-glucan extract; CTRL,fiber-free control).

Figure 3. Relative abundance (%) at the phylum level. Relative abundance
(%) of bacterial taxa at the phylum level in the caecum apex of rats fed test
diets containing barley products or a control diet. (TM, tipple malt; CM,
cinnamon malt; SM, standard malt; BSG, brewers’ spent grain; Mix, mix-
ture of TM and BSG 70:30; AX, arabinoxylan extract; BG, β-glucan extract;
Control, free-fiber control).

diarrhea,[33] and a suppressor of NF-κB and TNF-α inflammation
markers.[34,35]

Blautia was more abundant in rats fed BG extract, and these
bacteria were previously found in the cecumof rodents fedwhole-
grain diets[36] and also in cecum of rats fed whole-grain barley
and barleymalt.[12] It is suggested that these bacteria benefit from
the hydrogen as a product of glucan fermentation.[36] Thus, they

could have grown due to the depolymerization of β-glucan from
the BG extract diet.
Arabinoxylan: Total and soluble arabinoxylan affected the mi-

crobiota species differently. Unclassified Rikenellaceae, unclassi-
fied S24-7, unclassified Clostridiales, Ruminococcus, Odoribacter,
and Oscillospira are reported to be potentially butyrogenic[37] and
were more abundant in the cecum of rats fed diets high in to-
tal arabinoxylan but low in soluble arabinoxylan (TM, SM, BSG,
and mixture) (Figure 4 and Table S6, Supporting information A),
and negatively correlated with soluble fiber (Table S5, Supporting
information A), suggesting that insoluble arabinoxylan is one of
the preferred substrates for these taxa. On the other hand, solu-
ble arabinoxylan but not total arabinoxylan favored the growth
of Clostridium, Blautia, Allobaculum, Coprobacillus, although in
rather low abundance (<5%), and of Akkermansia in cecum of
rats fed malt/BSG. However, these bacterial species were also
correlated with substrates containing high content of β-glucan
and β-glucan Mw. Thus, the substrate preference between ara-
binoxylan and β-glucan was not that clear. Akkermansia was one
of the most abundant genus in the cecum of rats fed AX extract
(7%, Figure 4), suggesting that its growth was more dependent
on soluble arabinoxylan content than the other taxa. A decrease of
Akkermansia muciniphila, the only known species of this genus,
has been related to an increased risk to develop ulcerative colitis
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Figure 4. Relative abundance (%) at the genus level. Relative abundance (>5%) of bacterial taxa at the genus level in the caecum apex of rats fed test
diets containing barley products or a control diet. TM, tipple malt; CM, cinnamon malt; SM, standard malt; BSG, brewers’ spent grain; Mix, mixture of
TM and BSG 70:30; AX, arabinoxylan extract; BG, β-glucan extract; Control, free-fiber control.

Table 3. SCFAs in cecum of rats fed diets containing barley products (μmol).

TM CM SM BSG Mixture AX extract BG extract Control

Acetic 31a ± 3 44ab ± 6 38ab ± 3 44ab ± 4 41ab ± 6 53b ± 5 43ab ± 7 25a ± 2

Propionic 7a ± 1 11ab ± 2 8a ± 1 9ab ± 1 8a ± 1 14b ± 1 11ab ± 2 8a ± 1

Butyric 4.6ab ± 0.7 7.3b ± 0.9 5.3ab ± 0.6 6.7b ± 0.7 6ab ± 0.6 6.1ab ± 0.6 6.4ab ± 1.2 3.4a ± 0.3

Minora) 2.9ab ± 0.4 3.7ab ± 0.5 3.1ab ± 0.3 3ab ± 0.3 3ab ± 0.4 4.5b ± 0.5 4ab ± 0.7 2.3a ± 0.3

Total 45ab ± 4 66ab ± 9 55ab ± 5 62ab ± 5 59ab ± 9 78b ± 7 78b ± 17 38a ± 3

Values with different superscript letters (a-b) in the same row are significantly different at p < 0.05; a)Isobutyric, isovaleric, valeric, heptanoic, and caproic acid.

and obesity.[38] Intake of water-extractable arabinoxylan derived
from wheat has previously been linked with an increased forma-
tion of propionic acid in the cecum of rats.[8] Also in the present
study, diets containing higher proportions of soluble arabinoxy-
lan contributed with a higher cecal proportion of propionic acid
(Table 2 and 3), which could especially be seen in cecum of rats
fed AX extract, which could be the reason for the higher abun-
dance of Akkermansia with this material.
There was no direct correlation between Prevotella, Coprococ-

cus, and Dorea and the fiber components in the malt/BSG diets.
However, Dorea was more abundant in rats fed the BG extract
and the control, while Prevotella and Coprococcus seemed to have
a preference for AX extract but not for β-glucan.
Lignin-like substances and resistant starch: these were also

part of the total fiber intake, especially in malt/BSG diets, but
they were not correlated with any taxa.

3.5.3. Comparison of Tipple Malt, BSG, and Mixture

Mixture diet (70% TM and 30% BSG) was also used to evaluate
the possibility of adding BSG, a by-product of low cost, to malt
to modulate microbiota, which revealed to be a relatively easy ap-
proach for this purpose. Beta diversity and microbiota composi-
tion in rats fed TM, BSG and Mixture was similar at the phylum
level (Figure 2A), but different at the genus level within Firmicutes
(Table S6, Supporting information A). Coprococcus, a well-known
butyrate producer, was higher in rats fedmixture diet than in rats
given the TM diet (1.2% vs 0.4%, p < 0.05), which might be as-
sociated with the comparatively higher butyric acid formation in
cecum of rats fed BSG compared with TM. Furthermore, Bac-
teroides and Allobaculum, both reported to counteract adiposity
and insulin resistance,[38,39] weremore abundant in cecum of rats
fed TM than the Mixture (Table S6, Supporting information A).
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Figure 5. Prediction of bacterial metagenomes. PICRUSt analysis of 16S rRNA gene sequencing data. Functional microbial genes shown were enriched
in the respective groups and had an LDA score higher than 3.

In this study, there was no correlation between β-glucan intake
from malt and BSG diets and in the cecal number of Bacteroides,
which contrasts with studies in feces of man.[4]

3.5.4. Prediction of Functionality of Cecal Microbial Communities

PICRUSt analysis together with LEfSe detected a total of 1, 9,
12, 1, and 13 genes enriched in the cecum of rats fed control,
CM, BSG, BG extract, and AX extract, respectively (Figure 5).
Two genes specialized in environmental information process-
ing (both membrane transporters) were enriched in the control
group and CM group. In the group fed BG extract, only one
gene was enriched, specialized in energy metabolism. Genes en-
riched in CM were involved in genetic information processing
(two genes in translation and two in replication and repair) and
metabolism (two genes in membrane transport). With BSG, the
genes found were mostly involved in environmental information

(two genes in membrane transport and two in signal transduc-
ing) and cellular processes, all connected to cell motility (four
genes). One of these cell motility genes was related to flagella
assembly, which enables bacterial adhesion and invasion. Their
relation with the colon is not straightforward, since flagella can
be present in some harmful bacteria triggering inflammation, or
help beneficial bacteria to adhere to themucosa.[40] Five genes en-
riched in AX extract were involved in diversemetabolisms (carbo-
hydrate, lipid, amino acid, glycan, and co-factors and vitamins).
TCA (tricarboxylic acid) cycle present in the group fed AX extract
generates energy derived from carbohydrates, whichmay explain
a high degree of fermentation, especially of arabinoxylan. Fur-
thermore, in the TCA cycle one of the precursors of butyric- and
propionic acid (succinic acid) is produced, suggesting a high for-
mation of these SCFA as indicated by slightly higher amounts
detected in cecum of rats fed AX extract (Table 3). The genes re-
lated with glycan metabolism may reflect the high abundance of
the mucus degrading bacteria Akkermansia in the cecum of rats
fed AX extract.[41]
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4. Conclusions

The stimulation of most bacterial species was related to the con-
tent of soluble fibers, including soluble arabinoxylan, β-glucan
and/or β-glucan Mw and thus only a few with insoluble arabi-
noxylan. Akkermansia was more abundant in rats fed diets rich
in soluble arabinoxylan and formed high cecal amounts of pro-
pionic acid, while the butyrogenic Blautia, Allobaculum, and Lac-
tobacillus were more abundant in diets rich in β-glucan. Of the
malts, CM was particularly interesting as rats fed this product
appear to give a high alpha diversity, stimulate the caecal abun-
dance of Allobaculum, Blautia, and Lactobacillus, as well as bu-
tyric acid. Furthermore, BSG, with its distinct fiber composition,
stimulated the cecal abundance of Lactobacillus and also butyric
acid. This reinforces that different microbial communities with
different substrate preferences can induce the formation of the
same SCFAs, or that certain taxa, such as Lactobacillus, are lit-
tle dependent of substrate preference. The addition of BSG to
TM (i.e., mixture diet) resulted in an intermediary abundance of
some taxa, and a slight increase in cecal butyric acid and buty-
rogenic bacteria, which shows the possibility of using BSG as
a food ingredient to modulate the microbiota composition and
function.
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[21] O. Theander, P. Åman, E. Westerlund, R. Andersson, D. Pettersson,

J. AOAC Int. 1995, 78, 1030.
[22] L. Rimsten, T. Stenberg, R. Andersson, A. Andersson, P. Åman, Cereal
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