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Abstract: The global increase in multidrug-resistant infections caused by various pathogens has
raised concerns in human and veterinary medicine. This has renewed interest in the development
of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial
infections. The aim of this review is to present potential uses of bacteriophages as an alternative to
antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk
to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic
and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular
immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by
global antimicrobial resistance among bacteria creates a compelling need for alternative safe and
selectively effective antibacterial agents. Bacteriophages have many properties indicating their
potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can
also be used in food quality control against microorganisms such as Salmonella, Escherichia coli,
Listeria, Campylobacter and others. Future research will provide potential alternative solutions using
bacteriophages to treat infections caused by multidrug-resistant bacteria.
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1. Introduction

Zoonotic pathogens cause problems all over the world, including diseases such as
anthrax, brucellosis, bovine tuberculosis, hydatid disease, echinococcosis, trichinellosis,
rabies, highly pathogenic avian influenza, Nipah/Hendra disease and bovine spongiform
encephalopathy. In 2015, the WHO reported that more than 600 million people (1 in 10)
worldwide fell ill as a result of foodborne infections [1,2]. According to the European
Food Safety Authority (EFSA), the most frequently reported human foodborne diseases
were campylobacteriosis and salmonellosis. However, the most dangerous pathogens for
humans were identified as foodborne pathogenic bacteria found in livestock products,
including enterohaemorrhagic Escherichia coli (EHEC; O157:H7), Shigella sp., Enterococcus
spp. or Listeria spp. Multidrug-resistant pathogens isolated from human outbreaks, cattle,
swine, and poultry were most often S. aureus, Streptococcus spp., Vibrio sp. and Yersinia
spp. [3,4]. According to Niu et al. [5], these bacteria can also be transmitted to food products
by direct contact with animals or indirectly by vectors such as insects, rodents, wild birds,
or irrigation water.

The global increase in multidrug-resistant infections and antibiotic failures in control
of pathogens has raised concerns in human and veterinary medicine. An official report
of the European Food Safety Authority (EFSA) regarding zoonotic and indicator bacteria
isolated from humans, animals, and food showed that a high proportion (28.6%) of human
Salmonella strains were resistant to three or more antimicrobials, and 34.9% of E. coli strains
isolated from pigs were resistant to more than six antibiotics [6].
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There has been a marked increase in the antibiotic resistance of Gram-negative bacteria
via a variety of mechanisms, such as antibiotic target modification, antibiotic degradation,
and modulation of permeability through the bacterial membrane. These mechanisms
have limited the development of novel antibiotics. The most resistant strains of bacteria
are carbapenem-resistant Enterobacteriaceae, extensively drug-resistant (XDR) Pseudomonas
aeruginosa, and XDR Acinetobacter baumannii. Understanding the mechanisms of resistance
of multidrug-resistant bacteria is the main goal in the development of modern antibacterial
agents [7].

Global livestock production is faced with an alarming increase in bacterial resistance,
including among zoonotic pathogens. For example, Donkor et al., [8] showed higher antimi-
crobial resistance in livestock than in humans, with animal E. coli isolates exhibiting high
levels of resistance to tetracycline and penicillin. This has led to renewed interest among
scientists to develop alternative methods to antibiotics, including the use of bacteriophages,
since the beginning of the 21st century [9].

Widespread multidrug resistance among bacteria necessitates the search for alternative
methods of controlling infections, including pre- and probiotics, vaccines, bacteriophages,
nanoparticles, antimicrobial peptides (AMPs) and others. An example is the use of bacte-
riophages to reduce or eliminate pathogenic bacteria in livestock production, as biocontrol
agents to control foodborne pathogens and to reduce contamination on food-contact sur-
faces [9]. An important contribution to research on the use of bacteriophages to control
bacteria, including zoonotic pathogens, is the development and implementation of new
legal regulations in the EU regarding restrictions or complete bans on the use of selected
groups of chemotherapeutics in individual sectors of animal production. An example
of such legislative action is the EU Council Directive 2019/6 [10] coming into force in
January 2022.

1.1. General Characteristics of Bacteriophages

Due to the widespread nature of bacteriophages (phages) associated with crops, live
animals, and human intestinal environments, humans have direct and indirect contact with
them. Many studies have demonstrated the common presence of bacteriophages in various
fermented foods, such as yogurt and cheese. The application of specific bacteriophages to
foods helps to reduce foodborne pathogenic bacteria [5].

Bacteriophages are bacterial viruses, causing complete lysis of a susceptible bacterial
culture [11]. Interactions between phages and bacteria can be regarded as parasitism,
as most virulent phage replication necessarily results in bacterial death. Certain interac-
tions can be termed mutualistic, while some temperate phages encode benefits for the
phenotypic properties of the host bacteria [12] According to Batinovic et al. [13], the preva-
lence of bacteriophages in the environment has been a natural phenomenon for billions of
years, resulting in a balance of commensal and pathogenic bacteria. Phages and bacteria
are the oldest and most ubiquitous microorganisms on Earth, likely having originated
approximately 3 billion years ago [14,15].

Phages are prevalent in a variety of environments, including water, forest groundcover,
food products, wastewater, and animal and human waste [16]. Bacteriophages have also
been detected in commercial products, such as sera and human vaccines, as well as inside
the human mouth (dental plaque and saliva) and in the gastrointestinal tracts of animals
and humans [17].

Although bacteriophages may be present autonomously outside the host, all phages
require the bacterial cell as a host for multiplication. Most phages are highly specific for
host cell surface receptors such as receptor binding proteins (RBPs) or LPS [18,19].

1.2. History of Bacteriophages

Bacteriophages were first discovered more than 100 years ago by two microbiologists,
Frederick Twort from England and the French Canadian Felix d’Herelle [20,21]. The
first experimental and successful phage therapy was carried out by D’Herelle in the
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control of fowl typhoid in chickens (95–100% survival) [22]. He also coined the term
‘bacteriophage’, meaning ‘bacteria eater’. Finally, in 1940, electron microscopes were used
to identify the viral nature and morphology of phages [23]. Bacteriophages have been
used in various types of therapies in humans, e.g., in dermatological, ophthalmological,
urological, paediatric, otolaryngology and surgical infections. The significant therapeutic
success of these treatments had a major impact on the development of phage therapy in the
pre-antibiotic era. This was crucial, as the only treatment available in the first two decades
of the 20th century was serum therapy (e.g., for pneumococci or the diphtheria bacterium),
so bacteriophage therapy began to dominate in human medicine [24].

The discovery of the antimicrobial properties of Penicillium notatum in 1928 by Alexan-
der Fleming culminated in the successful development of the first major antibiotic, peni-
cillin, in 1941 [25], which marked the beginning of the antibiotic era and naturally inhibited
the development of bacteriophage therapy.

At present, as bacterial resistance to antibiotics is increasing significantly worldwide,
phages are one of the factors with potential to replace them [26]. The best known bac-
teriophage centres in the world are the Eliava Institute of Bacteriophages, Microbiology,
and Virology (EIBMV) of the Georgian Academy of Sciences, in Tbilisi, Georgia, and
the Hirszfeld Institute of Immunology and Experimental Therapy (HIIET) of the Polish
Academy of Sciences, in Wroclaw, Poland. Both institutes offer phage therapy against
many bacterial and fungal pathogens, e.g., Staphylococcus spp., Klebsiella sp., Proteus sp., E.
coli, and Pseudomonas sp., as well as other enteric pathogens [27–29].

1.3. Classification of Bacteriophages

Bacteriophages are the most widespread life forms on Earth. By 2018 year more
than 650 strains of bacteriophages had been deposited in the American Type Culture
Collection (ATCC) and >27,000 bacteriophage nucleotide sequences had been deposited
in the International Nucleotide Sequence Database Collaboration (INSDC) [30]. The total
number of these bacterial viruses has been estimated at 1032, which is 10 times the number
of characterized bacteria. In water, the total count of bacteriophages has been estimated at
104 to 108 virions/mL−1 [31].

The classification of bacteriophages is based on the type of nucleic acid (ssRNA,
dsRNA, ssDNA, dsDNA), the structure of the capsid (e.g., helical, pleomorphic, icosahe-
dral, filamentous/thread-like, complex/polyhedral), which is built of structural proteins,
and their life cycle, bacterial target, and site (Figure 1). The phage taxonomy criteria
applied by the International Committee on Taxonomy of Viruses (ICTV) were nucleic
acid composition and virion morphology [9]. In 2015 the Bacterial and Archaeal Viruses
Subcommittee (BAVS) classified phages into 873 species, 204 genera and 14 subfamilies [32].
The classification of bacteriophages is still ongoing, and in 2018 the ICTV presented a new
classification of these bacterial viruses into 142 families, 81 subfamilies and 4978 species [9].
Most bacteriophages (96%) belong to the order Caudovirales, which is grouped into three
main families: Myoviridae, Podoviridae and Siphoviridae [32]. Most bacteriophages contain
double-stranded DNA, and the nucleic acid is coated with a protein capsid. Some phages
have an additional layer (envelope) [17]. As new bacteriophages are continually being de-
tected, their classification is constantly modified. The latest classification of viruses, based
on the virus taxonomy proposed by the ICTV, was presented in our previous paper [33].
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1.4. Life Cycles of Phages

The life cycle of phages is an important element of infections of bacteria. Phages can be
categorized into types based on their virulence: lytic (virulent, productive) and lysogenic
(temperate, dormant). Virulent phages follow a lytic cycle in the bacterial cell and lyse it to
release a newly created population of phages [34].

The lytic cycle includes the adsorption, penetration, biosynthesis, assembly and re-
lease of bacteriophages from the infected bacterium. During this process many phages
use specific proteins located on the surface of the bacterial cell as receptors. During the
adsorption phase, the bacteriophage adheres to the bacterial cell, and phage proteins bind
to specific receptors, such as teichoic and lipoteichoic acid for Gram-positive bacteria or
LPS for Gram-negative bacteria [35]. The next phase, penetration, consists of destruction of
the bacterial wall by bacteriophage enzymes and insertion of the genetic material into the
bacterial cell. This is followed by the formation of capsid structures for nucleic acid and
protein replication, accompanied by inhibition of replication of bacterial DNA. The phage
genetic material is transcribed in the bacterial cell by RNA polymerases to produce mRNA,
which supresses host intracellular synthesis as a consequence of bacteriophage multiplica-
tion [36]. Tens, hundreds or thousands of replicated phages are released by means of lysis of
the bacterial cytoplasmic membrane by a phage protein (holin) and the formation of pores
by endolysin encoded by double-stranded phage DNA and peptidoglycan hydrolases. The
duration of the entire lytic cycle may be 20–40 min or up to 1–2 h [9,37].

Lysogenic infection via phages involves integration of their genetic material into the
chromosome of the infected bacteria (prophage), which does not destroy the bacterial cell or
produce a new population of bacteriophages. It leads to the integration of the phage genetic
material with the bacterial DNA and its transmission into a new population of bacteria.
This kind of bacteriophage is called a temperate phage, and in cells carrying a prophage it is
referred to as lysogenic. Nevertheless, the viral prophage, also called an endogenous phage
(a latent form of phage), can become activated by abnormal environmental conditions
and other external stress factors that can damage the bacterial genetic material, including
sunlight, UV radiation, some alkylating cytostatics (chlorambucil, cyclophosphamide,
ifosfamide, estramustine or chlormethine) or mutagenic antibiotics such as mitomycin C.
In some cases, the prophage is excised incorrectly from the chromosome, taking with it
neighbouring bacterial genes. This is one of the main means of horizontal gene transfer
(HGT) among bacteria, which is also one of the main methods in molecular biology [9].
Phages which have been defined as temporary include E. coli Lambda [38], with activity
against E. coli and other Enterobacteriaceae; phage Mu, specific for Salmonella, Citrobacter and
Erwinia; MM1 Streptococcus pneumoniae; and ϕ11 S. aureus [39].

In another type of life cycle involving chronic infection, bacteriophages infect the
bacterial cell, in which new phage populations arise without destroying the bacteria.
The chronic infection lifestyle is found in rod-shaped (filamentous) single-stranded DNA
phages and in plasmaviruses that infect mycoplasmas. In the chronic infection lifestyle,
phages are gradually eliminated from the bacteria over a long period without destruction
of the cell [40].
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2. The Spectrum of Use of Bacteriophages

The specificity of phage activity means that they infect only the bacteria specific for
them (called the host) via external receptors, which determines the phage host range.
Therefore, the use of phage therapy relies on a detailed and accurate characterization of the
bacteria, including pathotypes and serotypes. Bacteriophages can be used in a variety of
forms and methods to control and eliminate bacteria, including therapy, food protection
and sanitation procedures [1,9]. Examples of the scope of the use of bacteriophages are
presented in Table 1.

Table 1. Examples of the use of bacteriophages in controlling bacteria.

Scope of Use Example Host Pathogens References

Treatment of human and
animals

Gastroenteric, respiratory, urinary
tract and skin infections, otitis,

keratitis

E. coli, Salmonella spp., S. aureus,
Pseudomonas spp., Enterococcus spp.,

Acinetobacter baumanni
[1]

Prophylaxis and treatment

Neonatal diarrhoeal infections in
calves; E. coli, [41]

Campylobacter infections in broiler
chickens; Campylobacter jejuni [42]

Salmonella infections in chickens Salmonella spp. [43]

Decontaminants Biocontrol agents against food- and
beverage-borne pathogens

Control of LAB growth during
ethanol fermentation [44,45]

Biosanitization

On equipment surfaces to eradicate
biofilms in food production; on

plastic, glass, and ceramic surfaces
in hospitals

S. aureus, E. coli, P. aeruginosa, L.
monocytogenes Acinetobacter

baumannii
[46,47]

Bio-preservation Highly processed products with a
short shelf life

Listeria monocytogenes; Campylobacter
spp. [48]

Agriculture

Biocontrol of plant pathogens, i.e.,
potato and tomato diseases; onion

scab; lettuce and leek diseases; fruit
tree diseases; cultivated mushrooms

Pseudomonas spp., Xanthomonas spp.,
Erwinia spp., Ralstonia spp.,

Agrobacterium spp., Xylella spp.,
Pectobacterium spp., Dickeya spp.

Pleurotus ostreatus

[49]

Aquaculture Biocontrol of fish pathogens in
commercial fish farming

Mainly to Vibrio spp., less to
Edwardsiella spp., Lactococcus spp.,
Pseudomonas spp., Aeromonas spp.,

Flavobacterium spp.

[49]

Bacteriophages can potentially be used as biological control agents, especially in the
reduction and elimination of bacterial contamination in foods, e.g., by Salmonella, Listeria
monocytogenes, Campylobacter spp. or E. coli O157:H7 [15,50]. The high efficacy and safety
of bacteriophage therapy is due in part to their specificity for selected bacteria: a single
species, serotype, or strain. This is beneficial because the commensal gut microbiota is not
destroyed. Another advantage is that, due to the self-replication of bacteriophages at the
site of application, repetition of the application is often unnecessary. In many cases, no side
effects of clinical treatment are observed, indicating a high level of safety that has been
confirmed in many studies [51]. However, the application of bacteriophages in live animals
or humans induces a cellular immune response, which could lead to the inactivation of
phages, rendering them ineffective in eliminating bacteria [52–54].

In many experimental phage therapies a beneficial effect was observed as a significant
reduction in bacterial content or elimination of the pathogens. Phages have been used to
control Shiga-toxin-producing E. coli (ETEC) infections in newborn ruminants, including
calves and lambs, or other livestock species, such as piglets [41,55]. They have been
exploited to control bacterial infections in humans in many countries, including Poland,
Georgia, Russia, France, Belgium, Switzerland and the USA [56–58]. Phage therapies have
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been applied against infections caused by numerous pathogens, especially multidrug-
resistant bacteria, e.g., Acinetobacter, Burkholderia, Citrobacter, Enterobacter, Enterococcus,
Escherichia coli, Klebsiella, Morganella, Proteus, Pseudomonas, Shigella spp., Shigella flexneri,
Staphylococcus, Salmonella, Serratia and Stenotrophomonas. According to the Eliava Phage
Therapy Centre, bacteriophage therapy against Enterococcus faecalis, E. coli (O11, O18, O20,
O25, O26, O44, O55, O113, O125 and O128), Proteus vulgaris, Proteus mirabilis, Pseudomonas
aeruginosa, Salmonella spp., and Shigella spp. showed positive results in 35–50% of human
patients [59,60].

Bacteriophage Interactions during Phage Therapy

Bacteriophages are regarded as the most applicable ecological and alternative means
of elimination of pathogens (control and prevention of infections) due to their natural
origin and numerous advantages, including the following:

• lysis of bacteria usually highly resistant to antibiotic therapy, living in a biofilm;
• high degree of safety for commensal and symbiotic flora;
• possibility of use with other bacteriophages as a cocktail or with other antibacterials;
• complete biodegradability of bacteriophages, making them safe for the organism and

the environment [17].

However, phage therapy may carry a risk of immunological reactions, which is linked
to the protein structures of bacteriophages. The immune response to bacteriophages
depends on the location of the bacterial infection and the route of administration of the
phages. The activity of bacteriophages also relies on their ability to penetrate epithelial
cells and potentially spread to the bloodstream, lymph and internal organs such as the
lung, liver, kidney and brain [61]. Bacteriophages can activate dendritic cells to synthesize
pro-inflammatory factors (including IL-6, IL-1α, IL-1β and TNF-α) and to induce changes
in the expression profile of these cell surface proteins and activation of the NF-κB signalling
pathway [62].

The results of many studies confirm that bacteriophages can be phagocytosed by
mammalian cells [63]. For example, Geier et al. [64] demonstrated rapid removal of
wild-type phage λ from the circulatory system in humans. According to the authors,
phagocytosis via immune cells is the main process of elimination of bacteriophages in
mammals, and this mechanism takes place during lysis of bacteria by bacteriophages,
which increases the activity of phagocytic cells, including PMN cells. The higher number
of neutrophils at the site of infection is necessary to remove phage-resistant bacteria; this
neutrophil-phage cooperation process has been confirmed in the resolution of P. aeruginosa
infections [53,65]. However, some studies [66] have confirmed that bacteriophages can also
express anti-inflammatory properties by decreasing the expression of TNFα and monocyte
chemoattractant protein-1, which reduces ROS production by neutrophils and protects the
epithelia against damage.

Some bacteriophages can also be a natural component of the intestinal microbiota and
consumed food [67]. The oral administration of phages against Staphylococcus, Klebsiella,
Escherichia, Proteus and Pseudomonas also induces the production of antibodies [68]. There
has been no evidence of immunological disorders following phage ingestion per os at any
concentration [69]. Topical application of phages to animals and humans also caused no
side effects [70].

Minor problems have been observed in the case of other internal organs and blood
vessels, which are not natural environments for phages. Here the immunogenic and im-
munomodulatory effects of phages can be observed. Bacteriophages can have non-specific
effects on the immunological functions of various immune cells, including PMNCs, as
well as on cytokine production and the induction of specific antibodies against non-phage
antigens [71]. For example, resident liver macrophages (also called Kupffer cells) are able
to eliminate bacteriophages by phagocytosis four times faster than spleen macrophages.
The natural innate immune response is usually sufficient to eliminate pathogens before
the activation of adaptive immune mechanisms. Bacteriophages can activate immune
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mechanisms and thus affect the metabolic activity of immune cells. However, bacterio-
phages can inhibit the production and release of reactive oxygen species in response to
pathogens, which could decrease innate antibacterial immunity. [72]. Phages can induce
antibodies that neutralize them, which can inhibit the antibacterial effect of phages in the
form of lysis of targeted bacteria [71,73]. It is not currently clear how long this type of
antibody will remain in the body, as knowledge of the kinetic aspect of bacteriophage
activity is insufficient. Moreover, the titre of these antibodies depends on many factors,
including the route of application (local application causes a minor increase in antibodies)
and its frequency [74]. Some information about the influence of bacteriophages on immune
responses in animal’s model has been presented in Table 2.

Table 2. Examples of the influence of bacteriophages on immune responses in animals.

Kind of Phage Form of Application Animal Model Influence on Immune Parameters References

Pseudomonas spp. bacteriophage
(PA1Ø)

100 µL of PA1Ø (5 × 104 PFU; 5 ×
107 PFU (10 MOI) or 5 × 108 PFU

(100 MOI) in a single i.p. dose

4–5-week-old male ICR mice
weighing 24–26 g

Increase in phagocytosis (killing
effect of PA1Ø + PMN up to 6 h

after application)
[65]

Pseudomonas aeruginosa phage
PAK_P1

Intranasally at a curative dose of
1.0 × 108 PFU or 1.0 × 109 PFU

Wild-type BALB/c (C), wild-type
C57Bl6/J (B6)

Increase in neutrophil activity, NK
cells; reduced production of IFNγ

and TNFα
[75]

Cronobacter sakazakii ES2 phage Phage suspension 106 PFU·mL−1

in vitro 6–8-week-old C57BL/6 mice

Increase in expression of
maturation markers CD86, CD40,

and MHC II;
stimulation of induction of

NF-κBp65-mediated-IL-12p40;
stimulation of IL-12 expression;

suppression of IL-6, TNF-α, IL-1β,
and IFN-γ

[62]

E. coli T4 phage Intraperitoneal injection at 20
µg/mouse

Female C57Bl6/J (6–8-week-old)
mice

No effect on production of
cytokines IL-1α, IL-6, IL-12, and

TNF-α; minor changes in
expression

of MHC II, CD40, CD86, and CD80

[76]

E.coli T4 bacteriophages T4 phages 5 × 108 PFU/mL 8–12-week-old female C57BL/6
mice

Inhibition of specific antibody
response; reduction in

bacteria-induced ROS production
by phagocytic cells; antitumour

response; activation of T cells for
IFN-γ production

[77]

E. coli P1 and P2 phages 106 PFU/mL in vitro Mice Stimulation of TNFα; stimulation
of macrophage activity in vitro [78]

Wild-type E. coli T7 phage 109 PFU/mL injected in vitro into
tail vein of mice

Adult female C57BL/6J, SCID
(C57BL/6J-Prkdcscid),

B-cell-deficient
(C57BL/10-Igh-6tm1Cgn) and

T-cell deficient
(C57BL/6J-Hfh11nu) mice

Spontaneous antibodies, mainly
IgM, observed in sera; slight effect

on NK activation;
anti-inflammatory effect—ROS

suppression

[79]

Wild-type E.coliϕ26,ϕ27,ϕ29 107–108 PFU/mL for 5 days per
rectum as suppositories

25 newborn HF calves aged 1 d to
2 weeks

Significant increase in IgG and IgA
production stimulation of

nonspecific immune
response—IFNγ, lysozyme;

activation of acute phase response
SAA and HP

[41]

Wild-type E.coli phage and
bacteriophage genomes NC-A:
MK310182; NC-B: MK310183;

NC-G: MK310184

3 × 107 PFU/mL of phage mixture
with drinking water

8-week-old germ-free Swiss
Webster mice

Whole bacteriophages and phage
DNA stimulated IFN-γ via

nucleotide-sensing receptor TLR9
[80]

S. aureus vB_SauM_JS25 phage
MAC-T cells pre-treated with

vB_SauM_JS25 phage 108

PFU/well for 3 h

In vitro MAC-T bovine mammary
epithelial cells

Reduction in TNF-α, IL-1β, IL-6,
IL-8, and IL-10 [54]

Staphylococcus spp. bacteriophage
A3R or 676Z

3 doses of 1010 PFU/mouse in
drinking water and peritoneally C57BL/6J normal male mice Induction of specific antibodies in

blood (IgM, IgG, IgA) [81]

Klebsiella pneumoniae MTCC109
bacteriophage PA43

Intranasal application of 109 PFU
BPA43 phage after 2 h of bacterial

infection

BALB/c mice, 6–8 weeks old,
weight 20–25 g

Suppression of local inflammatory
reaction in lungs; suppression of
migration of lymphocytes and

macrophages

[82]

Antiphage antibodies are probably one of the most important factors influencing
the efficacy of phage therapy. However, the activation of the production of neutralizing
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antibodies by phages need not be a problem during the initial phase of treatment of
bacterial infections, because bacteriophage activity is much faster than the production of
phage-neutralizing antibodies [27]. However, these antibodies can affect the efficacy of
treatment during the second phase of therapy. This necessitates the implementation of
additional solutions, such as the following:

• repeating phage administration two or more times, because bacteriophages can multi-
ply at the site of application during infection of the host bacteria;

• increasing the phage concentration in the solution, because a high level of phages
protects against complete destruction by neutralizing antibodies;

• using different phages, especially during the second and subsequent cycles of appli-
cation during treatment, because resistance differs from one phage to another [27].
In addition to the increase in neutralizing antibodies during phage therapies, the
concentration of class M and G immunoglobulins increases as well and continues to
increase with subsequent applications of phage preparations [83,84].

Besides activating humoral response mechanisms, phages also play a significant role
in the modulation of cellular immunity against them. For example, s.c. application of
MS-2 phages induced a hypersensitivity reaction in guinea pigs [85]. It has been suggested
that the cellular response plays only a minor role in phage inactivation, as observed in
the case of phage T7 in T cell-deficient mice [79]. In another study [86], phages had an
immunosuppressive effect by suppressing the activation of T lymphocytes during the
development of transplantation tolerance.

While bacteriophage therapies have been an effective tool in control of bacterial
infections in various animal species, phages are also currently used for typing and diagnosis
of specific bacterial species and for control of foodborne pathogens in food.

3. Commercial Products with Bacteriophages for Elimination of Foodborne
Zoonotic Pathogens

Foodborne infections are the most important global health problem, contributing
significantly to hospitalizations and deaths worldwide despite many advances in pathogen
surveillance. Traditional food sanitation techniques using antimicrobial methods (including
pasteurization, high pressure, irradiation or chemical treatment) can reduce pathogens in
foods in varying degrees. However, these methods may damage equipment and adversely
affect the organoleptic qualities (and possibly the nutritional value) of foods. The most
important problem with using chemicals is that they eliminate ‘good’ microbes, which
are beneficial in natural preservation of foods [87]. Therefore, it seems preferable to
use an effective natural and ecological alternative such as bacteriophages for biocontrol
of foodborne pathogens. Bacteriophages are mainly used in three sectors of the food
industry to ensure food safety: primary production, biopreservation and biosanitization.
As components of commercial products, they are currently finding application in the
elimination of pathogens from food products of animal origin (meat products, milk and
dairy products) or plant origin (fresh fruits and vegetables).

The number of commercial bacteriophage products approved for use in food safety
in various countries is continually increasing. Many commercial companies around the
world have shown interest in information about the use of bacteriophages as antibacterial
tools to control foodborne pathogens, e.g., in the United States (AmpliPhi Biosciences (VI,
USA), Enbiotix (Boston, MA, USA); Intralytix), the United Kingdom (Novolytics, Sarum
Biosciences and Fixed Phage, Bolton, UK), EU countries such as France (Pherecydes Pharma,
Romainville, Ile-de-France, France) and Portugal (Technophage and InnoPhage, Lisbon,
Portugal), and other countries [88]. Detailed information about commercial bacteriophage
products used for biocontrol of foodborne pathogens in food is presented in Table 3.
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Table 3. Examples of commercial bacteriophage products used in biocontrol of foodborne pathogens in various foods.

Commercial Phage
Product Target Bacteria Company Target Food Products Country Approving

Product References

SalmoLyse® Salmonella spp. Intralytix, Inc., USA

Raw pet food ingredients;
meat products: chicken,

tuna, turkey; plant products:
cantaloupe, lettuce

USA [89]

SalmoFreshTM Salmonella spp. Intralytix Inc., USA
Poultry, fish and shellfish,
fresh and processed fruits

and vegetables
USA, Canada, Israel [90]

PhageGuard S
SalmonelexTM Salmonella spp. Micreos Food

Safety/Nederlands Fresh poultry meat USA, Canada, Australia,
Israel [91]

Bafasal®
Salmonella spp.,

Aeromonas spp. Pseudomonas
spp., Yersinia spp.

Proteon Pharmaceuticals
(Łódź, Poland)

Regulatory-approved
poultry feed Poland [9]

EnkoPhagum
Salmonella spp., Shigella spp.;

enteropathogenic E. coli;
Staphylococcus spp.

Brimrose Technology
Corporation (Sparks
Glencoe, MD, USA)

Meat products Georgia [92]

BacWash TM Salmonella spp. OmniLytics Inc. (Sandy, UT,
USA)

For disinfection of skin of
live animals prior to

slaughter
USA [4]

Biotector® S Salmonella Gallinarum
S. Pullorum

CJ CheilJedang Research
Institute of Biotechnology

(Seoul, Korea)

In animal feed to control
Salmonella in poultry South Korea [93]

PhageGuard STM Salmonella
Micreos Food Safety BV

(Wageningen, The
Netherlands)

Fresh poultry meat Netherlands, Australia,
Canada, USA [87,94]

EcoShield TM Escherichia coli O157:H7 Intralytix Inc. (Columbia,
MD, USA)

Kosher meat (ground beef);
vegetables (tomatoes,

broccoli, spinach); lettuce
and cantaloupe; leafy greens

USA [9,91,95]

Secure Shield E1 Escherichia coli O157:H7 FINK TEC GmbH (Hamm,
Germany) Beef carcasses USA [96]

EcoShield PX™ Stx Escherichia coli O157:H7 Intralytix, Inc., Baltimore,
MD, USA

Fresh-cut leafy greens; foods
of plant origin, beef, chicken USA, Canada, Israel [90,95]

ShigaShield™
(ShigActive™) Shigella spp. Intralytix, Inc., Baltimore,

MD, USA

Beef, poultry, dairy products,
including cheese; fruit and

vegetable surfaces
USA [90,97]

ListShield™ Listeria monocytogenes Intralytix, Inc., Baltimore,
MD, USA

Food biopreservative in
meat and poultry products USA, Canada, Israel [9,87,90]

Listex P100
PhageGuard

Listex™
Listeria monocytogenes Micreos Food Safety,

Wageningen, Netherlands

Beef and turkey meat; fish
and shellfish; dairy products;

red smear soft cheese,
smoked salmon and fresh
salmon; frozen vegetables

USA, Australia, New
Zealand, Israel,

Switzerland, the
Netherlands

[87,98]

ListPhage™ Listeria monocytogenes Intralytix, Inc., Baltimore,
MD, USA Pet food USA, EU [91]

Agriphage™
Xanthomonas campestris pv.

vesicatoria, Pseudomonas
syringae pv. tomato

OmniLytics Inc., USA
Foods of plant origin,

especially tomatoes and
peppers

USA [91]

Agriphage-Fire Blight Erwinia amylovora OmniLytics Inc., USA Surfaces of apples and pears USA [91]

Biolyse™ Erwinia, Pectobacterium,
Pseudomonas

APS Biocontrol
Ltd./Dundee, UK

Vegetables, including
potatoes UK, Europe [91]

4. Advantages and Disadvantages of Bacteriophage Therapy

Phages have several advantages over antibiotics as therapeutic agents, such as ac-
tivity against all types of bacteria, including MDR-pathogens. Their narrow antibacterial
spectrum (which protects the natural microbiome), the low level of side effects, and their
extensive distribution when administered systemically are also worth noting. They also
may exert an effect on the inflammatory response, and their low production cost and high
efficacy are significant benefits [31,99]. Many studies have confirmed the beneficial effects
of the use of bacteriophages, shown as follows:

Bacteriophages show high specificity for their target pathogens and kill only pathogens
without destroying the physiological saprophytic flora; the narrow host range of phages is
also a useful feature in prophylaxis of infections caused by enteric bacteria [100].
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The distribution of phages in the body following systemic administration is much
more extensive than in the case of antibiotics, in part due to the lack of or very low level of
resistance of bacteria [31].

• Because the mechanism of action of phages against the host bacteria is different to that
of antibiotics, they are highly effective against many pathogens, especially against
multidrug-resistant bacteria [36].

• Phages replicate at the site of infection even after a single application, because they
multiply inside the bacterial cell and therefore are released at the site of infection [101].

• Bacteriophages are resistant to stress factors during food production [91].
• Phage therapy is theoretically cheaper than antibiotic therapy due to the simplicity of

production [99]. The unit costs of production as well as the costs of isolation and char-
acterization are comparable or even lower than the costs of classical chemotherapeutic
products [102].

• There is no withdrawal period in livestock due to the lack of residue in tissues as soon
as therapy is completed [103].

• There are no side effects or allergic reactions because most bacteriophages consist
mainly of proteins and genetic material (DNA or RNA).

However, in addition to the positive effects of phage therapies, widespread use of
bacteriophages is limited by obstacles such as the following:

• Due to their high specificity for a single type of bacteria, bacteriophages have a narrow
host range [104].

• Bacteriophages may neutralize antibodies, which may prevent a portion of the admin-
istered phage dose from adhering to the target bacteria [104].

• Bacteriophages have poor stability in the environment, e.g., sunlight, UV, low pH <3.5,
or high temperature >50◦C [17,105].

• Only lytic phages are admissible in phage therapy because lysogenic (temporary)
phages may be a source of horizontal transfer of bacterial toxins or antibiotic resis-
tance [31].

• The duration of survival of phages is varied, depending in part on the presence of the
host bacteria. Their activity is also influenced by the environment within the organism
in which it is administered, and therefore the survival of phages must be monitored at
the site of administration in order to assess their antimicrobial activity [99].

• Information about the kinetics of phages remains insufficient, especially the degree of
adsorption, the number of replications necessary for a therapeutic effect, the latent
period, and their elimination from the body by phagocytic cells [106].

5. Bacteriophage Efficacy in Experimental Models

There are many methods of application of phages in therapies for humans and animals,
including intraperitoneal, subcutaneous or intramuscular injection or oral, intragastric,
rectal, topical or intranasal administration. Forms of administration of phages during
therapy include sprays, aerosols, lozenges, compresses, mouthwash, suppositories, throat
rinses, bandages, eye or ear drops and tampons [107]. In many studies in humans and
animals, the form of application and type of administration has been associated with the
type and location of the disease. In earlier studies [108–111], the best therapeutic effect was
observed after direct application of phages to the target bacteria, as in the case of bacterial
dysentery caused by Shigella; intestinal dysbacteriosis caused by E. coli and Proteus spp.;
lung and pleural infections caused by Staphylococcus; suppurative skin infections caused
by Pseudomonas, Staphylococcus, Klebsiella, Proteus, and E. coli; and infections of the skin or
nasal mucosa caused by Klebsiella spp.

Some studies have explored the use of phages for control and treatment of neonatal
enterotoxigenic E. coli infections in cattle, poultry and pigs [40,112]. Bacteriophages have
also been used in controlling systemic infections with foodborne pathogens, including
Salmonella spp., E. coli, Campylobacter spp., Vibro spp., Pseudomonas aeruginosa, and other
pathogens, such as Staphylococcus spp., Streptococcus spp., Klebsiella spp., Acinetobacter spp.,
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and even Mycobacterium spp. These experiments were carried out in experimental mouse
or rat models, as well as in chickens, rabbits, calves, pigs and sheep. Examples of the effects
of experimental phage therapies in different animal species and in the control of various
pathogens are presented in Table 4.

Table 4. Examples of major experimental studies on phage therapy in animals.

Animal Species Pathogen Species Phage Treatment Results Treatment Procedure References

Cattle–newborn
Holstein-Friesian heifers

E. coli O9:K30.99 106

CFU mL−1

Oral administration of phage
cocktail (B44/1 and B44/2),

1011 PFU mL−1

100 % reduction of mortality
in calves;

Significant reduction (93%)
of morbidity of bacterial

diarrhoea;
high protection against

ETEC infections

Treatment of diarrhoea [113]

Cattle–Holstein-Friesian
dairy cows

Staphylococcus
aureus

Direct infusions into teats
with bacteriophage K
cocktail (CS1, DW2)

(108 PFU ml−1)

About 10,000-fold reduction
of S. aureus in udder;

lower presence of somatic
cells in milk

Treatment of subclinical
mastitis [114]

20 female BALB/cJRj (SPF)
mice

Staphylococcus aureus
causing mastitis in cows

Inoculation with 108 PFU of
ISP phage mixture into

mammary glands

Significant reduction of
bacterial count; reduction or

lack of clinical changes in
mammary glands

Antibacterial activity
and therapeutic effect [115]

280 Holstein-Friesian
lactating cows with

metritis during the first and
second lactations

Escherichia coli strains
causing metritis

Intravaginal administration
of 20 mL 10-phage cocktail
109 PFU mL−1 at 230, 260
and 275 days of gestation

Lack of antibacterial effect;
no prophylactic effect

in prevention of metritis;
increased incidence of

retained placenta

Failure of therapeutic
and prophylactic effect

in metritis
[116]

25 newborn
Holstein-Friesian heifers

aged 0–14 days old

E. coli causing diarrhoea
in newborn calves

Rectal application as
suppositories of phage

cocktail (26, 27, 29 at 107 to
109 PFU mL−1) mixed with
Lactobacillus spp. strains for

5 days

Significant reduction of
clinical signs and duration of

diarrhoea <24h; significant
reduction of ETEC content in

faeces 2 log10 CFU/mL;
protection against

re-infection for 3 weeks after
treatment;

immunomodulatory effect

Prophylactic and
therapeutic effect
against diarrhoea

[41]

Holstein-Friesian dairy cows
with clinical or subclinical

mastitis

S. aureus strains
obtained from cows
with subclinical and
clinical mastitis, pig

farm and human
infections

0.1 mL phage cocktail
(STA1.ST29, EB1.ST11, and

27) 1.2 × 108 PFU/mL or 1.2
× 109 PFU/mL

against S. aureus inoculated
into about 5.0 mL of milk
obtained from cows with

mastitis

Significant reduction of S.
aureus in milk–2 log10

CFU/mL in vitro
Antibacterial activity [117]

3 female Yorkshire pigs
weighing~60 kg S. aureus ulcers

S. aureus F44/10 and
F125/10, inoculated

topically at 108 to 109 PFU

Slight reduction of S. aureus
strains, reduction of ulcerous

changes

Therapeutic effect on
skin ulcers [118]

16 small pigs 3 to 4 weeks
old

Salmonella enterica ser.
Typhimurium

at 5 × 108 CFU mL

Microencapsulated alginate
beads containing 16-phage

cocktail (SEP-1, SGP-1,
STP-1, SS3eP-1, STP-2,

SChP-1, SAP-1, SAP-2), ∼109

to 1010 PFU/mL by gavage

Significant early reduction
(99%) in concentration of S.
Typhimurium 2 to 3 log10

CFU/g in the ileum, caecum
and tonsils;

significant influence on
health status and AWG of

pigs

Prophylactic and
therapeutic effect [119]

3-week-old weaned pigs E. coli (ETEC);
O149:H10:F4

Oral administration of phage
cocktail GJ1–GJ7 or

mono-phage: prophylactic
1010 PFU/pig or therapeutic

108 PFU/pig

Significant reduction of
diarrhoea; reduction of

duration of diarrhoea <2
days, mean diarrhoea score,

and mean composite
diarrhoea score significant
reduction of ETEC strains;

protection against diarrhoea

Prophylactic and
therapeutic effect
against diarrhoea

[120]

Weaned pigs >4 weeks old

Oral challenge with
5 mL of

109 CFU/mL Salmonella
Typhimurium

Microencapsulated phage
cocktail in feed (5× 1011

PFU) for 5 days before
challenge with Salmonella

Typhimurium

Reduction of S.
Typhimurium in ileum and

caecum by about 1 log10
CFU/g

Therapeutic and
prophylactic effect [121]

4-week-old weaned pigs Salmonella enterica
serovar Typhimurium

5 mL of a 8- phage cocktail at
109 PFU/mL (SEP-1, SGP-1,

STP-1, SS3eP-1, STP-2,
SChP-1, SAP-1, SAP-2)

Significant reduction of
Salmonella Typhimurium;

100% lytic activity against 34
Salmonella reference strains

and 92.5% lytic activity
against 107 wild strains

Therapeutic effect in
diarrhoea [122]
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Table 4. Cont.

Animal Species Pathogen Species Phage Treatment Results Treatment Procedure References

Merino cross wethers sheep
(1 year of age)

S. aureus strain ATCC
25923

Phage cocktail CTSA 2 × 108

PFU/mL applied to right
and left sinuses

Reduction of tissue damage;
reduction of S. aureus

colonization

Therapeutic and
antibacterial activity [123]

20 Canadian Arcott rams
weighing 50 kg

E. coli O157:H7(109

CFU/mL

Oral administration of E. coli
phage cocktail P5, P8 and

P11 (1010 PFU) administered
orally 5 times using a sterile
60-mL syringe and stomach

tube

Significant reduction~2 log10
CFU of intestinal E. coli
O157:H7 in sheep; total

elimination of bacteria in
30% of animals

Prophylactic and
therapeutic effect [124]

Ross broiler chickens at 34 d
of age

S. enterica ser.
Enteritidis P125109; S.

enterica serotype
Typhimurium 4/74; S.

enterica serotype Hadar
18

Bacteriophage suspensions
as antacid administered by
oral gavage 9.0 or 11.0 log10
PFU ofϕ151 (S. enterica ser.
Enteritidis),ϕ25 (S. enterica

ser. Hadar), orϕ10 (S.
enterica ser. Typhimurium)

Significant reduction of S.
enterica ser. Enteritidis and

Typhimurium caecal
colonization by ≥4.2 log10

CFU within 24 h

Therapeutic and
prophylactic effect [125]

Young chicks Salmonella
Typhimurium DT104

Single oral dose of phage
FO1 of 109 (PFU)/chick in

encapsulated form

Reduction of Salmonella
Typhimurium strains in

caecum
Antibacterial effect [126]

Vrolix chicks aged 20 days Campylobacter jejuni
3-bacteriophage cocktail

5× 108 PFU of CP14, CP81
or CP68

Reduction of C. jejuni strains
in caeca by approx. 3 log10

CFU units

Antibacterial and
protective effect [127]

Chickens
Campylobacter jejuni;
S. enterica serovar

Enteritidis

Direct inoculation onto
chicken skin, C. jejuni typing
phage 12673 at 106 PFU/cm2

of skin;
S. enterica serovar Enteritidis
phage P22, phage 29C, 103

PFU/cm2 of skin

Significant reduction of
Campylobacter up to 2 log10
per unit area of skin within

48 h; reduction of C. jejuni ~2
log10 on experimentally

contaminated chicken skin
after phage application

Therapeutic and
antibacterial effect [128]

Ross strain 308 commercial
chicken broilers Salmonella enterica

3-phage cocktail,
liposome/alginate,

encapsulated,
1010 PFU/animal for 9 days

Significant decrease in
Salmonella spp.

concentration (~50%) in
caeca

Antibacterial activity [129]

Broiler chickens (Cobb 500)
at 1 d of age E. coli ser 02

Sprayed with 200 mL of
8× 108 PFU/mL phage

SPR02

Significant reduction of
mortality by >10%

Antibacterial and
protective effect [130]

8-day-old quail
Oral challenge with 100
µL of 1.2 × 109 CFU
ml−1 S. Enteritidis

Oral application of 100 µL of
106 PFU ml−1 bacteriophage

for 3 days

Reduction of S. Enteritidis in
caecal tonsils of Japanese

quails to 33.3 and 20%, 24 h
and 7 days after application;
prophylactic effect against S.

Enteritidis colonization,
increase in resistance against

Salmonella challenge

Prophylactic effect [43]

2-day-old New Zealand
White rabbits

Oral infection with
Vibrio cholerae 8 × 108

CFU

Oral application of 3 phages
(Phi_2, 24 and X29) 109 PFU

Reduction of bacteria count
up to 4 log10 CFU/g;

full protection against
clinical signs of disease

Prophylactic and
therapeutic effects [131]

120 eight-week-old female
BALB/c

mice

Mycobacterium
ulcerans

as ulcerous infections

Single dose of
mycobacteriophage D29

108 PFU/mouse
administered 33 days post

infection

Progressive reduction of
footpad swelling by day 150

post-infection
significant reduction of M.

ulcerans~1.5–2 log10 CFU/ml

Therapeutic effect and
antipathogenic activity

effect
[132]

Mice Pseudomonas aeruginosa

Bacteriophage PAK_P1
intranasally at curative dose

of 1.0 × 108 PFU/mL or
prophylactic dose of 1.0 ×

109 PFU (MOI 100)

Prophylaxis of acute
respiratory infections caused
by P. aeruginosa; significant
reduction of clinical signs;

resistance to infection;
stimulation of immune

response

Therapeutic and
prophylactic effect [75]

BALB-C female mice aged 10
weeks Pseudomonas aeruginosa

Single dose of phage
MMI-Ps1 107 PFU

suspension by intranasal
application

Prophylaxis against P.
aeruginosa infection;

significant reduction of
bacterial content in lungs

about 2 log10

Protective and
antibacterial effect [133]

Female mice C57BL/6 mice,
aged 7 to 8 weeks Acinetobacter baumanni

A. baumanni phage Bφ-C62
inoculated intranasally (1 ×

1010 PFU/ml

100% survival after
challenge with A. baumanni

Therapeutic effect,
slight

immunostimulatory
effect

[134]
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Table 4. Cont.

Animal Species Pathogen Species Phage Treatment Results Treatment Procedure References

BALB/c mice aged 6–8
weeks

Klebsiella
pneumonia-induced

pneumonia

Bacteriophage suspension 2
× 109 PFU/mouse applied

in a single dose i.n.

Significant decrease in
duration of illness and

microscopic lesions;
suppression of necrosis,

bronchiolitis, and infiltration
of inflammatory cells

Therapeutic effect [82]

BALB/c mice Klebsiella pneumoniae
B5055

50 µL of 108 PFU/mL single
and 5-phage cocktail applied

topically at wound site
(Kpn1, Kpn2, Kpn3, Kpn4

and Kpn5)

Significant reduction of K.
pneumoniae load to 4.32, 4.64,

4.42, 4.11 and 4.27 log
CFU/mL; rapid healing of

wounds in all phage-treated
groups

Therapeutic and
antibacterial activity [135]

Male Wistar rats; 9–10 weeks
old

Staphylococcus
aureus-associated

pneumonia

Intravenous application of
cocktail of 4 phages

(2–3× 109 PFU/mL of 2003,
2002, 3A, and K

Increase in survival from 0%
to 58% significant reduction

of bacterial content in the
lung (1.2× 106 CFU/g of

tissue for survivors vs.
1.2× 109 CFU/g for

nonsurviving animals);
reduction of lung damage

Therapeutic and
immunomodulatory
effect; antibacterial

activity

[136]

New Zealand White infant
rabbits (aged 3 days) and
CD-1 infant mice (aged 4

and 5 days)

Vibrio cholerae; oral
administration of

5 × 108 CFU/rabbit or
mouse

Oral administration of phage
cocktail (3 × 107 or 108

PFU/rabbit or mouse)

Protective effect against
cholera via significant

reduction of caecal
colonization by V. cholerae;

protection against
cholera-like diarrhoea

Prophylactic and
therapeutic effect [137]

New Zealand White rabbits
2-day-old

Vibrio cholera 5 × 108

CFU per animal

Phage Phi_1 at 1 × 109

PFU/animal orally
administered either 6 h

before or 6 h after bacterial
challenge

Protection against clinical
signs of cholera; lack of

diarrhoea;
significant reduction of 2–4

log10 CFU/g V. cholera

Prophylactic and
therapeutic effect [131]

Female C57BL6/SJL mice as
cow mastitis infection model

Streptococcus dysgalactiae
NRRL B-65273, S.

agalactiae NRRL B-65272,
and S. uberis NRRL

B-65274

Direct application into
mammary gland:

Streptococcus spp. phage
endolysins 25 µg/gland for
λSA2, 250 µg/gland for B30,
and 12.5 (λSA2) + 125 (B30)

µg/gland

Significant reduction of S.
dysgalactiae content by 3.5
log10 CFU; S. agalactiae (2

log); S. uberis (4 log);
protection against clinical

signs of mastitis

Therapeutic effect and
antibacterial activity [138]

6. Conclusions

To sum up, bacteriophages have many properties indicating their potential suitability
as therapeutic or/and prophylactic agents. Future research on the scope of phages will
provide a good picture of their potential to treat infections caused by multidrug-resistant
bacteria. However, as bacteriophages are essentially ‘living’ drugs, the study of their use
for therapy or biocontrol spans from purely clinical observations to molecular analysis to
considerations of immunology and ecology. Due to the antibiotic resistance crisis, there is a
compelling need for alternative safe and selectively effective antibacterial agents.
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Abbreviations

AMPs antimicrobial peptides
ATCC American Type Culture Collection
BALB Bagg Albino Mouse
BAVS Bacterial and Archaeal Viruses Subcommittee
CD cluster of differentiation
CFU colony-forming unit
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EFSA European Food Safety Authority
EHEC Enterohaemorrhagic Escherichia coli
ETEC Enterotoxigenic Escherichia coli
EFSA European Food Safety Authority
EIBMV Eliava Institute of Bacteriophages, Microbiology, and Virology
HF Holstein–Friesian
HIIET Hirszfeld Institute of Immunology and Experimental Therapy
HGT horizontal gene transfer
Hp haptoglobin
ICR Institute of Cancer Research
ICTV International Committee on Taxonomy of Viruses
IFNγ Interferon gamma
Ig immunoglobulin
i.p intraperitoneally
i.n intranasal
INSDC International Nucleotide Sequence Database Collaboration
IL interleukin
LAB lactic acid bacteria
LPS lipopolysaccharide
MAC-T mammary alveolar cells
MDR multidrug-resistant
MHC major histocompatibility complex
MOI multiplicity of infection
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NK Natural killer
PFU plaque-forming units
PMN polymorphonuclear
RBPs receptor-binding proteins
ROS reactive oxygen species
mRNA messenger RNA
SAA serum amyloid A
ssRNA single-stranded ribonucleic acid
dsRNA double-stranded ribonucleic acid
ssDNA single-stranded deoxyribonucleic acid
dsDNA double-stranded deoxyribonucleic acid
SPF specific free pathogens
stx Shiga toxin
TEM transmission electron microscopy
TNF-α tumour necrosis factor α
UV ultraviolet
WHO World Health Organization
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