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Dysfunctional lipid metabolism plays a central role in pathogenesis of major chronic diseases, and genetic factors are important
determinants of individual lipid profiles. We analyzed the associations of two well-established functional polymorphisms (FABP2
A54T and APOE isoforms) with past and family histories of 1492 population samples. FABP2-T54 allele was associated with an
increased risk of past history of myocardial infarction (odds ratio (OR) = 1.51). Likewise, the subjects with APOE4, compared with
E2 and E3, had a significantly increased risk of past history myocardial infarction (OR = 1.89). The OR associated with APOE4 was
specifically increased in women for past history of myocardial infarction but decreased for gallstone disease. Interactions between
gender and APOE isoforms were also significant or marginally significant for these two conditions. FABP2-T54 allele may be a
potential genetic marker for myocardial infarction, and APOE4 may exert sex-dependent effects on myocardial infarction and
gallbladder disease.

1. Introduction

Dysfunctional lipid metabolism plays a central role in
pathogenesis of major chronic diseases, including cardio-
vascular diseases, insulin-independent diabetes, and gall-
bladder disease [1, 2]. While environmental factors, such
as diet, are important determinants of circulating lipid
concentrations, heritabilities of lipid profiles have been
well elucidated in twin studies [3–6]. Because of the well-
established association between circulating cholesterol levels
and cardiovascular diseases, genes involved in cholesterol
synthesis and transport have been more extensively studied
than the others involved in long-chain fatty acids (LCFAs)
and phospholipids [2, 7–11].

Among a number of genetic loci that have been examined
thus far, APOE isoforms are the first common genetic poly-
morphisms that were linked to cardiovascular diseases
(CVDs) and Alzheimer’s disease [9, 12–14]. ApoE is a multi-
functional protein that is synthesized by the liver and several
peripheral tissues and cell types, including macrophages,

and a major component of several classes of plasma
lipoproteins including triglyceride-rich very-low-density
lipoprotein (VLDL) [13]. The protein is involved in the
efficient hepatic uptake of lipoprotein particles, stimulation
of cholesterol efflux from macrophage foam cells in the
atherosclerotic lesion, and the regulation of immune and
inflammatory responses and thus has key roles in lipid
transport in the plasma and in the central nervous system as
well as in responses to the dietary fat content and fatty acid
compositions [13–15]. Three isoforms, E2, E3, and E4, are
defined by combinations of amino acid (cysteine/arginine)
substitutions at codons 112 and 158 [12–14]. The most
recent meta-analysis by Bennet et al. demonstrated
approximately linear relationships of APOE genotype (E2
through E4) with both LDL cholesterol levels and coronary
risk, highlighting the effect of E2 [16], while two earlier
analyses emphasized the adverse effect of E4 on coronary
risk [17, 18]. Some studies also suggest that genetic effects of
APOE on several lipid parameters may be modified by gender
[19–25]. FABP2 encodes intestinal fatty acid binding protein,
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and its alanine (A)/threonine (T) substitution at codon 54 in
exon-2 [26] has received research interest as T54-containing
FABP2 protein has greater ability to transport LCFA than
A54-containing protein [27]. T54 allele has been associated
with higher plasma triglycerides [28–30] and free fatty acids
levels [31], a higher postprandial lipemic response [32, 33],
and higher postprandial glucose and insulin levels [26, 34,
35], as well as with CVD and type 2 diabetes in some studies
[36–41]. Due to their extensively studied roles in responses
to dietary fat intake as well as to the established functional
effect in vitro [8, 9, 14, 15, 27–35], these two polymorphisms
were originally chosen for the parent study to elucidate the
association with colorectal cancer [42], although the list of
genes is now growing, including APOA5 and LPL [2, 9–11],
owing to advance in genotyping technologies.

These polymorphisms are likely to have implications in
multiple chronic conditions related to lipid metabolism, but
most of the published studies to date have focused on single
conditions. Using the data from a population-based case-
control study [42], we had an opportunity to address if
these functional polymorphisms are associated with histories
of myocardial infarction, stroke, diabetes, and gallbladder
disease.

2. Methods

2.1. Study Design. This study was secondary data analysis of
the control subjects who participated in a population-based
case-control study for colorectal cancer in Metropolitan
Detroit, Mich, USA. Details concerning the ascertainment,
recruitment, and characteristics of the study subjects of
the parent study have been described elsewhere [42]. The
study was approved by Wayne State University Human
Investigation Committee and all subjects gave written
informed consent to participate in the study. In brief, eligible
subjects were between 45 and 80 years of age at time
of ascertainment, with a working telephone and no prior
history of any invasive cancer, in situ colorectal cancer,
or colectomy and were recruited through random digit
dialing. These subjects consisted of 57% of females, 43%
of males, 26.5% of African Americans, 69.2% of Non-
Hispanic Caucasians, and 4.3% of other racial groups.
The subjects were interviewed over the telephone using
structured questionnaires regarding their usual diet and
other risk factors for colorectal cancer (e.g., demographics,
smoking, physical activity, medication/supplement use, and
own and family history of major chronic diseases) for
the time-period preceding cancer diagnosis for the cases
(approximately 2 years prior to the interview). Specifically, a
semiquantitative food frequency questionnaire (FFQ), Block
98.2 (Block Dietary Data Systems, Berkeley, Calif), that was
validated against multiple diet records [43, 44] was used
to estimate daily nutrient intake. This questionnaire was
chosen based on its superiority to categorize individuals
on energy from fat as compared to the Willett instrument
[45] as dietary fat was a main focus of the study. The
residual method described by Willett and Stampfer was
used to calculate energy-adjusted nutrient intake [46]. The
study participants provided either peripheral blood (71%)

or buccal cell samples (29%) for TaqMan genotyping for
ApoE and FABP2 polymorphisms. Both polymorphisms were
found to be in Hardy-Weinberg equilibrium using P = 0.05
as the threshold.

2.2. Statistical Analysis. Out of the 1547 controls originally
consented to the study, 1492 with all study parameters were
included in this analysis. The following histories of diseases
were queried for subjects themselves as well as for their first
degree of family members (parents, children, and siblings):
myocardial infarction/heart attack, stroke and transitional
ischemic attack, diabetes, and gallstone/gallbladder surgery.
Odds ratios (ORs) and 95% confidence intervals (CIs) for
history (own, family, or both) of these diseases associated
with FABP2 and APOE polymorphisms were estimated using
an unconditional logistic regression model [47], adjusting
for selected covariates, which included demographic vari-
ables (age, sex, race (African American versus others), and
educational level), family size (numbers of own siblings and
children), common risk factors for major chronic diseases
(pack-years of cigarette smoking, body mass index (body
weight (kg)/body height (m)2), and alcohol intake), and
dietary covariates (energy-adjusted saturated fat, cholesterol,
dietary fiber, and total calcium intakes) that were known
risk factors for the diseases of interest and differed by either
FABP2 or APOE genotype. For the FABP2 polymorphism,
the AA genotype was used as the reference to calculate the
ORs for AT, TT, or those combined. E3 homozygotes were
used as the reference for APOE to calculate ORs associated
with E2 (E2/E2, E2/E3, and E2/E4) and E4 (E4/E4 and E4/E3)
isoforms, while the ORs were also calculated for E4 compared
with E2 and E3 combined. The decision to include E2/E4 to
E2 was based on the meta-analysis by Bennet et al. that clearly
demonstrated that total and LDL cholesterol levels were
lower in the E2/E4 genotype than in the wild-type E3/E3
group [16]. Tests for linear trend in the logit of risk associated
with these ordinal categorical genotypes were performed
using equally spaced scores to the categories. In addition, the
ORs were calculated stratified by gender, and the interactions
between the polymorphisms and gender were tested by
including their multiplicative interaction terms. All statistical
analyses were performed using SAS version 9.

3. Results

Overall, a total of 452 subjects reported previous diagnosis or
treatment for one of the diseases specified above, while 1095
reported family history of these diseases. Out of these 452,
357 had additional family history. Subjects who had been
diagnosed with these diseases were older than those who had
not. While diabetes and gallbladder disease were common
as past histories, heart attack was most prevalent as a family
history (Table 1).

As shown in Table 2, the subjects who carried at least one
FABP2-T54 allele were at an increased risk of past history of
myocardial infarction (OR = 1.51, 95% CI: 1.01–2.27). There
was no difference between homozygotes and heterozygotes.
The risk of myocardial infarction was further increased if
they had family history (OR = 1.93, 95% CI: 1.15–3.23).
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Table 1: The numbers of study subjects who reported past or family history of selected chronic diseases and their mean ages at study
enrolment.

Diseases
Medical history

Own Family Both

No. Mean age No. Mean age No. Mean age

Myocardial infarction 110 66.7 663 62.8 66 66.3

Stroke 74 68.2 444 62.6 21 66.0

Diabetes 204 64.7 573 62.1 123 64.6

Gallbladder disease 203 64.7 280 60.8 53 63.7

Any of the above 452 65.0 1095 62.4 357 65.0

None of the above 1040 61.3 397 62.5 1135 61.6

Table 2: Odds ratios (ORs) and 95% confidence intervals (CIs) for history of selected chronic diseases according to FABP2 genotypes.

Diseases Genotype
Medical history

Own Family Both

Yes/No OR 95% CI Yes/No OR 95% CI Yes/No OR 95% CI

Myocardial infarction

AA 51/777 1.00 — 358/470 1.00 — 27/801 1.00 —

AT 51/509 1.55 1.02–2.35 262/298 1.14 0.92–1.42 35/525 2.04 1.20–3.46

TT 8/96 1.33 0.60–2.98 43/61 0.94 0.62–1.43 4/100 1.30 0.44–3.87

AT + TT 59/605 1.51 1.01–2.27 305/359 1.11 0.90–1.36 39/625 1.93 1.15–3.23

P = 0.089 P = 0.595 P = 0.051

Stroke

AA 41/787 1.00 — 258/570 1.00 — 13/815 1.00 —

AT 30/530 1.11 0.67–1.84 158/402 0.86 0.68–1.09 8/552 — —

TT 3/101 0.65 0.19–2.20 28/76 0.85 0.54–1.36 0/104 — —

AT + TT 33/631 1.05 0.64–1.70 186/478 0.86 0.68–1.08 8/656 0.80 0.32–1.97

P = 0.869 P = 0.220 P = 0.406

Diabetes

AA 118/710 1.00 — 298/530 1.00 — 75/753 1.00 —

AT 76/484 0.94 0.68–1.31 234/326 1.32 1.06–1.65 44/516 0.88 0.59–1.32

TT 10/94 0.66 0.32–1.35 41/63 1.26 0.82–1.93 4/100 0.46 0.16–1.30

AT + TT 86/578 0.90 0.66–1.24 275/389 1.31 1.06–1.63 48/616 0.82 0.55–1.21

P = 0.335 P = 0.029 P = 0.168

Gallbladder disease

AA 112/716 1.00 — 148/680 1.00 — 30/798 1.00 —

AT 81/479 1.05 0.76–1.44 118/442 1.20 0.91–1.59 21/539 0.93 0.52–1.68

TT 10/94 0.74 0.37–1.49 14/90 0.73 0.40–1.33 2/102 0.56 0.13–2.43

AT + TT 91/573 1.00 0.73–1.36 132/532 1.13 0.86–1.47 23/641 0.88 0.50–1.56

P = 0.710 P = 0.876 P = 0.512

ORs were adjusted for age, sex, race, educational levels, cigarette smoking (pack-years), alcohol intake, body mass index, energy-adjusted dietary saturated
fat, cholesterol, fiber and total calcium intakes, and family size. P values for a linear trend for the number of T-alleles.

For other diseases, there were no consistent associations with
the T54 allele, except an increased risk of family history of
diabetes (P value for trend = 0.029). Likewise, the subjects
with the APOE4 genotypes had a significantly increased
risk of past history of myocardial infarction compared
with E2 and E3 combined (OR = 1.89; 95% CI: 1.24–
2.88) (Table 3). The similar trend was observed for the
subjects with both past and family histories of myocardial
infarction, but it remained marginally statistically significant
(OR = 1.64, 95% CI: 0.97–2.80). There were no statistically
significant associations between APOE genotypes and the
rest of the diseases. Although the information was available
only for the subjects themselves, the prevalence of high

blood cholesterol or use of cholesterol-reducing medication
increased progressively from E2 through E4 with a significant
linear trend (P = 0.002) (data not shown).

Table 4 presents gender-specific ORs for past history of
these conditions according to the APOE polymorphism. The
increasing risk of myocardial infarction from E2 through
E4 was only observed in women. Compared with E3
homozygotes, the ORs associated with E2 and E4 were
0.52 (95% CI: 0.17–1.62) and 1.93 (95% CI: 1.00–3.70),
respectively, in women, while in men both ORs were equally
elevated. As a result, the interaction between gender and
APOE isoforms was statistically significant (P = 0.01). There
were no statistically significant differences in the association
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Table 3: Odds ratios (ORs) and 95% confidence intervals (CIs) for history of selected chronic diseases according to APOE genotypes.

Diseases Genotype
Medical history

Own Family Both

Yes/No OR 95% CI Yes/No OR 95% CI Yes/No OR 95% CI

Myocardial infarction

E2 16/223 1.14 0.62–2.08 113/126 1.16 0.86–1.55 9/230 0.99 0.46–2.13

E3 51/810 1.00 — 378/483 1.00 — 33/828 1.00 —

E4 43/349 1.95 1.25–3.04 172/220 1.01 0.79–1.29 24/368 1.64 0.94–2.86

E4 versus E2E3 1.89 1.24–2.88 0.98 0.77–1.24 1.64 0.97–2.80

P = 0.022 P = 0.477 P = 0.119

Stroke

E2 15/224 1.28 0.67–2.45 77/162 1.11 0.81–1.52 3/236 0.75 0.20–2.74

E3 37/824 1.00 — 255/606 1.00 — 12/849 1.00 —

E4 22/370 1.10 0.63–1.93 112/280 0.94 0.72–1.23 6/386 0.87 0.31–2.42

E4 versus E2E3 1.03 0.61–1.76 0.92 0.71–1.19 0.93 0.35–2.49

P = 0.764 P = 0.382 P = 0.904

Diabetes

E2 36/203 0.98 0.64–1.51 98/141 1.09 0.81–1.47 26/213 1.35 0.81–2.23

E3 121/740 1.00 — 323/538 1.00 — 64/797 1.00 —

E4 47/345 0.73 0.50–1.07 152/240 1.00 0.78–1.28 33/359 1.02 0.64–1.61

E4 versus E2E3 0.73 0.51–1.06 0.98 0.77–1.25 0.94 0.61–1.46

P = 0.173 P = 0.645 P = 0.395

Gallbladder disease

E2 36/203 1.09 0.72–1.67 49/190 1.20 0.83–1.74 11/228 1.38 0.66–2.90

E3 121/740 1.00 — 157/704 1.00 — 29/832 1.00 —

E4 46/346 0.80 0.55–1.17 74/318 1.12 0.81–1.53 13/379 0.98 0.50–1.95

E4 versus E2E3 0.79 0.55–1.13 1.07 0.79–1.45 0.91 0.47–1.75

P = 0.187 P = 0.866 P = 0.473

ORs were adjusted for age, sex, race, educational levels, cigarette smoking (pack-years), alcohol intake, body mass index, energy-adjusted dietary saturated
fat, cholesterol, fiber and total calcium intakes, and family size, E2 includes E2/E2, E2/E3, and E2/E4, and E4 includes E4/E3, and E4/E4. P values for a linear
trend for E2, E3 and E4.

of APOE with diabetes by gender. The association of APOE
isoforms with gallbladder disease was the opposite in men
and women. In women the OR was the lowest with E4
(0.67, 95% CI 0.43–1.06) and the highest with E2 (1.28,
95% CI: 0.79–2.08) (P value for trend= 0.025), but in men
it was the highest with E4 (1.14, 95% CI: 0.58–2.26) and
the lowest with E2 (0.58, 95% CI: 0.22–1.58) (P value for
trend= 0.244). The interaction with gender was marginally
statistically significant (P = 0.088). There were no significant
interactions between FABP2 polymorphism and gender for
any medical conditions (data not shown).

4. Discussion

The results of the present study are consistent with those
in a few other studies that reported the significant effect of
FABP2-T54 on the risk of myocardial infarction or coronary
heart disease with the ORs ranging from 1.41 to 2.50 [36–
38]. It is interesting to note that the positive associations
in these earlier studies were found in patients who were
diagnosed with metabolic syndrome or had one of the
conditions of the syndrome. Although we did not collect
the information about hypertension, 59.5% of our study
subjects had at least one condition that satisfied or was
indicative of the criteria for metabolic syndrome, that is,
obesity (BMI (kg/m2) ≥ 30), history of diabetes, or a history

of high blood cholesterol (a surrogate marker for atherogenic
dyslipidemia) [48]. Thus, these results suggest that other
cardiovascular risk factors may be important effect modifiers
of the FABP2 polymorphism and warrant further studies in
populations with diverse risk profiles for CVD.

We also confirmed the association between APOE poly-
morphism and risk of myocardial infarction reported by
many others [16–18], especially for E4 genotypes. Although
the latest meta-analysis showed stepwise increases in total
and LDL cholesterol levels and in risk of coronary heart
disease from E2 homozygotes, E2 heterozygotes, E3/E3 wild-
type, E4/E3, and E4 homozygotes [16], there were not
enough subjects in each of the combinations, E2/E2 (N =
11), E2/E4 (N = 43), and E4/E4 (N = 42), to analyze
them separately in our study. The exclusion of E2/E4 from
the E2 group, however, had only nominal effects on the OR
estimates associated with E2 genotypes. For example the OR
for past history of MI changed from 1.14 (0.62–2.08) to
1.11 (0.58–2.13). Furthermore, our study and others suggest
that the effects of APOE genotypes were greater in women
than in men [19–25]. APOE is primarily produced in the
liver, while it has been well documented that the liver is a
sexually dimorphic organ. Hepatic gene expression is often
sex specific, mediated through sex-dependent activation of
several liver-enriched transcription factors in response to
sex-specific secretion patterns of pituitary growth hormone
[49, 50]. In fact, higher circulating levels of APOE in
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Table 4: Odds ratios (ORs) and 95% confidence intervals (CIs) for past history of selected chronic diseases according APOE genotypes and
gender.

Diseases Genotype
Females Males

P values for interaction
Yes/No OR 95% CI Yes/No OR 95% CI

Myocardial infarction

E2 4/129 0.52 0.17–1.62 12/94 1.70 0.81–3.56

E3 22/475 1.00 — 29/335 1.00 —

E4 21/205 1.93 1.00–3.70 22/144 1.92 1.03–3.58

E4 versus E2E3 2.18 1.16–4.09 1.68 0.94–3.00

P = 0.009 P = 0.463 0.008

Stroke

E2 9/124 1.34 0.57–3.15 6/100 1.22 0.42–3.55

E3 21/476 1.00 — 16/348 1.00 —

E4 13/213 1.11 0.53–2.33 9/157 1.05 0.42–2.61

E4 versus E2E3 1.03 0.51–2.06 1.00 0.42–2.38

P = 0.772 P = 0.846 0.850

Diabetes

E2 22/111 0.99 0.56–1.73 14/92 0.93 0.47–1.87

E3 68/429 1.00 — 53/311 1.00 —

E4 32/194 0.89 0.55–1.44 15/151 0.50 0.26–0.97

E4 versus E2E3 0.89 0.56–1.42 0.51 0.27–0.97

P = 0.706 P = 0.103 0.762

Gallbladder disease

E2 31/102 1.28 0.79–2.08 5/101 0.58 0.22–1.58

E3 92/405 1.00 — 29/335 1.00 —

E4 31/195 0.67 0.43–1.06 15/151 1.14 0.58–2.26

E4 versus E2E3 0.64 0.41–0.99 1.27 0.66–2.46

P = 0.025 P = 0.244 0.088

ORs were adjusted for age, race, educational levels, cigarette smoking (pack-years), alcohol intake, body mass index, energy-adjusted dietary saturated fat,
cholesterol, fiber and total calcium intakes, and family size. E2 includes E2/E2, E2/E3, and E2/E4, and E4 includes E4/E3 and E4/E4. P values for a linear
trend for E2, E3 and E4.

females, female-predominant hepatic expression of fatty acid
translocase and differential fatty acid compositions between
males and females have been demonstrated in both humans
and rodents [51–53]. Thus, effects of genetic polymor-
phisms may be more articulated in females through such
transcriptional upregulation. This also explains the absence
of the interaction between gender and FABP2 (intestinal
type), whereas sex-dimorphic effects of FABP1 (liver-type)
knockout have been noted in rodent models [54, 55].

Surprisingly few studies have addressed the association
between the APOE polymorphism and risk of diabetes. How-
ever, our marginally significant inverse association with E4
genotypes and past history of diabetes was consistent with a
mouse model demonstrating that APOE deficiency abrogates
insulin resistance [56] and with the observations in humans
that the E4 genotypes were associated with a decreased
risk and E2 genotypes with an increased risk of diabetes
[57, 58]. On the other hand, the associations between the
FAPB2 polymorphism and diabetes remain inconsistent [59]
despite the fact that the polymorphism has been associated
with postprandial glucose and insulin levels [26, 34, 35].
Our study found the only modest association between T54
allele and family history, which was not confirmed with own
history and thus likely to be a chance finding.

Excessive biliary cholesterol in conjunction with de-
creased bile acid output is the requisite for the formation of
gallstones, particularly for cholesterol stones which account
for the vast majority of this disease in Western countries and

which are much more common in females than in males [60].
APOE plays a role not only in cholesterol metabolism but
also in bile acid synthesis. Fecal bile acid output has been
reported to be lowest in the subjects with E4 allele, highest in
the subjects with E2 allele, and intermediate in the subjects
with E3 homozygotes [61–65]. While the results of earlier
studies are very mixed, some with a positive association with
E4 [66–70], others with no association [71–74], and one with
an inverse association [75, 76], the current study indicates
that the effects of APOE may also be sex dependent, that is, a
significantly reduced risk in women with E4, but not in men.
This corresponds to the APOE knockout mouse model where
bile acid synthesis markedly varies by gender [77].

There are several limitations in this study. We realize that
a certain degree of misclassification exists in self-reported
past and family history of diseases, which is likely to bias
the results toward a null association. As far as the medical
conditions selected for this study are concerned, moderate
to high agreement (0.55–0.91 as kappa statistics) has been
observed between self-reports and in medical records [78–
80]. In addition, more than 50% of our study subjects
had some college education [42], which further ensures the
quality of self-reported data. Therefore, the magnitude of
underestimation of the ORs is likely to be relatively small.
Another concern is the coverage of disease spectra. Fatal
cases of their own could not be included in this study,
whereas fatal cases in their families may have been recalled
more accurately. Thus, the interpretation of the ORs for
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past and family histories may differ particularly for CVD.
Exclusion of fatal cases as well as cases who had severe
complications especially in their speech may account for the
small number of past histories of stroke reported in this
study. Third, these chronic conditions stay asymptomatic for
a long period of time. Thus, diagnoses of such asymptomatic
cases depend on their preventive care or the presence of other
conditions that require routine follow-up visits to health
care professionals. Accordingly, some undiagnosed cases of
diabetes and gallstones and subjects who underwent cardiac
bypass or angioplasty without a heart attack were classified
as a negative history in this study, which would further
reduce potential differences between cases and noncases.
Fourth, there is significant likelihood that some of the
associations observed in this study were chance findings
due to multiple comparisons in terms of outcome variables,
although we focused on the two well-established functional
polymorphisms. Finally, we acknowledge reverse temporal
associations between the disease outcomes and some of the
covariates included in the model, that is, smoking, BMI, and
alcohol and dietary intake, which may have changed due to
the diagnosis. However, these yielded predicted directions
with histories of all diseases combined, that is, significant
positive associations with cigarette smoking and BMI and
inverse association with alcohol and calcium intake (data
not shown). Although these adjustments may not have fully
controlled confounding, it is less likely that the genotype
distributions were affected by these covariates.

5. Conclusions

Despite the limitations discussed above, the results of the
present study suggest that FBBP2-T54 allele is potential
genetic marker for myocardial infarction and that the APOE4
isoform may exert opposite effects on myocardial infarction
and gallstone disease in women, increasing risk for the
former and decreasing risk for the later.
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