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With an astounding five million fatal cases every year, lung cancer is among the leading causes of mortality worldwide for both
men and women. The diagnosis of lung illnesses can benefit from the information a computed tomography (CT) scan can offer.
The major goals of this study are to diagnose lung cancer and its seriousness and to identify malignant lung nodules from the
provided input lung picture. This paper applies unique deep learning techniques to identify the exact location of the malignant
lung nodules. Using a DenseNet model, mixed ground glass is analyzed in low-dose, low-resolution CT scan images of nodules
(mGGNs) with a slice thickness of 5 mm in this study. This was done to categorize and identify many histological subtypes of lung
cancer. Low-resolution CT scans are used to pathologically classify invasive adenocarcinoma (IAC) and minimally invasive
adenocarcinoma (MIA). 105 low-resolution CT images with 5 mm thick slices from 105 patients at Lishui Central Hospital were
selected. To detect and distinguish, IAC and MIA, extend and enhance deep learning two- and three-dimensional DenseNet
models are used. The two-dimensional DenseNet model was shown to perform much better than the three-dimensional DenseNet
model in terms of classification accuracy (76.67%), sensitivity (63.3%), specificity (100%), and area under the receiver operating
characteristic curve (0.88). Finding the histological subtypes of persons with lung cancer should aid doctors in making a more
precise diagnosis, even if the image quality is not outstanding.

1. Introduction

CT or CAT scanning, often known as computed tomogra-
phy, is a noninvasive testing method. With the use of
computer technology and a specialized sort of X-ray, a CT
scan may provide cross-sectional pictures (slices) of soft
tissue, organs, bone, and blood arteries in any part of the
body. The development of CT lung cancer screening has
transformed medical imaging by delivering more thorough
data than traditional X-rays and, eventually, better patient
care. Chest X-ray, low-radiation chest computed

tomography (CT), and standard radiation chest CT are
imaging techniques used to assess the lungs. Due to its ability
to identify cancer with greater sensitivity than X-rays while
exposing patients to less radiation than regular chest CT,
low-radiation-dose CT is suitable for cancer screening. Lung
cancer is the most common type of cancer that kills people
around the world, with an 18% chance of survival after 5
years [1]. Pulmonary nodules are one of the early signs of
lung cancer, and as low-dose CT scanning and lung cancer
screening become more common, they are increasingly used.
Pulmonary nodules can be divided into solid nodules, pure
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ground-glass nodules (pGGNs), and mixed ground-glass
nodules (pGGNs) based on whether or not they have solid
parts [2]. Mixed ground-glass nodules are more likely to be
cancerous than the other two types of lung nodules [3, 4].
In 2015, the World Health Organization (WHO) put
lung adenocarcinoma into a category and said that it is a type
of lung cancer. The pathology could be invasive adenocar-
cinoma (IAC) or minimally invasive adenocarcinoma (MIA)
[5-7]. The imaging signs are called mGGNSs, and the pa-
thology could be invasive adenocarcinoma (IAC) or mini-
mally invasive adenocarcinoma (MIA) (MIA). Even though
both MIA and IAC are cancerous growths, the 5-year
survival rates for each surgery are different. Patients with
MIA who have complete surgical resection have a 5-year
survival rate of 100% or very close to 100%. Recent data
suggest that sublobar resection may be a good option for
these lesions. Patients with IAC who need sublobar resection
have a 74.6 percent 5-year survival rate [7-10]. It is clear that
using CT imaging to classify and find these two histological
subtypes of lung cancer has important clinical implications.
The classification of lung adenocarcinomas includes a
relatively recent category called minimally invasive adeno-
carcinoma (MIA). This group of lesions includes tiny, sol-
itary adenocarcinomas that are less than 3 cm (or less than
30mm) in size and have either purely lepidic growth or
mostly lepidic growth with less than 5mm of stromal in-
vasion. Localized lung adenocarcinomas that are less in-
vasive have a diameter of less than 3 cm, a prominent lepidic
growth pattern, cancerous cells along alveolar structures,
and a stromal invasion of less than 5mm. These lesions
should not have pleural, lymphatic, or vascular invasion.
Nonmucinous histopathological subtypes include the fol-
lowing three: Mucinous: goblet cell and mucus-secreting,
out of which mucus-secreting is frequently multicentric,
uncommon and mixed, and is by far the most prevalent
subtype. Similar to adenocarcinoma in situ, lung cancer that
is only marginally invasive cannot be accurately identified
without a complete histologic sample of the tumor.
Invasive apocrine carcinoma (IAC) is a kind of breast
cancer that has a morphologic look similar to apocrine sweat
glands in at least 90% of tumour cells and is tightly associated
with androgen receptor expression. Molecular research
suggests that invasive apocrine carcinomas are a unique
subtype of breast cancer. IAC is distinguished by a pattern of
gene expression that is substantially influenced by AR ex-
pression. AR might be a therapeutic target. IAC did not
cluster with the basal-like group despite being negative for
ER, PR, and HER2. About half of the patients tested negative
for ER and PR but positive for HER2. Tumors have a high
degree of overlap with the HER2 group, as determined by
intrinsic gene categorization. Data from gene expression
reveal a relationship between HER2 signalling and the
molecular apocrine phenotype. The gene signature contains
elevated expression of several genes involved in metabolism.
Pulmonary nodules, which are groups of abnormal cells
in the lungs and may be the first signs of lung cancer, are
found on CT imaging. Prior to the onset of lung cancer’s
clinical symptoms, these nodules are frequently identifiable
on CT. It has been demonstrated that early pulmonary
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nodule diagnosis using CT screens improves survival
compared to those who do not have a lung CT scan. Al-
though pulmonary nodules are common, not all of them are
malignant. In actuality, the majority of nodules are not
malignant and are brought on by scar tissue from a previous
lung infection. Small nodules are routinely seen during
computed tomography screening but are subsequently
shown to be benign. Additional diagnostic procedures will
be advised if a nodule raises cancer suspicion.

The authors [11] investigated the efficacy of computer-
aided quantitative analysis in the differential diagnosis of
several invasive lung adenocarcinomas and assessed the
repeatability of computer-aided quantitative measurement.
Quantitative analysis of preoperative CT imaging signs was
discovered by the authors [12]. It is essential to identify
adenocarcinoma in situ (AIS) and malignant adenocarci-
noma in situ (MIA) from pulmonary ground-glass nodule
IAC. The authors reviewed the CT differential diagnosis of
MIA and IAC exhibited as pGGNs [13]. When pGGNs
lesions are accompanied by lobulation signs, speculative
symptoms, or air bronchus signs, CT scans of the chest with a
thickness of 5 mm have shown that the bronchus in pGGNs
is twisted and dilated. The vascular bundle sign is more likely
to be IAC large. These quantitative analysis studies suggest
that CT imaging has a discriminative value for classifying
lung adenocarcinoma histological subtypes.

Many hospitals in China still use thick-slice CT scans for
lung cancer screening. 5mm thick CT scans are the most
conventional scanning methods. The dose and intensity of
X-rays are lower, and the damage to the human body is more
minor. However, 5mm thick CT scan image resolution is
low, texture information is scarce, and it is challenging to
classify and identify histological subtypes of lung adeno-
carcinoma. With computer technology and extensive data
development, deep learning has developed rapidly in recent
years. The classification and identification of lung adeno-
carcinoma histological subtypes in slice-thick CT images
provide the possibility. Profound knowledge can be applied
to the detection, segmentation, and diagnosis of lung
nodules in CT images, assisting radiologists in their work,
reducing the rate of missed diagnosis, and increasing the
diagnosis accuracy rate. Many researchers have devoted
themselves to using deep learning technology to classify
benign and malignant pulmonary nodules [14, 15]. How-
ever, there are still few studies on the classification of lung
adenocarcinoma histological subtypes. As a result, the goal
of this work was to use deep learning technology to cate-
gorize and detect lung cancer histological subtypes using
low-dose CT scan pictures with a 5mm slice thickness.

Deep learning has found considerable success in the
image processing field in recent years due to its superior
learning capabilities. Deep learning, as shown by DenseNet,
is increasingly being used in medical imaging, with prom-
ising findings in clinically aided classification, identification,
detection, and segmentation of benign and malignant tu-
mours, brain function, cardiovascular illnesses, and other
significant diseases. DenseNet efficiently uses high-level data
to rediscover innovative features at the bottom layer, im-
proving feature transfer across the network and enabling
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increased feature reuse, resulting in a reduction in the
number of parameters. The model relies on DenseNet and
uses the transitional dense projection technique to gather
three-dimensional data about pulmonary nodules. It then
trains the infrastructure of focal loss to facilitate it to
concentrate on learning the challenging rectified lung
nodules with promising experimental outcomes. This study
proposes a method based on the deep learning DenseNet
[16] model to distinguish IAC and MIA that appear as
mGGNs on images from low-resolution (5mm slice
thickness) thick CT screening and explores a deep learning
method. The differential diagnosis of IAC and MIA is ex-
pected to assist radiologists in predicting and guiding the
histological subtypes of patients with lung adenocarcinoma
in lung cancer screening and providing a basis for selecting
clinical treatment methods and prognosis judgment.

2. Materials and Methods

2.1. Data Sources. Between January 2015 and December
2016, 105 patients’ chest CT scans with a 5mm slice
thickness were reviewed retrospectively, and 105 CT pictures
with mixed ground-glass nodules were chosen. All ground-
glass nodules were pathologically identified, with IAC and
MIA being confirmed in 71 and 34 cases, respectively.
Table 1 contains the specific comparable imaging findings,
which are shown in Figure 1. It is easy to make errors
assessing the histological subtypes of mGGNs lung adeno-
carcinoma when clinicians forecast pathological outcomes
from imaging. Computer-aided diagnostic technology, es-
pecially the deep learning approach, may support clinicians
in giving reference material for identifying benign and
malignant lung nodules, according to recent research
[14, 15]. To categorize and identify the IAC and MIA that
appear as mGGNs on the picture, the deep learning Den-
seNet model is used.

2.2. Scanning Instruments and Methods. Siemens Force dual-
source 96-slice CT scanner with 120kV tube voltage (Ger-
many), for lung imaging, Br40 Kernel, and ADMIRE level 3
were employed for window reconstruction in the medias-
tinal area. First, a regular scan was carried out. Then,
according to a 1.5mL/kg dosage injection, an iodixanol
(containing iodine 320 mg/mL) contrast agent was delivered
into the cubital vein at a rate of 3.0 mL/s. The arterial phase
scan was delayed by 28 seconds, and the delayed phase scan
was done 30 seconds after the arterial phase scan ended.

2.3. Data Preprocessing. Data annotation was performed on
the obtained low-dose CT images with a thickness of 5 mm,
and the localization of the center point ([xnod, ynod, znod])
of mGGNs was completed by two radiologists who had been
engaged in the imaging diagnosis of chest diseases for more
than five years. Nodules were obtained. After the three-
dimensional coordinate point of the center, the size dis-
tribution of the long axis diameter of mGGNs is used to
determine the size of the nodule sample required for the

experiment. The specific method is as follows: the long axis
diameter (unit: mm) and the image pixel spacing ([xps, yes,
zps], unit mm/pixel) to get the actual number of pixels
occupied by the diameter of the long axis of the nodule ([xp,
yp, zp], unit: pixel); see Figure 2 for details. The algorithm’s
goal is to mimic the display-style x*+y*=r> curve using
pixels. To put it differently, every pixel should be around the
same distance from the center. At each step, the route is
lengthened by selecting the next pixel that maximizes the
display-style x* + y* but fulfils display-style x* + y* <> at the
same time. Since the candidate pixels are close together, just
bit shifts and additions are needed to calculate the latter
statement. However, a simplification may be used to better
comprehend the bit shift. Remember that a binary number’s
left bit shift is equivalent to a multiplication by two.
Therefore, a left bit shift only results in the diameter, which is
equal to the radius divided by two. By breaking things down
into simple stages and employing a recursive calculation of
the quadratic terms from the previous iterations, it is pos-
sible to once more avoid the frequent calculations of squares
in the circle equation, trigonometric expressions, and square
roots. Among them, the range of xp (or yp) is 9~92, 64 and
below, a total of 102, accounting for 97.14%; zp ranges from 1
to 10, 6 and below, a total of 100, accounting for 95.24%.
Therefore, in each mGGN image, Two Dimensional sample
with [xnod, ynod] as the center and 64 x 64 as the size are
used to extract the ROI (region of interest) nodule, Three
Dimensional pieces with [xnod, ynod, znod] as the center
and 64x64x6 as the size are used to remove the VOI
(volume of interest) nodule. To take advantage of the nodule
background information, images around the lesion were
preserved. 105 nodule samples (71 IAC samples and 34 MIA
samples) were obtained for both ROI and VOI using 5-fold
in the cross-validation experiment, 68 samples (34 IAC and
34 MIA samples) were randomly selected as the dataset
during each investigation, and 56 nodule samples (28 IAC
and 28 MIA samples) were randomly selected from them.
The training set is formed, and the remaining 12 nodule
samples are used as the test set.

2.4. Data Extension. To create a unique collection of fields,
common data extensions are needed. A subset or segment is
produced from an available data extension using filtered data
extensions. You can choose subscribers at random from a
data source extension using random data extensions. In the
training set, only the translation, rotation, and flip of the
image are performed, and the size and quality of the sample
data are not changed. The specific method is as follows: The
cross section of the nodule sample is used as the benchmark,
and the four directions of 1 are the step size, [1, 5] is the pixel
range for translation; the nodule samples are rotated with a
step size of 30°; the nodule samples are flipped horizontally
and vertically. After these are completed, the number of
training sets can be expanded to the original 33 times. This
study did not use data expansion in the test set, because
expansion is a generic idea that may be employed with many
learning strategies and various situations. The data
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TaBLE 1: Attributes of patients and pulmonary nodules [5].

Attributes

Each category value

Number of patients
Patient age

Number of pulmonary nodules (classified by pathological findings)

Number of pulmonary nodules (classified by long axis diameter)

33/72/105 (male/female/total)
39/84/62 (min/max/avg)
71/34/105 (IAC/MIA/total)
23/57/20/5 (<1 cm/<2 cm/<3 cm/>3 cm)

FiGure 1: CT images with confirmed IAC and MIA [2]. (a) IAC. (b) MIA.
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F1GUre 2: Distribution of the actual number of pixels occupied by the diameter of the long axis of the nodule [4].

characteristics do not have to create an object similarity that
is extremely consistent with the interactions, and the
learning technique does not have to provide particularly
precise predictions for all object pairings.

2.5. DenseNet Convolutional Neural Network. The authors of
[16] proposed a new convolutional neural network, Den-
seNet, mainly consisting of two components: a dense block
and a transition layer. In each thick block, the output x/ of
layer /s satisfying (1), and the nonlinear transfer function HI
() between layers includes three consecutive operations:
batch normalization, linear rectification function, and 3 x 3
convolution (Conv3 x 3). The hyperparameter k is defined as
the growth rate. If I () produces k feature maps, then layer [
will have k0 + k x (1 - 1) feature map inputs (k0 is the number
of channels of the first input layer). This will result in each

layer. There are too many inputs, so Convl x 1 is introduced
as a bottleneck layer before Conv3 x 3 of each tight block to
reduce the number of feature map inputs. Every two tight
blocks are connected by a neck layer, changing the size of the
feature map by convolution and pooling operations:

y=5L=yoys-yel) (1)

2.6. Two-Dimensional DenseNet and Three-Dimensional
DenseNet Models. To classify and identify the IAC and MIA
that appear as mGGNs on CT images, the DenseNet basic
network model is firstly constructed, as shown in Figure 3.
Then, according to the characteristics of CT images with a
thickness of 5mm, a specific network is designed based on
the DenseNet basic network model. See Figure 4 and Table 2
for details.
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Ficure 3: DenseNet basic network model structure.
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FIGURE 4: Two-dimensional and three-dimensional DenseNet network model experimental process.

TaBLE 2: Two-dimensional and three-dimensional DenseNet model structure details.

Convolutional layer

Two-dimensional DenseNet

Three-dimensional DenseNet

Pooling layer 7%7 7%7 %7
Compact block (1) 3%3 3%x3%3
" 1 % lconv 1% 1% lconv
Transition layer (1) 3 % 3conv 3 %3 % 3conv|
1 % Iconv 1% 1% lconv
Compact block (2) l 2 % 2pool 2 %2 % 2pool
Transition layer (2) ; : ;zgﬁz * 12 ; : ; : ;zgﬁz *12
1 * lconv 1% 1% lconv
Compact block (3) 2 % 2pool 2 %2 % 2pool
. 1 * lconv 1% 1= 1lconv
Global pooling layer 3 % 3conv 3% 3 % 3conv

In the two-dimensional DenseNet model, the convolu-
tional layer adopts 7 x 7 convolution (Conv7 x 7) and out-
puts 2k feature maps, while the remaining layers only
produce k feature maps (k=14) and a global pooling layer.
All 3x3 pooling (Pool3 x 3) operations are used; consid-
ering that the input ROI size is 64 x 64, only three tight
blocks are set, and each tight block contains Lblock con-
volution combinations (Convl X 1+ Conv3 X 3); the Lblocks

of these three compact blocks are 6, 12, and 24, respectively;
between every two close blocks, the transition layers com-
posed of Convl x 1 and Pool2 x 2 are used to connect.

All convolution operations have a stride of 1 and zero
padding; all pooling operations have a stride of 2 and no zero
padding. The difference between the three-dimensional
DenseNet model and the two-dimensional DenseNet model
is that the input consists of ROI nodules, two-dimensional



samples replaced with VOI nodule, and three-dimensional
samples, and the Il convolution and pooling sizes are
changed from two-dimensional to three-dimensional (e.g.,
convolution size in convolutional layers is changed from
Conv7 x7 to Conv7 x7x7). After the model obtains the
output of the global pooling layer, a Softmax layer is con-
nected at the end, and the Adam optimizer is used to
perform the gradient descent algorithm in the process of
network training to find the network parameters that
minimize the error function.

To avoid the overfitting issue, each convolution opera-
tion (excluding the convolutional layer) is followed by a
dropout [17] operation. The initial network learning rate is
set at 0.005, with 200 iterations (epochs) overall. The
learning rate is modified twice throughout the network
training procedure. The learning rate is decreased to 10% of
the original learning rate after completing 50% of the total
number of iterations; after completing 75% of the total
number of iterations, the learning rate is reduced to 1%.

The entire experiment was run on an Intel® Xeon®
CPU machine with 32 GB of memory and an NVIDIA GTX-
1080Ti GPU (11 GB of memory) to accelerate using Python
3.5, based on the TensorFlow v1.1.0 [18] environment.

The 3D technique performs better than the 2D technique
for the segmentation of CT scans. We get dice scores of 79%
and 73% for the 3D and 2D techniques, respectively. The 3D
technique results in a 5x reduction in the inference time
compared to the 2D technique. Results also show that the
area plots predicted by the 3D models are more similar to the
ground truth than those predicted by the 2D model. Image
segmentation is important in a variety of medical imaging
applications because it aids in the segmentation of regions of
interest. Deep learning techniques for semantic segmenta-
tion of medical data have been widely utilized. In recent
years, 3D models have been used as predictive algorithms for
3D medical picture data, in addition to 2D neural network
architectures. When segmenting CT images, the 3D method
works higher than the 2D method. For the 3D and 2D
approaches, we receive dice scores of 79 and 73 percent,
respectively. In comparison to the 2D methodology, the
method reduces the inference time by a factor of 5. From the
results, the area plots projected by the models are more
accurate than those estimated by the 2D model.

3. Experimental Results

3.1. Performance Comparison of Two-Dimensional DenseNet
and Three-Dimensional DenseNet Models. The experiment
adopts 5-fold cross-validation, with MIA as the positive class
and IAC as the negative class, using the ROI and VOI
training sets to test the two-dimensional DenseNet and
three-dimensional DenseNet models, respectively, set for
accuracy, sensitivity, specificity, and acceptance. The two-
dimensional DenseNet and three-dimensional DenseNet
network models are quantitatively evaluated in terms of the
area under the receiver operating characteristic curve (AUC)
in four aspects. As shown in Figure 5 and Table 3, the
performance of two-dimensional DenseNet model is sig-
nificant and it is higher than that of the three-dimensional
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F1GURE 5: Performance comparison of two-dimensional and three-
dimensional DenseNet network models.

TaBLE 3: Performance comparison of two-dimensional and three-
dimensional DenseNet network models.

Three-dimensional

Serial Two-dimensional DenseNet DenseNet
Accuracy 0.8667 0.6777
Sensitivity 0.7444 0.7
Specificity 0.9 0.6444
Acceptance 0.9999 0.7774

DenseNet model; the former has four performance indi-
cators more elevated than the latter. Although the accuracy
of two-dimensional DenseNet is only 76.67%, its AUC value
is as high as 0.8889. Literature [19] shows that the accuracy is
based on better truncation. The AUC is calculated based on
all possible cutoft values, a more robust measurement
method than the accuracy. It can be seen that the two-di-
mensional DenseNet model can effectively perform the IAC
and MIA that appear as mGGNs on thick CT images. In
addition, the high specificity (90.00%) of two-dimensional
DenseNet indicates that the misdiagnosis rate (the proba-
bility of classifying MIA as IAC in the case of misclassifi-
cation) using this deep learning model is low.

3.2. Two-Dimensional DenseNet Parameter Adjustment.
The parameters of the deep learning network model directly
determine its performance. In this section, the bottleneck
layer abstention and data expansion are adjusted to explore
the impact of these parameters on the two-dimensional
DenseNet model. The purpose of designing the bottleneck
layer is to reduce the number of feature maps; the abstention
is to improve the convergence speed of the two-dimensional
DenseNet model. Data expansion can obtain more training
data from the limited clinical dataset. These three parameters
significantly impact the performance of the two-dimensional
DenseNet model, as shown in Table 4. In the table, as is the
accuracy, e is the sensitivity, p is the specificity, and AUC is
the area under the curve. The bottleneck layer has the most
severe impact.

Under the condition of using bottleneck layer, dropout,
and data augmentation, the two-dimensional DenseNet
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TABLE 4: Performance comparison of different parameters of the two-dimensional DenseNet model.

Deep learning network Accuracy

Recall Precision AUC

Two-dimensional DenseNet [5] 76.67
Two-dimensional DenseNet-bottleneck layer [8]
Two-dimensional DenseNet-no waiver [10]

Two-dimensional DenseNet-no data extension

54.17 (122.5)
58.33 (118.34)
58.33 (|18.34)

63.33 90
20.84 (]42.49) 87.50 (]2.50)
33.33 (130.00) 83.33 (16.67)
63.33 (10.00) 53.34 (]36.66)

0.8889
0.5926 (10.2963)
0.6833 (10.205 6)
0.6944 (]0.1945)

model achieves the best performance in IAC and MIA
classification discrimination of mGGNs. To compare the
performance with other deep learning network models, this
study selects four other two-dimensional deep learning
networks (LeNet AlexNet, Agile CNN [15], and Multi-
channel CNN [14] as controls). LeNet and AlexNet are more
classic convolutional neural networks. Agile CNN and
Multichannel CNN are new convolutional neural network
models proposed in 2018 to classify and identify benign and
malignant pulmonary nodules. As can be seen from Table 5,
the LeNet model’s sensitivity is slightly higher than that of
the two-dimensional DenseNet (3.34%). Still, the specificity
of the LeNet model is significantly lower than that of the
two-dimensional DenseNet (36.67%). In addition, the per-
formance indicators of the two-dimensional DenseNet
model are higher than those of other deep learning network
models.

4. Results and Discussion

The experimental findings reveal that the two-dimensional
DenseNet model outperforms the three-dimensional Den-
seNet model by a substantial margin (see Figure 5). This
might be attributed to MIA and IAC having comparable
image characteristics, such as mGGNs on the image,
resulting in three-dimensional nodule samples with a
thickness of 5mm. As a result, there is greater confusion;
nonetheless, the three-dimensional DenseNet model has
more parameters to train than the two-dimensional Den-
seNet model, and the overfitting issue may be more severe.
The two-dimensional DenseNet network model outper-
forms the other four two-dimensional deep learning net-
work models (LeNet, AlexNet, Agile CNN, and
Multichannel CNN). This demonstrates that deep learning
approaches, particularly the two-dimensional DenseNet
model, may be used to categorize and identify lung cancer
histological subtypes from thick-slice CT scans. From low-
dose CT scan pictures, doctors give a way of analyzing and
identifying lung cancer kinds.

In addition, earlier research looked at using radionics to
classify and identify histological subtypes of lung cancer using
traditional CT scan pictures. The sequential forward selection
(SES) technique chose 49 optimum picture groups after feature
extraction [20]. The ultimate classification accuracy was 70.00
percent (76.67 percent) using a support vector machine (SVM).
The two-dimensional DenseNet deep learning algorithm out-
performed radionics methods in a CT image classification
experiment to predict the histological subtype of lung cancer.
Figure 6 shows the confusion element of different parameters of
two-dimensional DenseNet model. Figure 7 shows the AUC of
different parameters of two-dimensional DenseNet model.

TABLE 5: Performance comparison of the proposed model with
other deep learning network models.

Deep learning network Accuracy Recall Precision AUC

LeNet [5] 60 6667 5333 075

AlexNet [6] 5333 5667 50  0.7222
Agile CNN [6] 5434  64.67 4565 0.6389
Multichannel CNN [7] 58.76  64.66 52 0.777
Two-dimensional 7667 6333 90  0.888

DenseNet

Pulmonary nodules are mass formations that range in
size from 3 to 30 mm in diameter. Because thick-slice CT
scans have poor resolution and limited texture information,
a lot of lung nodule information may be lost between slices,
posing substantial hurdles in training three-dimensional
deep learning networks. As a result, the emphasis of this
research is on using a two-dimensional deep learning net-
work model to classify lung cancer in low-resolution CT
scans with a slice thickness of 5mm. Furthermore, ROI
nodule two-dimensional samples have a much lower
number of features than VOI nodule three-dimensional
samples. As a result, overfitting is common when employing
the two-dimensional deep learning network model. Because
the network model can boost feature propagation and ef-
ficiently employ parameters to decrease the phenomena of
overfitting, the DenseNet model was chosen as the funda-
mental technique [16]. Deep learning models like ResNet
and CliqueNet may be used to categorize lung cancer his-
tological subtypes based on this. Figure 8 shows the per-
formance comparison of confusion element of proposed
model with other deep learning network models. Figure 9
shows the performance comparison of AUC of the proposed
model with other deep learning network models.

There is still a lack of targeted research on the classifi-
cation and identification of lung adenocarcinoma histo-
logical subtypes from CT images of lung nodules using deep
learning technology. The reasons vary, and the most sig-
nificant limitation is the data on lung adenocarcinoma
histological subtype’s number. Clinical datasets for histo-
logical subtypes of lung adenocarcinoma, especially those
with pathological findings, are limited compared to pub-
lished images of lung nodules. Therefore, in this study, image
translation, rotation, and flipping were performed by an
operation to increase the data volume of training samples,
and the experiments show that the data augmentation
method can achieve better classification performance (as
shown in Table 4). To overcome the problem of limited
datasets, more lung adenocarcinomas need to be collected
following data or use of transfer learning techniques. In
addition, the number of CT images of pulmonary nodules
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with pathological findings is limited. Still, the number of
lung nodules without pathological findings is relatively large.
Future work will examine histological subtypes of pulmo-
nary nodules without pathological findings (especially
mGGNs)—classification for research, such as using unsu-
pervised learning techniques.

5. Conclusion

This paper presented a DenseNet-based deep learning
technique for classifying and distinguishing invasive and less
invasive lung cancer from low-dose, low-resolution CT
images. ROI nodule two-dimensional samples and VOI
nodule three-dimensional samples were obtained as ex-
perimental datasets after data preparation. The generated
two-dimensional DenseNet model has an AUC of 0.888,
accuracy of 76.67 percent, sensitivity of 63.33 percent, and
specificity of 90.00 percent. The performance of this deep
learning network model outperforms that of the three-di-
mensional DenseNet model and those of numerous other
deep learning network models. The findings of the experi-
ments suggest that deep learning technologies, particularly
the two-dimensional DenseNet model, may be utilized to
categorize and forecast lung cancer histological subtypes.
Further studies will look at additional lung adenocarcinoma
data transfer learning and unsupervised learning to aid
radiation scientists in doing differential diagnoses on low-
resolution CT scans.
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The data shall be made available upon request to the cor-
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