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ABSTRACT
The global demand for data storage is currently outpacing the world’s storage capabilities. DNA, the carrier
of natural genetic information, offers a stable, resource- and energy-efficient and sustainable data storage
solution. In this review, we summarize the fundamental theory, research history, and technical challenges of
DNA storage. From a quantitative perspective, we evaluate the prospect of DNA, and organic polymers in
general, as a novel class of data storage medium.
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INTRODUCTION: INFORMATION
AND STORAGE
Human civilization went through paradigm shifts
with newways of storing anddisseminating informa-
tion. To survive in the complex and ever-changing
environment, our ancestors created utensils out of
wood, bone and stone, and used them as media for
recording information.Thiswas the beginning of hu-
man history [1].With the development of computer
technology, the information age has revolutionized
the global scene. Digital information stored in mag-
netic (floppy disks), optical (CDs) and electronic
media (USB sticks) and transmitted through the in-
ternet promoted the explosion of next-generation
science, technology and arts.

With the total amount of worldwide data sky-
rocketing, traditional storagemethods face daunting
challenges [2]. InternationalDataCorporation fore-
casts that the global data storage demand will grow
to 175 ZB or 1.75 × 1014 GB by 2025 (in this re-
view, ‘B’ refers to Byte while ‘b’ refers to base pair)
[3]. With the current storage media having a max-
imal density of 103 GB/mm3 [4], this will far ex-
ceed the storage capacity of any currently available
storage method. Meanwhile, the costs of maintain-
ing and transferring data, as well as limited lifespans
and significant data losses, also call for novel solu-
tions for information storage [5,6].

On the other hand, since the very beginning of
life on Earth, nature has solved this problem in its
own way: it stores the information that defines the

organism in unique orders of four bases (A, T, C, G)
located in tiny molecules called deoxyribonucleic
acid (DNA), and this way of storing information
has continued for 3 billion years. DNAmolecules as
information carriers have many advantages over tra-
ditional storage media. Its high storage density, po-
tentially low maintenance cost and other excellent
characteristics make it an ideal alternative for infor-
mation storage, and it is expected to provide wide
practicality in the future [7].

OVERVIEW OF DNA STORAGE
Research history
In 1953, Watson and Crick published one of the
most fundamental articles in the history of biology
inNature, revealing the structure of DNAmolecules
as the carrier of genetic information [8]. Since then,
it has been recognized that the genetic information
of an organism is stored in the linear sequence of
the four bases in DNA. In just a decade, many re-
searchers had proposed the concept of storing spe-
cific information inDNA[9–11].However, the con-
cept failed to materialize because the techniques for
synthesizing and sequencing DNA were still in their
infancy.

In 1988, the artist Joe Davis made the first at-
tempt to construct real DNA storage [12]. He
converted the pixel information of the image ‘Mi-
crovenus’ into a 0–1 sequence arranged in a 5 × 7
matrix,where 1 indicated adarkpixel and0 indicated
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Figure 1. The history of DNA storage. The figure shows seminal publications in the
history of research on DNA storage [8,12,15,16,19,20].

a bright one. This information was then encoded
into a 28-base-pair (bp) longDNAmolecule and in-
serted into Escherichia coli. After retrieval by DNA
sequencing, the original image was successfully re-
stored. In 1999, Clelland proposed using a method
based on ‘DNA micro-dots’ like steganography to
store information in DNA molecules [13]. Two
years later, Bancroft proposed using DNA bases to
directly encodeEnglish letters, in away similar to en-
coding amino acid sequences in DNA [14].

However, these early attempts only stored less
than tens of Bytes—a small amount of data with
little scalability for practical usages. It was not until
the first 10 years of the twenty-first century that
the groundbreaking work of Church and Goldman
led to the return of DNA storage to mainstream
interest [15,16]. Church et al. successfully stored
up to 659 KB of data in DNA molecules, while the
maximal amount of stored data before this work
was less than 1 KB [17]. Goldman et al. stored even
more data, reaching 739 KB. It is worth noting that
the data stored in the two studies contained not only
texts, but also images, sounds, PDFs, etc., which
confirmed that DNA can store a wide variety of data
types.

Church and Goldman’s work led to a research
fever of large-scale DNA storage. With increas-
ingly complex compilation methods, the amounts
of stored data gradually increased. By the end of
2018, the maximal amount of data stored in DNA
exceeded 200 MB, which was stored in more than
13million oligonucleotides [18]. Along with the de-
velopment of DNA synthesis and sequencing tech-
nologies, new DNA storage methods keep emerg-
ing, bringing DNA storage ever closer to practical
applications (Fig. 1).

Self-information of DNA molecules
The capacity of a medium to store information
is usually measured by the Shannon information.
Since theDNAmolecule is aheterogeneouspolymer
composed of a linear chain of deoxyribonucleotide
monomers each adopting one of four bases A, T,
C and G, the specific arrangement (i.e. sequence)

provides a certain amountof information.According
to the definition of Shannon information, the max-
imal amount of self-information (H) that a single
base can hold is

H = −
A,T,C ,G∑

i

P(i)logP (i)

≤ log
A,T,C ,G∑

i

P (i)
1

P (i)
= log 4 = 2 bit,

where P(i) represents the probability of base i to oc-
cur at any position, and log represents the base 2 log-
arithm as the bit (binary unit) is usually used as a
measurement of digital information [21]. If and only
if the four bases are equally likely to occur, that is,
Pi = 1/4, each base pair in the DNA molecule can
provide the largest information capacity, i.e. 2 bits.
The dependence of self-information on base distri-
butions is given in Table 1, where a is the ‘probabil-
ity distribution deviation’, that is, the difference be-
tween the frequency at which the base appears and
the average frequency of 0.25.

By converting the 2 bit/base to physical density,
we obtain

ρ = 2 bit
1 base × 325Dalton

base × 1.67 × 10−24 g
Dalton

= 3.69 × 1021
bit
g

= 4.61 × 1020
Byte
g

≈ 460
EB
g

,

where ρ represents density, 1 EB = 1018 B (in this
paper, the data storage unit has a radix of 103 instead
of 1024) and the remaining unit conversion values
are derived from ref. [19].

Additional restrictions on the sequence of DNA
molecules will further reduce its Shannon informa-
tion capacity. For example, Erlich et al. estimated a
Shannon information capacity of∼1.83bits per base
under intrinsic biochemical constraints and techni-
cal limitations of DNA synthesis and sequencing
procedures [19].

Mutual information and channel capacity
In addition to the self-information carried by DNA
molecules, mutual information between channel
inputs and outputs is also an important factor in de-
termining information capacity [21]. Mutual infor-
mation measures the fidelity with which the chan-
nel output Y = {yj|A, T, C, G} (i.e. the readout
of a DNA by sequencing) represents the channel
input X = {xi|A, T, C, G} (i.e. the preset DNA
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Table 1. Probability distribution of bases and the corresponding self-information values.

a PA , PT = 0.25 – a PC , PG = 0.25+ a I(X) (bit/base) I(X)/Imax(X)∗

0 0.25 0.25 2 100%
0.001 0.249 0.251 1.999988 99.999%
0.005 0.245 0.255 1.999711 99.986%
0.01 0.24 0.26 1.998846 99.942%
0.05 0.2 0.3 1.970951 98.548%
0.1 0.15 0.35 1.881291 94.065%
0.15 0.1 0.4 1.721928 86.096%
0.2 0.05 0.45 1.468996 73.450%
0.24 0.01 0.49 1.141441 57.072%
∗Imax(X)= 2 bit/base.

sequence):

I(X ; Y) =
A,T,C ,G∑

i

A,T,C ,G∑
j

P
(
xi y j

)
I
(
xi; y j

)

=
A,T,C ,G∑

i

A,T,C ,G∑
j

P (xi y j ) log
P (xi |y j )
P(xi)

,

and we have

I(X ; Y) = H(X) − H(X |Y) ≤ H(X).

For DNA molecules, if each of the four bases
corresponds exactly to itself, then H(X|Y) = 0,
I(X; Y) = 2 bit/base, and the average mutual in-
formation in the transmission is equal to the source
entropy, which gives the upper limit of the amount
of information transmitted. However, information
may be distorted in the process of writing and read-
ing DNA sequences, causing mismatches between
the input set X and the output set Y, which reduces
the averagemutual informationduring transmission.
For example, if each base corresponds to the other
three bases except itself with a probability of 1/10,
then

H (Y |xi ) = H
(

1
10

,
1
10

,
1
10

,
7
10

)

= 1.35679
bit
base

.

Assuming that the four bases entered are equally
probable, we have

H(Y |X) = 4 · 1
4

· H (Y |xi ) = 1.35679
bit
base

,

while

H (X) = H (Y ) = 2
bit
base

.

The joint entropy of X and Y is

H(XY ) = H(X) + H(Y |X)

= 3.35679
bit
base

,

and the average mutual information is

I(X ; Y) = H(X) + H(Y ) − H(XY )

= 0.64321
bit
base

.

Thus, the distortion of the base readout greatly
reduces the utility of information transmission in
DNA. Table 2 shows the average mutual informa-
tion at different transmission error rates mi (the
probability that one base is incorrectly read out as
oneof theother threebases), assuming2bit/base in-
puts. Figure 2 gives the variation of the average mu-
tual information as a function of the input base bias
and the transmission error rate.

More generally, the channel transmission char-
acteristics of DNA molecules can be defined by a
4× 4 transfer matrix T [21]

XT = Y,

where X is the input set and Y is the output set, and
T can be expanded as:

T =

⎡
⎢⎢⎣
PAA PAT
PT A PTT

PAC PAG
PTC PTG

PC A PCT
PG A PGT

PCC PCG
PGC PGG

⎤
⎥⎥⎦ ,

where Pij refers to the probability that the input base
i is received as base j after channel transmission. If{

Pi j = 1, i = j
Pi j = 0, i �= j ,

the above transfer process corresponds to the pas-
sage of information through an ideal channel. In
reality, the values of Pij can be obtained for a
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Table 2. Base transmission error rate and the corresponding mutual information.

mi 0.001 0.005 0.01 0.02 0.05 0.1 0.2

I(X;Y) (bit/base) 1.9658 1.8639 1.7581 1.5774 1.1524 0.64321 0.0781
I(X;Y)/Imax(X;Y)∗ 98.29% 93.19% 87.91% 78.87% 57.62% 32.16% 3.95%
∗Imax(X; Y)= 2 bit/base.

specific storage method through systematic experi-
mentation. We can therefore obtain

H(Y |xi) =
A,T,C ,G∑

j

H(Pi j).

If we denote by Pi (i=A, T, C, G) the frequency
of each base in a channel input, then the correspond-
ing frequency distribution in the output Y, as well as
the averagemutual information, is completely deter-
mined by Pi and the transfer matrix T

P ′
i =

A,T,C ,G∑
j

P j · P j i .

Therefore, we can obtain

H (Y ) =
A,T,C ,G∑

i

H(P ′
i ), H(Y |X)

=
A,T,C ,G∑

i

Pi
A,T,C ,G∑

j=1

H(Pi j ),

Figure 2. The relationship among the average mutual information transmitted by DNA,
the probability distribution deviation of bases and the base transmission error rate.
Color indicates the average mutual information values.

and the average mutual information is

I (X ; Y ) = H(Y ) − H(Y |X)

=
A,T,C ,G∑

i

H

⎛
⎝A,T,C ,G∑

j

P j · P j i

⎞
⎠

−
A,T,C ,G∑

i

Pi
A,T,C ,G∑

j=1

H(Pi j ).

Due to the non-negative nature of the entropy
function, the average mutual information can only
be maximized when the latter term is 0. This re-
quires that all Pij values be either 0 or 1, i.e. X and
Y form a strict one-to-one mapping relationship. It
is not necessary for each base to correspond to itself,
though. For example, if all A in the DNA molecule
become T after channel transmission and T→C,
C→G, G→A, the maximal mutual information can
also be achieved. In practice, this method is cumber-
some and unnecessary. However, this approachmay
have potential uses in information encryption [22].

For a specific storage method with its measured
transfermatrixT, onemay find the input base proba-
bility distribution that generates the highest channel
capacity [23]

C = P(X)
max {I(X ; Y)},

which requires
∂I(X ; Y)

∂Pi
= 0.

After substituting thepreviously obtained expres-
sion for I(X; Y), the best input probability distribu-
tion can be obtained by calculation.

In addition to mismatches, common errors in
synthesis and sequencing include insertions and
deletions, collectively called indels. Generally, the
impact of indels on information storage is much
greater than that of mismatches, since the loss or
gain of consecutive sequences may nullify the entire
DNAmolecule. In next-generation sequencing such
as Illumina, indels occur less than 1% as frequently
as substitutions do. However, single-molecule se-
quencing has been reported to be prone to indel er-
rors [24]. Indels in DNA storage correspond to ‘era-
sure channels’ in the field of information science.
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Figure 3. Flow of information in DNA-based information storage. Top left: source cod-
ing, i.e. converting information into binary code (or other radix) series. Top right: channel
coding, i.e. data error detection/correction coding, providing an error correction/error
detection capability by providing additional bits of redundancy. Bottom right: informa-
tion storage. After the desired DNA molecule is synthesized, it can be stored in vitro
or in vivo. Bottom left: information readout. Each part will be detailed in the text.

Theory on this subject is still under active develop-
ment. Variousmodels of erasure channels have been
established. We refer the readers elsewhere (e.g. ref
[25]) without elaboration here.

IMPLEMENTATION OF DNA STORAGE
Figure 3 summarizes the general workflow of the
DNA information storage process.

Source coding
In order to use DNA molecules for information
storage, information must first be converted into a
sequence of four bases in theDNAmolecule. In gen-
eral, each base is equivalent to a quaternary number,
corresponding to two binary digits. Obviously, any
digital information can be encoded into the DNA
molecule by a simple conversion. This applies to all
types of data that can be stored on a hard drive.

In the field of information science, different data
types are processed using different encoding and
compression algorithms [23].Here,we take the clas-
sic text-file format as an example to introduce the
various compilation methods of DNA storage. In
the first attempt by Bancroft et al., English letters
were directly encoded by base triplets in a manner
like the amino acid codon table, for example, ‘AAA’
represents the letter ‘A’ [14]. Interestingly, they only
used three bases to form a ‘ternary digit’, while G
was reserved for sequencing primers. The method
ignored capitalization because three bases can pro-
duce a coding space of only 33 = 27 elements, which
is just enough to encode 26 letters. And, by the same

reason, this encoding schemedoesnot apply toother
data types.

A pioneering study by Church et al., as the first
big volumne DNA storage work, used a more scal-
able approach. They first converted different files
into binary sequences in theHTML format and then
converted these into DNA sequences [15]. In com-
parison, Goldman et al. applied the Huffman cod-
ing scheme in the first step, which employs ternary
instead of binary conversion. Huffman coding si-
multaneously compresses the data and this is the
first DNA storage study in which data compression
algorithms were used.

In fact, data compression is essential when scal-
ing DNA storage to larger data volumes. For text
files, many lossless data compression algorithms ex-
ist that greatly reduce the space required to store
them.The lower bound of the storage space in a loss-
less compression scheme is defined by Shannon’s
first theorem. If the source entropy of a discrete
memoryless stationary source is H(X), using the
r-ary symbol to encode theN-time extended source
symbol sequence of the source in variable length,
there must be a unique distortion-free and decod-
able code [21], with the average code length L
satisfying

H(X)
logr

≤ L
N

<
H(X)
logr

+ 1
N

.

The text files currently stored in the DNA
molecules are treated as memoryless sources (i.e.
there is no correlation between adjacent letters,
N = 1). When binary encoding (r = 2) is used, the
average code length L satisfies

H(X) ≤ L < H(X) + 1.

Intuitively, the average code length of each sym-
bol in the code cannot be less than the source
entropy

H = −
∑
i

p(i) logp(i),

where i represents each letter in the text file and
p(i) is the frequency at which it appears. The avail-
able algorithms for text compression include Huff-
man coding, arithmetic coding, dictionary coding,
etc., among whichHuffman coding is themost com-
monly used in the field of DNA storage. This is a
variable-length code that uses shorter codes for high
frequency letters and longer codes for low frequency
letters to reduce the average code length of the text
file. The Huffman coding algorithm is readily appli-
cable to any text file and is compatible with special
characters.
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Figure 4. Illustrations of channel coding for DNA storage. (a) Hamming code, which can only be used to check one error.
(b) Linear block code. (c) RS code. Shown here is the two-round RS code used by Grass et al. [20]. (d) Fountain code. Shown
here is the LT code used by Erlich et al. [19].

It is worth mentioning that, for a particular lan-
guage, it is possible to encode a piece of text with a
shorter code length. In English, for example, the fre-
quency of the 26 letters in a typical text varies greatly.
If they are assumed to be statistically independent,
they are equivalent to a discrete memoryless source.
Statistical analyses revealed the average source
entropy of English texts is [26]

Hs = −
27∑

i = 1

p(i ) log p(i ) = 4.02
(

bit
letter

)
.

However, in a text context, English letters are in
fact not statistically independent. Shannon studied
the English text as an nth-order Markov source. For
n → ∞, he obtained the statistical inference value
[26]

H∞ = 1.4
(

bit
letter

)
.

H∞ is called the limit entropy. For any finite
n, it is possible to compress information to reach
density Hn(H∞ < Hn < Hs) by considering the
context dependencies among letters.

Channel coding
Informationdistortionoftenoccursduring transmis-
sion [21]. For DNA molecules, errors may occur
during synthesis, replication and sequencing. There
are twoways to recover rawdata despite information
distortion: physical redundancy and logical redun-
dancy. Physical redundancy entails increasing the
copy number of DNA molecules that encode the
same information. For example, Goldman et al. used

4-fold redundant DNA molecules to store informa-
tion in their initial attempts, i.e. in each short DNA
molecule of 100 bp long, the first 75 bp overlapped
with the previous molecule and the last 75 bp over-
lapped with the next molecule [16]. Previous work
byNozomu et al. used different sequences to encode
the same information. In the process of mapping the
binary 0–1 sequence toDNAbases, a binary number
was shifted each time and the corresponding base se-
quences were obtained. As a result, they were able
to encode the same information using four different
base sequences [27].

Sequencing coverage also contributes to physi-
cal redundancy. In the initial work of Church et al.,
the sequencing coveragewas 3000× [15].However,
physical redundancy is not sufficient for achieving
lossless data transmission.TheworkofGoldmanand
Church failed to completely restore all the informa-
tion. Church et al. found a total of 22 errors in the
sequencing results [15] and Goldman et al. also ob-
tained sequences that cannot be automatically re-
covered [16]. In addition, for large data volumes,
physical redundancy imposes a dramatic increase in
costs.

Another way to correct errors is by logical
redundancy—a method widely used in the com-
munication field. The general idea of logical re-
dundancy is to add extra symbols, called ‘check
symbols’ or ‘supervised symbols’, in addition to
the symbols encoding information. When the in-
formation symbols are incorrect, the check sym-
bols can be used to detect or correct errors so
that the information can be accurately recovered
(Fig. 4).
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The most commonly used error correction code
is the linear block code (Fig. 4b). Specifically, if
a group of information symbols has a length of
k, a check symbol of length r can be added us-
ing a specific generator matrix to obtain a linear
block code with a code length of n = k + r. Once
the generator matrix is selected for a set of codes,
thepairingbetween the information symbols and the
check symbols determines whether a codeword is
legal or not. The apparent coding efficiency of this
code is k/n and the error correction capability scales
with r/n = 1 – k/n. Thus, there is a trade-off be-
tween the coding efficiency and the error correction
capability.

The most basic class of linear block codes is the
Hamming code (Fig. 4a). Simple as it is, only one er-
ror canbedetected in each groupof codewords.Due
to its obvious limitations, theHamming codehasnot
been used for DNA storage. Another class of linear
block code is called the cyclic code, by which each
group of codewords is still legal after one cyclic shift.
Themostwidely used typeof cyclic code is theBose–
Chaudhuri–Hocquenghem (BCH) code, which is a
code class that can correct multiple random errors
based on the Galois binary field and its extension.
To avoid crossover between the information symbol
and the check symbol, one can use a generator poly-
nomial to get a special BCH code, which is called a
system code [21].

Quantitative assessments can be performed to
compare the usefulness of physical redundancy and
logical redundancy. For second-generation sequenc-
ing, several studies on DNA storage in recent years
have pointed out that the total error rate in the
synthesis–storage–sequencing process (equivalent
to channel transmission) is about 1% [28,29]. As-
suming misread events are independent and identi-
cally distributed, their total number follows thePois-
son distribution. For instance, for a DNA molecule
of 128 bp in length, the probability of any error
occurring is

PE = 1 − e−128× 0.01 × (128 × 0.01)0

0!
= 0.722.

If 3-fold physical redundancy is used for error
correction, the error becomes incorrectible when
more than twoof the three copies aremisread for the
same base at the same site.Therefore, the probability
of an uncorrected error is

1∑
i = 0

C i
3 · 0.99i · (1 − 0.99)3−i = 0.000298,
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Figure 5. The error correction capacity of coding systems
with different levels of physical and logical redundancies.
The ‘error rate’ on the y-axis refers to the probability of not
being able to correct all the errors. Blue line: the effect of
physical redundancy on error correction capacity (taking 128-
bp DNA as an example). Red line: the effect of logical re-
dundancy on error correction capacity. Here, an original BCH
code with code length n= 255 is used as an example. Inset:
magnified view of logical redundancy.

at anybase. For the128-bpDNAmolecule, theprob-
ability of any error occurring is

PE = 1 − e−128×0.000298 × 0.01280

0!
= 0.03742568.

Now let us turn to logical redundancy. We will
use the (255, 207) BCH code as an example (note
that this corresponds to the above 128-bp DNA
molecule),which can correct six errors in each group
of 255-bit symbols. Still using the overall error rate of
1% per base, the code fails to correct all errors only
when at least seven errors occur in a group of code
words, which has a probability

PE = 1 −
6∑

i=0

e−2.55 × 2.55i

i !
= 0.016.

It can be seen that a logical redundancy of<20%
already suppresses error rates to a similar extent as
a physical redundancy of 200% does. Shannon’s sec-
ond theorem states that, for a discrete memoryless
channel with capacity C and a discrete source with
entropy per second R, if R ≤ C , then, as long as the
code length n is large enough, an encoding rule and
a corresponding decoding rule can always be estab-
lished to make the average error probability PE ar-
bitrarily small. Figure 5 compares varying degrees
of physical and logical redundancy and their error-
correction capabilities.



REVIEW Dong et al. 1099

The Reed-Solomon (RS) code that has been ap-
plied in DNA storage is a special non-binary BCH
code, which has been widely used in fiber, satellite
and deep-sea communication, etc. [21]. Grass et al.
used the RS codes generated on the Galois Field GF
(47) for error correction [20]. Notably, they added
two rounds of RS codes, called the ‘inner code’ and
the ‘outer code’, respectively, to map the informa-
tion symbols along orthogonal directions (Fig. 4c).
The outer code also mapped the indices. This type
of coding is optimized to correct bursts of errors,
such as in the case of consecutive base losses, i.e.
sequence degradation. In addition, RS codes were
included in the ‘DNA fountain’ system used by
Erlich et al., where they were not used for error cor-
rection, but for detecting and discarding erroneous
sequences [19].

By contrast, fountain coding uses a completely
different framework than linear block codes,
amounting to a codeless erasure code. The basic
idea is to group the signal sources into smaller
packets. After obtaining an adequate number of
packets, the original information can be successfully
restored (Fig. 4d). The main advantage of the
fountain code is its extremely low redundancy
and it can handle ‘erase’ (deletion and insertion
of bases) errors. Erlich et al. used the classic Luby
Transform Code in the fountain code, i.e. the
LT code. If DNA molecules are lost to varying
degrees, the LT code can still handle it well through
detailed design. Currently, the fountain code may
be the only error-correction code in the field of
DNA storage that can robustly deal with the loss
of DNA molecules. The success of commercial LT
codes for digital information (achieving a decoding
failure rate<10−8 with<5% redundancy [30]) has
highlighted its potential for DNA storage.

Encoding information in DNA sequences
After being converted to a binary (or other radix)
sequence, the information needs to be transformed
into base sequences in DNA. For binary data, the
most intuitive conversion is representing 2 bits with
one base. The correspondence can be set arbitrar-
ily to control the base compositions in a specific
DNAmolecule. Furthermore, this method provides
themaximal information storage capacity.However,
it may result in sequences that are difficult to ma-
nipulate, such as long tracts of homopolynucleotides
that are error-prone in high-throughput sequencing
[31].

Much of the previous work was focused on solu-
tions to this problem. Church et al. used one base
to represent a single binary digit (i.e. A, C = 0;

G, T = 1), so that alternative bases can be adopted
to avoid homopolynucleotide tracts [15]. However,
the low information density prevented its use in
later studies. Goldman et al. pioneered in a ternary
base conversion table that allows each base to rep-
resent a ternary number depending on the pre-
vious base [16]. This approach absolutely avoids
homopolynucleotide tracts without compromising
information density. In the fountain coding scheme
by Erlich et al., a single base can still correspond to
two binary digits, with unqualified sequences dis-
carded altogether in transmission [19]. They fur-
ther analysed the constraint on the GC content of
DNA molecules as it affects the stability of DNA
molecules, the substitution and indel error rates dur-
ing sequencing, and the dropout rates in PCR ampli-
fications, which were also emphasized in other work
[32]. An appropriate GC content close to 50% can
be obtained through proper base encoding meth-
ods as well as by sequence screening—that is, select-
ing DNA molecules with appropriate GC ratios to
store information while discarding molecules with
unreasonable GC contents. In the sequence screen-
ing scheme, Erlich et al. gave an estimate of 1.98
bits/nt for themaximal coding capacityofDNAstor-
age considering the effects of homopolymers and
GC contents, although the latter contributes a com-
paratively small reduction [19].

Information density of DNA storage
As shown in the previous section, the upper limit of
the information storage density of DNA has been
calculated to be about 4.606 × 1020 Bytes/g, but a
more practical indicator is the volumetric density. In
the initial work ofChurch et al. [15], the bulk density
of DNAmolecules was approximated to the density
of pure water, which gave an information density of
4.606× 1017 Bytes/mm3. In comparison, the infor-
mation storage density of classic media, such as flash
drives, optical tape and hard disks, is of the order of
109 Bytes/mm3 [4,5].

However, the estimate was made under ‘ideal
conditions’, ignoring many practical factors. First,
the theoretical bulk density can hardly be reached,
as DNA molecules need to be stored in specific en-
vironments to prevent degradation. For example,
most in vitro DNA storage studies were based on
shortDNAoligonucleotides (oligos) in aDNApool,
whichwasdissolved indilute solution. Second, phys-
ical and logical redundancies reduce the actual in-
formation density to various extents.Third, a certain
length of index is needed in the DNA molecules to
provide addresses, which are themselves not avail-
able for storing information.
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Table 3. Index length required to store different amounts of data with 200-bp DNA molecules.

Data amount 1 Byte 1 KB 1MB 1 GB 1 TB 1 PB 1 EB 1 ZB

Index length (bp) 0 3 8 13 18 23 28 33
Index ratio∗ 0 1.5% 4% 6.5% 9% 11.5% 14% 16.5%
∗Index ratio= L(index)/L(molecule).

Here, we briefly analyse the indexing demand of
in vitro DNA oligo storage. Due to technical bottle-
necks in the current DNA synthesis process, most
studies to date have used 150- to 250-bp oligos as
storage units. Since DNA oligos are fully mixed in a
library, a unique index needs to be assigned to each
oligo encoding unique information. Table 3 shows
the lengthof the index required in a 200-bpmolecule
when storing different amounts of data. When the
length of the index in this sequence is k bp, the
number of indexable molecules is 4k and the num-
ber of bits used to store information is 400–2k per
molecule.Therefore, the total storage capacity of the
oligo pool is

Q (k) = (400 − 2k) · 4k bit.

In reality, it is almost impossible to store ZB or-
ders of data in a single DNA oligo library. For ex-
ample, the dilute solution condition, as is required
for efficient information retrieval and amplification,
is hardly met, with 433 ≈ 1020 molecules dissolved
in a few liters of solution. Another constraint is im-
posed by the free diffusion of DNA oligos in solu-
tion. Although, in the 100 base pair range, the dif-
fusion coefficient of DNA oligos can be higher than
10μm2/s, the Brownian motion of oligos could not
traverse a significant portion of the reaction system
in a reasonable reaction time to enable searching of
the probes for random access of information, espe-
cially in large libraries. Our crude calculations sug-
gest an upper limit of PB information in a 1-liter re-
action system. Lastly, the theoretical indexing limit
should not be saturated to ensure sufficient speci-
ficity of indices against probes. One possible solu-
tion for the storage of large data volumes is to use
physically separated DNA pools. This has not been
explored yet, due to the extremely limited amount
of information that has been stored in DNA so far.
However, as DNA storage comes close to real prac-
tice, rigorious systems design such as this will be
needed.

Finally, asmentioned in the previous sections, in-
trinsic limits of DNA synthesis and sequencing tech-
nologies impose constraints on the DNA sequences
that could code information reliably, which reduces
the information storage density of DNA molecules
(e.g. Fig. 2).

Erlich et al. (2017) [19]

Grass et al. (2015) [20]

Bornholt et al. (2016) [28]

Church et al. (2012) [15]

Goldman et al. (2013) [16]

Blawat et al. 
(2016) [33]

Data stored (MB)
0                  5                 10                15               20

S
to

ra
ge

 d
en

si
ty

 (b
it/

ba
se

)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Figure 6. Amounts of data stored and storage densities
achieved in major DNA data storage studies. The storage
density refers to the effective density, i.e. the total amount of
information stored divided by the total number of bases used
(number of oligonucleotides× number of bases per oligonu-
cleotide molecule). The x-axis shows the total amount of
data stored [15,16,19,20,28,33].

Figure 6 shows the amounts of data stored and
the data storage densities achieved in major DNA
data storage publications since 2012.

TECHNICAL ASPECTS AND PRACTICAL
CONSIDERATIONS
DNA synthesis and assembly technology
The past few decades have witnessed the rapid
development of DNA synthesis and assembly tech-
nologies, which laid the groundwork for the ad-
vancement of novel fields and technologies includ-
ing DNA information storage.

Thefirst generation ofDNA synthesis techniques
are based on solid-phase phosphoramidite chem-
istry [34,35]. The main advantage of this method
is its high accuracy, albeit with a high cost and
a low throughput. Moreover, for the considera-
tion of sequence integrity and synthesis efficiency,
the product length is limited to 150–200 bp. The
second-generation, array-based DNA synthesis is
a technique for synthesizing DNA using a series
of electrochemical techniques on microarray chips.
In each cycle, nucleotides are conjugated to DNA
strands at specific locations of the chip, allow-
ing simultaneous elongation of a heterogeneous
pool of oligos [36]. Array-based DNA synthesis
significantly improved the speed, efficiency and
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Table 4. Comparison of three generations of DNA sequencing technology [50,52–54].

Sequencing technology First generation (Sanger) Second generation (Illumina) Third generation (ONT nanopore)

Cost (per Kb) $1–2 $10–5–10–3 $10–4–10–3

Error rate 0.001–0.01% 0.1–1% ∼10%
Sequencing length 1 Kb 25–150 bp 200 Kb
Read speed (per Kb) ∼10–1 h ∼10–7–10–4 h 10–7–10–6 h
Sequencing throughput 1 Kb 108–1012 bp 109–1013 bp

cost-effectiveness of DNA synthesis. In particu-
lar, the 106 parallel throughput achieved on cur-
rent state-of-the-art second-generation platforms in-
creases the total speed of synthesis to a few kilo bases
per second. The third-generation DNA synthesis
techniques are based on enzymatic synthesis. Al-
though still in their infancy, they are expected to dra-
matically reduce the time and cost of DNA synthe-
sis. Lee et al. gave an estimate of 40 s/cycle, which
is six times as fast as phosphoramidite synthesis,
and a projected reduction in cost by several orders
of magnitudes once their terminal deoxynucleotidyl
transferase (TdT) enzymatic reaction system is
miniaturized [37].

In addition to DNA synthesis technology,
DNA ligation and assembly technologies will
provide powerful support for DNA information
storage and in particular long-chain DNA storage.
At present, commonly used DNA amplification,
ligation and assembly techniques include PCR [38],
loop-mediated isothermal amplification (LAMP)
[39], overlap-extension PCR (OE-PCR) [40],
circular polymerase extension cloning (CPEC)
[41], InFusion technology [42], sequence- and
ligation-independent cloning (SLIC) [43], restric-
tion enzyme digestion and ligation [44], as well as
Gibson [45] and Golden Gate assembly [46–48].

DNA sequencing technology
Since the invention of the Sanger sequencing
method in 1977, DNA sequencing has developed
into a fully fledged technology, with its cost drop-
ping by 100 000 times in recent years [49]. Based
on the underlying mechanisms, DNA sequencing
is generally divided into three generations:
Sanger sequencing, high-throughput sequencing/
Next Generation Sequencing (NGS) and single-
molecule sequencing.

The first generation of sequencing technology is
based on Sanger’s double-deoxygenation termina-
tion sequencing combined with fluorescent labeling
and capillary array electrophoresis [50]. Currently,
automated first-generation DNA sequencing is still
widely used.

The core idea of NGS is large-scale parallel se-
quencing, which enables the simultaneous sequenc-

ing of hundreds of thousands to millions of DNA
molecules with short read lengths. The available
platforms include Roche/454 FLX, Illumina/Solexa
Genome Analyzer, HiSeq and ABI/Applied Biosys-
tems SOLID system, Life Technologies/Ion Tor-
rent semiconductor sequencing, etc. [51–54]. NGS
has raised the sequencing throughput from 100 Kb
to the orders of Gb and Tb, and reduced the cost
of sequencing at a rate four times that predicted by
Moore’s Law [49].

The Helicos/HeliScope single-molecule se-
quencer [55], PacificBiosciences SMRT technology
[56,57], Oxford Nanopore Technologies nanopore
single-molecule technology [58,59] and single-cell
genomic sequencing technology [60] are consid-
ered third-generation single-molecule sequencing
technologies. Besides removing the dependence on
PCR amplification, third-generation sequencing has
managed to significantly increase the read length
and raise the read speed. The cost and accuracy are
currently less than satisfactory but are expected to
improve with further technological development,
making it more practical for the purpose of DNA
information storage [52–60]. Table 4 compares
performance of typical sequencing techniques from
the three generations.

Cost of DNA data storage
Compared to traditional data storage methods,
DNA storage has significantly lower storage main-
tenance costs. For example, if a data center stores
109 G data on tape, it will require as much as $1 bil-
lion and hundreds of millions of kilowatts of elec-
tricity to build and maintain for 10 years [5]. DNA
storage can reduce all these expenses by 3 or-
ders of magnitude [5]. Nevertheless, the cost of
DNA synthesis can be significant and it will be-
come a limiting factor for DNA storage to com-
mercialize. At the current cost of ∼$10−4/base
[61] and a coding density of 1 bit/base, a con-
servative estimate of the write cost is $800 mil-
lion/TB, while tape costs about $16/TB [62]. On
the other hand, the read cost achieved by cur-
rent sequencing technologies is orders of magni-
tude smaller, at ∼$0.01–1 million/TB [63]. How-
ever, it is expected that the cost of DNA synthesis



1102 Natl Sci Rev, 2020, Vol. 7, No. 6 REVIEW

and sequencing will continue to decrease in the
future, and new techniques and methods will be
applied to DNA storage [52].

The age limit of DNA storage
DNAmolecules naturally decaywith a characteristic
half-life [64,65], leading to a gradual loss of stored
information. The half-life of DNA highly correlates
with temperature and the fragment length. For ex-
ample, Allentoft concluded that a DNAmolecule of
500 bp has a half-life of 30 years at 25◦C, which ex-
tends to 500 years for a fragment of 30 bp. Interest-
ingly, fossils provide empirical evidence of DNA’s
stability over thousands of years [65]. In this case,
stability is significantly improved by low tempera-
tures and waterproof environments [65]. Indeed, at
−5◦C, the half-life of the 30-bpmitochondrial DNA
fragment in bone is predicted to be 158 000 years
[65]. Some studies have suggested that DNA can
be placed in the extremely cold regions of Earth or
even on Mars for millennium-long storage. Other
studies have explored packaging materials for DNA
molecules and have demonstrated impressive sta-
bility [66,67]. Grass et al. encapsulated solid-state
DNA molecules in silica and showed that they had
better retention characteristics than pure solid-state
DNA and DNA in liquid environments [20]. Judg-
ing by first-order degradation kinetics, they con-
cluded that it could survive for 2000 years at 9.4◦C
or 2 million years at −18◦C, surpassing all poten-
tial quantitative data storage materials invented to
date. It is reasonable to expect a long lifetime for data
stored in DNA even at room temperature, which
makes DNA storage especially suited for cold data
with infrequent access. Further researchmay extend
the lifetime of DNA storage over the duration of
human civilization with minimal maintenance.

In vivo DNA storage
Most DNA storage attempts to date were done
in vitro. However, the genomic DNA of living cells
has become an ideal medium for information stor-
age due to its durability and bio-functional compat-
ibility. Its advantages are becoming more obvious
with the improvement of throughput and reduction
in cost of DNA synthesis and sequencing technol-
ogy [15,16,19]. Compared to in vitro DNA storage,
in vivo storage takes advantageof the efficient cellular
machineries of DNA replication, proofreading and
long-chain DNAmaintenance, offers the chance for
assembly-free random access of data [18], and sup-
ports live recording of biochemical events in situ in

living organisms as a generalized concept of informa-
tion storage.

The development of synthetic biology and gene
editing technologies have allowed us to change
genetic information with unforeseen flexibility and
accuracy [68,69]. Natural and engineered DNA tar-
geting and modifying enzymes can be used as write
modules in DNA storage systems, and the tool-
box of DNA writers is rapidly expanding and im-
proving in terms of programmability and accuracy
[68–73]. The work of Shipman et al. offers an ex-
ample for large-scale in vivo DNA storage. A library
of indexed short DNA fragments encoding 2.6 KB
of information was distributively inserted into the
CRISPR arrays of multiple live bacterial genomes in
a heterogenous population. For complete informa-
tion retrieval,DNA fromdifferent cells was collected
and sequenced, and the original information is re-
constructed by proper alignment [74]. Yang et al.
stored a total of 1.375 Bytes of information in the
E. coli genome by different integrase enzymes [75].
Bonnet et al. used recombinases to write and erase
information in living cells [76].

DNA writers can be broadly categorized into
precise and pseudorandom writers on the basis
of the mutational outcomes [68]. Precise DNA
writers, including site-specific recombinases [72],
reverse transcriptases [77] and base editors [78],
generate predetermined mutations, whereas pseu-
dorandom DNA writers, including site-specific nu-
cleases [79–81] and the Cas1–Cas2 complex [79],
generate targeted but stochastic mutations.

Site-specific recombinases are a class of highly
efficient and accurate DNA writers that can flip, in-
sert or excise a piece of DNA between their cognate
recognition sites. Using recombinases, the informa-
tion is heritably stored in a specific genomic location
[72,75,80]. On top of this, reversible writing of
information can be achieved by adding another en-
zyme (the excisionase), which erases the previously
written information and resets the state of DNA
[76].The second class of precise DNA writers relies
on reverse transcriptases [68,77]. For example, the
SCRIBE (Synthetic Cellular Recorders Integrating
Biological Events) system is activated in response to
a specific stimulus (such as a chemical), producing a
programable DNA sequence change [82].The third
class performs nucleotide-resolution manipulation
of DNA via base editing [68,78], such as CAMERA
(CRISPR-mediated analog multi-event record-
ing apparatus) [83], generating deoxycytidine
(dC)-to-deoxythymidine (dT) or deoxyadenine
(dA)-to-deoxyguanine (dG) mutations.

Pseudorandom DNA writers relies on targeted
double-stranded DNA breaks generated by site-
specific nucleases [68], including Cas9, ZFNs and
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TALENs [79–81]. However, the write efficiency
is highly dependent on the nonhomologous end
joining pathway, which is lacking in many model or-
ganisms [79–81]. A second class of pseudorandom
DNA writers leverages the cellular immune func-
tionality of the Cas1–Cas2 system, which integrates
information-encoding short ssDNA fragments
(approximately 20–30 bp) into the CRISPR array
in an oriented fashion [84].

For in vivo DNA storage, it is essential to con-
sider the maximal amount of information that a sin-
gle cell can carry. At present, E. coli is the most
thoroughly studied prokaryote, but other microor-
ganisms might be used for DNA storage as well.
In an interesting example, Mitsuhiro et al. cloned
the 3.5-Mb genome of the photosynthetic bac-
terium Synechocystis PCC6803 (3.5 Mb) into the
4.2-Mb genome of Bacillus subtilis 168, producing a
7.7-Mb chimeric genome [85]. This suggests a sur-
prisingly large tolerance of prokaryotic cells in for-
eign DNA. If a cell can hold 4 Mb of DNA, it is
possible to store 8 Mbit, or 1 MB, of information.
In this scenario, a homologous recombination sys-
tem handling long DNA fragments works more ef-
ficiently than a CRISPR-based system dealing with
short fragments.

However, incompatibility and interactions be-
tween the information-carrying DNA and the host
DNA pose challenges for in vivo DNA storage. For
example, when Mitsuhiro et al. attempted to insert
the exogenous genome into the genome of B. sub-
tilis, efficiency was significantly affected by the host
genome’s symmetry [85]. As far as biosafety is con-
cerned, although artificially encoded DNA is not
prone to forming open reading frames, misexpres-
sion may emerge as the storage volume rises, and its
biological consequences should be subject to close
scrutiny. On the other hand, there is not enough ev-
idence to show whether the insertion of DNA frag-
ments affects the host cell’s own gene expression. In
eukaryotic cells, the problem is further complicated
by the presence of a wide range of cis-acting ele-
ments. Effectivemethodsmust bedevised toprevent
the potential biological impacts associated with the
insertion of DNA fragments carrying non-biological
information.

THE FUTURE OF DNA STORAGE
Prospects and challenges
Although DNA information storage has enormous
application potential, many problems need to be
addressed before its broader implementation. First,
the cost of writing and reading information is still
prohibitively high and the efficiency of storing data
is too low.However, DNA synthesis and sequencing

costs have been reduced by 10-million-fold over the
past 30 years, and the trendwill continue tomeet the
needs of practical DNA storage in the foreseeable
future [49,51]. It is predicted by the Molecular
Information Storage Program that DNA synthesis
cost will reduce to $10−10/bp by 2023 [86]. At
the same time, the read and write speeds have
gradually increased. In their original study (2012),
Church et al. concluded that DNA synthesis and
sequencing technologies require improvements of
7–8 and 6 orders of magnitude, respectively, to
compete with current information read and write
speeds [15]. The data presented by Goldman
et al. show that the main contributor to the cost
of DNA storage is synthesis and, based on their
calculations, if the cost of synthesis is reduced by
another 2 orders of magnitude (compared to 2013),
DNA storage will outperform magnetic medium
storage for decade-long data storage—a goal that
could be achieved in just a few years [16]. In 2017,
Erlich et al. gave a cost of $3500 per MB—about
a quarter of the cost estimated by Goldman et al.
[19], but they expected to use a more cost-effective
approach for DNA synthesis as they developed a
powerful error-correcting algorithm that tolerates
base errors and losses. Very recently, Lee et al.
showed a proof-of-principle enzymatic DNA syn-
thesis scheme, which did not achieve single-base
precision, but was still sufficient for complete
information retrieval and showed a strong cost
advantage over traditional phosphoramidite syn-
thesis [37]. In addition, this synthesis scheme also
supports a larger storage volume (∼500 to several
thousand bases per synthesis) at a higher speed.
However, in their implementation, the amount of
data stored was extremely limited (144 bits) and
whether this approach can be scaled up remains
to be tested. Advanced coding and decoding algo-
rithmsmay ultimately lift the technical requirements
on synthesis and sequencing and enable production-
grade DNA storage. In addition, storage-specific
read and write methods may be developed outside
the current synthesis and sequencing frame-
works. Writing by the massive assemblage of
premade oligonucleotides in a way similar to
movable-type printing, for example, has recently
been claimed to reach a 1 TB/day storage speed.

Random access is another function necessary
for information storage purposes. PCR is typically
performed using specific primers to obtain selective
information stored in DNA. For long-chain DNA
storage, PCR with appropriate primers upstream
and downstream of the desired information will suf-
fice. However, for oligo DNA storage systems, the
entire library needs to be sequenced and assembled
before fragmental information can be acquired.
Based on powerful error correction codes and
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algorithmic design, Organick et al. developed a
framework to minimize the amount of sequencing
required to obtain specific data in an oligo library
[18]. They managed to retrieve 35 files (with a total
size >200 MB) independently without errors.
According to their estimates, the method could
be extended to an oligo library with a few TBs of
storage capacity. It is worth mentioning that the
work of Organick et al. is also an attempt to store the
largest amount of data in DNA molecules so far (at
the time of writing in 2019).

Finally, techniques to erase and rewrite informa-
tion in DNA remain to be developed. Existing DNA
storage methods support one-time storage only and
thus are suitable for information that does not need
to be modified, such as government documents and
historical archives. However, the continuous devel-
opment of synthetic biology has shown the possi-
bility of solving this problem. Artificial gene circuits
with stable DNA encoding functions have been de-
signed [70–73,78–81]. For example, using a ‘Set’
systemof recombinant enzymes and a ‘Reset’ system
of integrase and its excision partner, a controllable
and rewritable switch could be implemented [76].

Carbon-based storage
Thanks to the rapid development of DNA manipu-
lation technologies, DNA has become a promising
new storage medium. However, other types of poly-
mers may also be used in the field of information
storage. Most of them are organic polymers, which,
together with DNA molecules, constitute a novel
carbon-based storage system different from tradi-
tional silicon-based storage.

Like DNA, proteins are an indispensable class
of molecules in living systems. Their heterogeneous
composition shows potential usage for information
storage. However, such attempts are currently fo-
cused on the state of the protein rather than its
amino acid sequence. For instance, a protein adopt-
ing two different states may encode 0 and 1, and
information may be stored by switching and stabi-
lizing the states by specific means. A typical exam-
ple is a photo-switchable fluorescent protein, which
changes color when absorbing photons of a partic-
ular wavelength [87,88]. Despite its high controlla-
bility, the information density is limited to 1 bit per
molecule.

In theory, any heterogeneous polymer may serve
the purpose of information storage as long as its
component monomers can be handled with pre-
cision. Current attempts include DNA template
guided incorporation of nucleic acid derivatives
or small peptides into self-replicating biopolymers
[89–91]. In recent years, the discovery of six non-

natural nucleic acids that are able to form sta-
ble DNA duplex structures and even carry on
genetic information suggests their use for DNA
storage [92,93]. In addition to biopolymers, the syn-
thesis of high-molecular-weight polymers such as
polyamides and polyurethanes by precise sequence
control methods has also been reported in many
studies [94–96]. Unfortunately, the read and write
techniques for these polymers are far less mature
than DNA synthesis and sequencing at the present
time. For example, sequencing of synthetic polymers
relies on more general analytical methods such as
MS/MS and NMR [97–99]. Interestingly, single-
molecule nanopore sequencing is expected to be a
powerful tool for reading information in synthetic
polymers [100,101].

With more types of monomers able to be inte-
grated, synthetic polymers may exhibit higher self-
information and thus storage capacity. In addition,
it may be more amenable to certain storage func-
tions such as data erasure and rewriting. On a differ-
ent scale, composite encodinghasbeenapplied to in-
formation storage. By usingmixtures of nucleic acids
or metabolites, one can potentially augment coding
capacity in the continuous compositional space of
components [102,103].

Taken together, synthetic polymers hold great
promise for molecular information storage in non-
living systems. With the development of sequence
control and acquisition technologies, biological and
synthetic polymers may form a new framework of
carbon-based storage in the future and gradually
replace traditional silicon-based storage systems in
specialized or general applications.
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