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ABSTRACT Studies have confirmed that insomnia is related to gut microbiota. Previous
research suggests that immunity and metabolism are also associated with insomnia.
However, to our knowledge, the integration of these factors has not been investigated in
insomnia. Here, we explored the correlations across gut microbiota, serum metabolism, and
inflammatory factors in insomnia. Our results showed that the composition and structure of
gut microbiota and metabolism in insomnia patients were different from healthy controls.
Compared to healthy controls, the relative abundances of Lactobacillus, Streptococcus, and
Lactobacillus crispatus were significantly increased in insomniacs. There were five metabolic
pathways in insomniacs (glycerophospholipid metabolism; glutathione metabolism; nitrogen
metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis)
significantly different between the two groups. Moreover, we found that IL-1b levels were
significantly higher in insomnia patients while TNF-a was significantly reduced. We further
identified that the changes in the level of IL-1b and TNF-a were associated with some
specific bacteria and metabolites, such as Prevotella amnii, Prevotella buccalis, Prevotella timo-
nensis, and Prevotella colorans. Mediation analysis further determined that the immune fac-
tors and metabolites could mediate the relationship between gut microbes and insomnia.

IMPORTANCE Our study indicated that systematic inflammation and metabolites might
be a pathway linking the gut microbiome with insomnia. These findings provide new
insights and a better understanding of gut microbiota's role in insomnia as well as poten-
tial novel microbiome-related etiologies for insomnia.

KEYWORDS gut microbiota, gut-brain axis, immune system, insomnia, metabolomics

Insomnia is the most common sleep disorder among adults with undefined pathogene-
sis (1), and growing evidence suggests that gut microbiota might play a role in its patho-

genesis (2–4). Previous studies have suggested that the incidence of insomnia is linked to
biological rhythms, immune function, and nutrient metabolism (5–7). Furthermore, there is
considerable evidence showing that the gut microbiome not only affects the digestive,
metabolic, and immune functions of the host but also regulates host sleep through the
microbiome-gut-brain axis (5, 8). Several studies have provided preliminary evidence for
the involvement of gut microbiota in sleep disorders, including in animal models and
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human studies. For example, in the rodent model, drug-induced insomnia and sleep frag-
mentation can alter the gut microbiota (9–11). Moreover, altered gut microbiota was found
in the feces of patients with clinical insomnia (4, 12, 13). In addition to the composition of
the gut microbiota, both signaling pathways and metabolic functions were also perturbed
in patients with insomnia disorder (7, 13).

Recently, some researchers have suggested that systematic inflammation and metabo-
lites may be a pathway linking the gut microbiome with insomnia. Patients with acute and
chronic insomnia have increased inflammatory cytokines compared to healthy subjects, and
insomnia-related signature bacteria showed a correlation with plasma interleukin (IL)-1b
(12). Furthermore, the total microbiome diversity and Bacteroidetes and Firmicutes were pos-
itively correlated with sleep efficiency and IL-6 concentrations (4). In another study, research-
ers found that chronic sleep disruption altered gut microbiota and inflammatory factors,
inducing systemic inflammation in mice (9). Studies also suggested that poor or decreased
sleep caused metabolic changes in peripheral metabolism (14–16).

However, almost no study has used the integrated method to explore the interrelation-
ships among gut microbiota, serum metabolome, and inflammatory cytokines in insomnia.
In this study, we analyzed the gut microbiota, serum metabolome, and inflammatory cyto-
kines of insomniacs and compared them with those of control participants presenting with a
good sleep history. By combining 16S rRNA gene amplicon-based sequencing, enzyme-
linked immunosorbent assays (ELISAs) of inflammatory factors, and untargeted metabolo-
mics, our work revealed a link between host metabolism, immunity, and the microbiome.

RESULTS
Distinct gut microbiome observed in insomniacs. The fecal microbiota composi-

tion profiles were analyzed by 16S rRNA gene sequencing. There was variation in the
composition of each sample at the phylum and genus levels. At the phylum level
(Fig. 1A), the relative abundance of Bacteroidetes in the gut microbiota of insomniacs
and healthy controls was 54.69%6 16.75% and 57.17%6 19.33%, respectively. This was
followed by Firmicutes, which accounted for 33.64% 6 12.93% in insomniacs and
32.02% 6 18.05% in healthy controls, and Proteobacteria, which accounted for
10.62%6 12.14% and 8.43% 6 9.98% in insomnia patients and healthy controls, respec-
tively. At the genus level (Fig. 1B), the relative abundance of Bacteroides in the gut micro-
biota of insomniacs and healthy controls was 31.36% 6 21.71% and 33.54% 6 22.60%,
respectively, followed by Prevotella, the relative abundance of which was 18.07% 6

24.35% and 20.63%6 26.28% in the gut microbiota of the patients and controls, respec-
tively. For alpha diversity, health controls (HC) showed a significantly higher Chao1 index
and observed amplicon sequence variants (ASVs) than insomniacs (INS) (Fig. 1C and D),
while Shannon and Simpson's index did not differ between the two groups (Fig. S1 in
Supplemental File 1). Principal coordinate analysis (PCoA) was used to compare bacterial
community patterns between the two groups. The results (Fig. 1E) showed that there
was a significant difference in community patterns between insomniacs and healthy
controls based on the Bray-Curtis distance (R2 = 0.0397, P = 0.001). Linear discriminant
effect size analysis (LEfSe) was performed with the purpose of screening potential gut
microbiota biomarkers related to insomnia. A total of 50 biomarkers in genus and spe-
cies levels were identified (Fig. 2A). At the same time, 18 genera and 17 species were
selected as microbial features by random forest (Fig. S2 in Supplemental File 1). Finally,
12 genera and 13 species in the intersections of LEfSe and random forest were identified
as signature microbes, among which the abundance of Lachnospiraceae NK4A136
group, Lactobacillus, Streptococcus, and Lactobacillus crispatus were significantly enriched
in the gut microbiome of INS compared to that of HC (Fig. 3A and B).

Owing to the significant differences in microbial community structure between INS
and HC, we further evaluated the microbial co-occurrence network for each group
(Fig. 2B). The results showed that the microbial networks in INS were sparser than in
HC. [Bacteroides] pectinophilus group and [Eubacterium] brachy group were identified
as the top two keystone taxa in microbial communities of HC, while Arcanobacterium
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FIG 1 Distinct gut microbiomes were observed in insomniacs (INS) compared to healthy controls (HC). (A and B)
Microbiome community structure at the phylum (A) and genus (B) levels compared in INS and HC. (C and D) Observed

(Continued on next page)
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and DNF00809 (Coriobacteriales bacterium) were in communities of INS. Furthermore,
DNF00809, Aerococcus, and Fastidiosipila in the co-occurrence network of insomnia
were representative genera for HC (Fig. 2B). Altogether, microbiota profiles were signif-
icantly different between INS and HC groups.

FIG 1 Legend (Continued)
ASVs (C) and Chao1 index (D) of gut microbiota compared between INS and HC. (E) PCoA and boxplot are shown
along the first two principal coordinates of Bray-Curtis distances for INS and HC. Ellipses represent the 95% confidence
interval around the group centroid. The P value was calculated by PERMANOVA.

FIG 2 Characteristics of gut microbial community composition in insomniacs (INS) and healthy controls (HC). (A) Significantly different taxonomic biomarkers between
INS and HC were identified by LEfSe. (B) The co-occurrence networks in the microbial communities for INS and HC. The red edges indicate positive correlations
between two nodes, and the blue edges indicate negative correlations. The network parameters, including the number of nodes, number of edges, average number of
neighbors, and clustering coefficient are presented in the figure.
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Variation of serum inflammatory factors in insomniacs. We measured serum
inflammatory factors, including interleukin-1b (IL-1b), tumor necrosis factor (TNF)-a, and inter-
leukin (IL)-6 using ELISA. The IL-1b was significantly elevated (2.3156 2.202 pg/mL in INS ver-
sus 0.9676 0.745 pg/mL in HC, P, 0.0001). Meanwhile, TNF-a was significantly decreased in
INS (2.055 6 1.619 pg/mL in insomniacs versus 3.234 6 1.520 pg/mL in HC, P , 0.0001).
However, the IL-6 level was consistent between the INS and HC (1.8426 1.396 pg/mL in INS
versus 1.8056 1.541 pg/mL in HC, P = 0.1547) (Fig. S3 in Supplemental File 1).

Significant alteration of metabolomic profiles in insomniacs. Metabolic profiling
of the INS and HC were acquired by Ultra performance liquid chromatography-tandem
mass spectrometer (UHPLC-MS/MS). In total, 5,831 peaks were detected, and 5,736
peaks remained after using a relative standard deviation denoising method in positive

FIG 3 Boxplot of signature microbes in insomniacs (INS) and healthy controls (HC). (A) Genus level. (B) Species level. ***, P , 0.001;
****, P , 0.0001.
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ion mode (ES1). In negative ion mode (ES2), 2,612 peaks were detected, and 2,588
peaks remained after denoising. To discriminate the metabolic profiles between INS
and HC, we used PCA and orthogonal partial least-squares discriminant analysis (OPLS-
DA). The results indicated a large separation of the metabolome between insomniacs
and healthy controls in PCA plots (Fig. 4A and B) both in ES1 (R2X = 0.32) and ES2
(R2X = 0.317). Furthermore, individuals in the insomniac group were separated from
those in healthy controls as further evidenced by the OPLS-DA score scatterplots
(Fig. 4C and D) both in ES1 (R2X = 0.169, R2Y = 0.905, Q2 = 0.707) and ES2
(R2X = 0.175, R2Y = 0.84, Q2 = 0.532). We performed a permutation test to further vali-
date the OPLS-DA model. After 200 permutations, the R2 intercept was 0.71 and 0.78 in
ES1 and ES2, respectively, and the Q2 intercept values were 20.87 and 20.73 in ES1
and ES2, respectively (Fig. S4A and B in Supplemental File 1). To screen for differential
metabolites, the first principal component of variable importance in the projection
(VIP) was obtained (Fig. S4C and D in Supplemental File 1). The VIP values exceeding 1
were first selected as differential metabolites, and the Student's t test also was used.
We found 25 metabolites in ES1 and 6 metabolites in ES2 (VIP . 1, P , 0.05; Table S2
in Supplemental File 1), which was visualized with a heatmap (Fig. 4E). We found that, in
ES1, 1-palmitoylglycerophosphocholine was significantly increased. However, 7-hydroxy-
6-methoxy-alpha-pyrufuran, acinospesigenin A, PS(22:2[13Z,16Z]/20:2[11Z,14Z]) and PA
(17:1[9Z]/13:0) were significantly decreased in the serum of INS. Meanwhile, aspartic acid,
phenylalanine, and phosphatidylcholine lyso 20:4 in ES2 were significantly decreased in
INS. All differential metabolites were then subjected to regulatory pathways analysis to
discover the metabolic pathways exhibiting high correlations with the metabolites.
According to P value and influence value, significant abnormalities were found in five met-
abolic pathways in insomniacs: glycerophospholipid metabolism (P , 0.05); glutathione
metabolism (P , 0.05); nitrogen metabolism (P , 0.01); alanine, aspartate and glutamate
metabolism (P, 0.05); aminoacyl-tRNA biosynthesis (P, 0.05) (Fig. 4F and G).

Inflammatory factors and metabolites were associated with gut microbiota. To
understand the potential correlation between the altered gut microbiota and the
inflammatory factors in the insomniacs, we performed a Spearman correlation analysis
(Fig. 5A). Most genera and species were positively correlated with TNF-a, while only
Lactobacillus and Streptococcus were negatively correlated with TNF-a. Interestingly,
these two genera significantly increased in INS (Fig. 3). However, IL-1b was significantly
negatively correlated with most genera and species, and only Lactobacillus was posi-
tively correlated with it. At the same time, we noted a significant correlation between
Prevotella amnii, Prevotella buccalis, Prevotella timonensis, Prevotella colorans, and TNF-
a/IL-1b .

The correlations between the varied metabolites and the gut microbiota were iden-
tified (Fig. 5B). Most of the metabolites that were significantly increased in INS were
positively correlated with gut bacteria significantly increased in INS and negatively cor-
related with gut bacteria significantly decreased in INS, and vice versa. It indicated that
this metabolic level variation might be partially due to differences in gut microbiota.
We found that many amino acids and short peptides were reduced in the serum of
patients with insomnia, such as aspartic acid, phenylalanine, Phe-Phe, Asp-Phe, Phe-
Trp, etc. The four bacteria of the genus Prevotella that were significantly reduced in INS
were positively correlated with most of them, suggesting that Prevotella may play a
protective role by promoting the production of related amino acids in the host.

Subsequently, we explored the association of immune factors and differential me-
tabolism, termed environment variables, with the differential species and genera using
redundancy analysis (RDA). Consistent with the correlations mentioned above, the rep-
resentative species and genera had a good correlation with the environment variables
(Fig. 6). The significantly increased metabolites and immune factors in INS were posi-
tively correlated with Streptococcus, Lachnospiraceae NK4A136 group, Lactobacillus,
and Lactobacillus crispatus, which were signature microbes for INS. The environmental
variables accounted for 22.53% and 34.64% of the variation of representative species
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FIG 4 Different metabolites between insomniacs (INS) and healthy controls (HC). (A) Score scatterplot of PCA model (ES1). (B) Score scatterplot
of PCA model (ES2). (C) Score scatterplot of OPLS-DA model (ES1). (D) Score scatterplot of OPLS-DA model (ES2). (E) A heatmap illustrating that
the relative amounts of metabolites varied in insomniacs and healthy controls. Data were transformed into Z scores in the heatmap. (F and G)
KEGG pathways were determined by functional enrichment analysis of differential ES1 (F) and ES2 (G) metabolites.
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FIG 5 Correlation of gut microbiota with inflammatory factors and serum metabolites. (A) Heatmap of Spearman correlation analysis
between gut microbiota and inflammatory factors. (B) Heatmap of Spearman correlation analysis between the gut microbiota and
metabolites. Red and blue indicate positive and negative correlations, respectively. *, P , 0.05; **, P , 0.01; **, P , 0.001.
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FIG 6 Redundancy analysis (RDA) between immune factors/differential metabolites and signature microbes. (A) Genus level. (B)
Species level. Green and black segments indicate immune factors/differential metabolites and signature microbes, respectively.
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and genera, respectively. It also showed that these factors could well differentiate the
INS and HC.

Inflammatory factors and metabolites mediated the relationship between gut
microbiota and insomnia.Wewere interested in whether inflammatory factors or metabo-
lites mediate the relationship between gut microbiota and insomnia. Mediation analysis
revealed multiple inflammatory factors and metabolites in serum influencing the relationship
between gut microbiota and insomnia. We identified inflammatory factors and metabolites
with evidence for strong microbiota-INS effects (Table S3 and Fig. S5 and S6 in Supplemental
File 1). Fastidiosipila, Shuttleworthia, Streptococcus, Prevotella buccalis, Clostridiales bacterium,
DNF00809, Megasphaera, and Aerococcus were correlated with insomnia mediated by more
than 10 metabolites and inflammatory factors. In all, these results suggested that inflamma-
tory factors and metabolites mediate the effect of gut microbiota on insomnia.

DISCUSSION

The gut microbiome not only affects the immune functions of the host but also
potentially regulates sleep through the microbiome-gut-brain axis (5). However, the
study on the effects of gut microbiota on the pathogenesis of insomnia is incomplete.
Our study extends the findings of previous studies in several important ways. Liu et al.
(13) demonstrated that the composition, diversity, and metabolic function of gut
microbiota were significantly changed between insomnia patients and healthy con-
trols. But the assessment of metabolic function is only based on PICRUSt function pre-
diction. Recent studies have also shown abnormalities in the metabolome of insomnia
patients (17). Our work further identified abnormalities in serum metabolites associ-
ated with gut microbiota in patients with insomnia and identified similarities with pre-
vious findings by metabolomic analysis. Here, our study comprehensively integrates
gut microbiota, serum metabolites, and inflammatory factors in insomniacs. This infor-
mation may lead to a better understanding of the bidirectional communication
between the host and the gut microbiome and may produce novel strategies for
insomnia treatment and intervention.

The immune system plays a crucial part in sleep, especially gut microbiota-medi-
ated inflammation may be a major mechanism of interaction between sleep disturban-
ces and gut microbiota (18). Increased gut microbiota-derived lipopolysaccharide (LPS)
contributes to the production of proinflammatory cytokines such as IL-1b , TNF-a, and
IL-6, which have been shown to play a key role in sleep disturbances (2, 4, 12). The lev-
els of IL-1b and TNF-a in the serum of the insomniacs were significantly different in
our study. Both factors have been reported to affect the brain, leading to decreased
appetite, sleep disturbance, and depression (19). Similar to our study, it has also been
found that the levels of IL-1b in insomnia were significantly increased compared to
healthy subjects (12). Our study enriches relevant evidence and further discovers new
associations between gut microbes and immunity in insomnia.

There is growing evidence that metabolites of gut microbiota are important sources
of sleep-promoting signals (2). The metabolomic study exhibited that multiple serum
metabolites were distinct in the insomnia group, of which some were consistent with
reported insomnia markers (17), such as gamma-glutamyl-glutamine, phenylalanine,
and phosphatidylcholine lyso. Higher gamma-glutamyl-glutamine levels were associ-
ated with later sleep timing (15). We found that many amino acids and short peptides
were reduced in the serum of insomniacs. Aspartic acid was an endogenous amino
acid with important neuroendocrine effects (20). At the same time, a study has shown
that the level of aspartic acid was reduced in the hippocampus of rats with fragmented
sleep (21). Phenylalanine and tryptophan were precursors for the synthesis of sero-
tonin and the further synthesis of melatonin (22), which was involved in the regulation
of sleep (23). Importantly, we found that Prevotella amnii, Prevotella buccalis, Prevotella
timonensis, and Prevotella colorans enriched in HC were negatively correlated with IL-
1b levels while positively correlated with amino acids and short peptides, revealing
that Prevotella plays an important role in the protection of insomnia. It has been
reported that Prevotella was a proficient producer of short-chain fatty acid propionate
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(24). Further, we found that amino acids, including Valyl-Arginine, Phe-Phe, Phe-Trp,
Ala-Trp-Arg-Lys, and immune factor, IL-1b , could mediate the relationship between
species belonging to Prevotella and insomnia, indicating that Prevotella may affect
sleep by regulating amino acid metabolism and promote inflammatory. This informa-
tion may lead to a better understanding of the bidirectional communication between
the host and the gut microbiome and may produce novel strategies for insomnia treat-
ment and intervention.

Although we had a much larger sample size than any of the previous studies about
the association between insomnia and gut microbiota, the sample size of our study was
still somewhat small. Furthermore, we performed a bioinformatics analysis combined with
multiple data types. However, there are some limitations to our current study. First, this is
a single-center cohort study that cannot be generalized to other populations. Thus, it led
to differences in conclusions compared with other studies. In the second place, there are
limitations in the clinical information and demographic characteristics collected. Given
these limitations, these data must be confirmed in multicenter clinical trials from different
regions of the world.

Our study provides a comprehensive comparison of the differences in gut micro-
biota, serum metabolites, and serum immune factors between insomniacs and healthy
controls. Moreover, we identified key gut bacteria and metabolites that might serve as
potential biomarkers related to insomnia. Our findings provided new insights into the
interactions among gut microbiota, immunity, and metabolism and explore the role of
gut microbiota in the development of insomnia. Our study provided multiomics data
for further studies of insomnia and an important foundation for subsequent large sam-
ple validation and longitudinal studies.

MATERIALS ANDMETHODS
Study design and participants. This study was approved by the Institutional Review Board of the

Weihai Central Hospital (IRB number WCH2017-1201). Informed consent was obtained from all partici-
pants. Procedures were carried out in this study to conform with the ethical standards stipulated by the
institutional and national research committee, as well as those stipulated in the 1964 Declaration of
Helsinki and its later amendments or comparable ethical standards.

Our study recruited 40 insomnia patients (INS) and 40 healthy control participants with good sleep his-
tories (HC) (Table S1 in Supplemental File 1). The following inclusive criteria were used. Participants met the
criteria for primary insomnia defined according to the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) that included (i) unsatisfied with the time or the quality of sleep, including difficulty in falling asleep,
prolonged sleep, and early awakening; (ii) suffering from sleep disorders that cause serious daytime dysfunc-
tion or damage (such as emotional or cognitive disorders, work dysfunction); (iii) insomnia attacks at least
three nights a week and sleep disorders occurring for at least 3 months; (iv) the presence of sleep disorders
occurring even though there are adequate sleep opportunities. The healthy control participant volunteers
were recruited from the people also receiving a physical examination at the same time. Participant age was
limited to those 18 years old or above. The exclusion criteria were established as follows: secondary insom-
nia caused by somatic or psychiatric diseases; suffering from diabetes, infectious diseases, gastrointestinal
diseases, and other diseases; smokers and drinkers; those who could not communicate and cooperate nor-
mally; those with a history of radiotherapy and chemotherapy; pregnant women; and anyone that had taken
antibiotics in the previous 3 months.

Sample collection and preparation. The feces samples were collected by fecal collectors that were
preloaded with 600 to 800 mL of absolute ethanol (25). The samples were immediately frozen in a
280°C refrigerator. Three samples were collected from each participant. One was used for the extraction
of DNA. The other two samples were reserved for further studies. All the venous blood samples were
extracted between 8:30 to 10:00 AM using vacutainer tubes without anticoagulants (serum), and then
the samples were stratified at room temperature for 1 h. The supernatant of the blood was saved after
3,000 rpm centrifugation at room temperature for 1 min. The serum samples were collected from the su-
pernatant after 12,000 rpm centrifugation at 4°C for 10 min and frozen at280°C for use.

DNA extraction and 16S rRNA gene sequencing. The total DNA of the gut microbiota was extracted
from the fecal sample by utilizing the modified cetyl trimethyl-ammonium bromide (CTAB) methods
(26). To analyze the taxonomic composition of the bacterial community, the V1 to V2 region of the 16S
rRNA gene was selected for the subsequent pyrosequencing. The specific primer pair 27F (59-
AGAGTTTGATCMTGGCTCAG-39) and 355R (59-GCTGCCTCCCGTAGGAGT-39) were used for the PCR ampli-
fication. The 8 bp Barcode sequence and 5 to 8 random sequences were introduced into the 59 ends of
the primers to distinguish samples and remove chimeric sequences and PCR redundancy. The amplifica-
tion of each sample was performed in triplicate, then products were purified and quantified, and
sequenced by Illumina HiSeq 2500 sequencing platform.
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Raw data processing and analysis. Raw sequencing data were processed and analyzed using
Quantitative Insights into Microbial Ecology 2 (QIIME2, version2020.2) (27). Briefly, paired-end reads
were assigned to samples by barcodes and then the barcodes and primer sequence were cut off. Next,
we used the q2-dada2 (28) plugin in QIIME2 for quality control, chimera detection and deletion, and
generation of amplicon sequence variants (ASVs) and representative sequences. The SILVA database
(version 138) (29) classifier was used to annotate the ASVs with 99% similarity. Samples with ,10 ASV
features and ,10,000 reads, and representative sequences with a frequency of ,10 were removed.
Finally, a total of 1,293 ASVs and 73 samples (35 insomnia patients and 38 healthy participants) were
retained, with the number of reads ranging from 17,165 to 100,153.

We compared alpha diversity, beta diversity, and taxa between insomnia and healthy controls as fol-
lows. Alpha diversity was measured with the Observed ASVs, Shannon, Simpson, and Chao1 indexes
using the get_alphaindex function in the MicrobiotaProcess R package (version 1.2.0) (30). Beta diversity
was measured as the Bray-Curtis distance using the vegdist function in vegan R package (version 2.5-7)
(31) after normalization by Hellinger transformation. Differences between the two groups were then
compared using the Wilcoxon rank sum test for alpha diversity and the permutational multivariate anal-
ysis of variance (PERMANOVA) for beta diversity. Linear discriminant analysis (LDA) effect size (LEfSe)
analysis (LDA . 2) and random forest (the intersection of the top 20 genera with the highest accuracy
and the top 20 with the highest Gini index) were conducted to identify representative genera and spe-
cies for the two groups using the diff_analysis function in MicrobiotaProcess R package and the
randomForest function in randomForest R package (version 4.6-14) (32) with default parameters, respec-
tively. The co-occurrence networks in the microbial communities for insomnia and healthy controls were
inferred from the neighborhood algorithm, Meinshausen-Bühlmann (MB) method using SpiecEasi R
package (version 1.1.2) (33) with default parameters at the genus level.

Serum metabolites analysis based on UHPLC-MS/MS. The 100 mL serum sample was thawed on
the ice, and then 300 mL methanol (containing the internal standard, L-2-chlorophenyl alanine 1 mg/mL)
was added into the tube and mixed by a vortex mixer for 30 s. After the ultrasonic treatment in the ice-
water bath for 10 min, the protein was precipitated at 220°C for 1 h. The samples were centrifuged at
4°C for 15 min at 12,000 rpm. For each sample, 2 mL of the supernatant was used for the UHPLC-MS/MS
analysis.

We performed chromatographic analysis on a UHPLC system (1290, Agilent Technologies) equipped
with an HSS T3 column (2.1 mm � 100 mm, 1.8 mm) coupled to Q Exactive (Orbitrap MS, Thermo). The
mobile phase composition was as follows: (i) positive ion mode, mobile phase A, 0.1% formic acid aque-
ous solution; mobile phase B, acetonitrile; (ii) anion mode, mobile phase A, 5 mmol/L ammonium acetate
aqueous solution; mobile phase B, acetonitrile.

The first and second mass spectrometry data were collected by the Thermo Q Exactive Orbitrap
mass spectrometer under the Xcalibur software (version: 4.0.27, Thermo). Bombardment energy (normal-
ized collision energy mode) was 20 eV, 40 eV, or 60 eV, and the scanning rate was 7 Hz.

ProteoWizard software was used to convert the original mass spectrometry data into mzML format.
The retention time, identify peaks, extract peaks, integrate peaks, and align peaks were corrected by
XCMS (version 3.2). Material identification was carried out by using OSI-SMMS (version 1.0) software and
a self-built database. The log conversion and par formatting of data were carried out by using soft inde-
pendent modelling of class analogy (SIMCA, version 14.1). The normalized data were then to perform
the principal component analysis (PCA) and orthogonal projections to latent structures-discriminant
analysis (OPLS-DA). The metabolites were screened by the variable importance in the project (VIP) .1 in
the OPLS-DA model (34). The screened metabolites were then mapped to the KEGG, PubChem, and HMDB
databases. Metabo Analyst software (http://www.metaboanalyst.ca/) was used for metabolic pathway analysis
(35). The Student's t test (P, 0.05) was further used to identify differential metabolites.

Detection of the serum immune factors. The levels of the immune factors were measured by a
human IL-1b/IL-6/TNF-a ELISA kit (ABclonal Technology) with 100 mL serum in each test according to
the procedures supplied by the manufacturer. The absorbance of each sample was measured by
Multiplate Reader Ascent (Thermo) at 450 nm and 630 nm, and the amount of protein in pg/mL was cal-
culated based on a standard curve. Each serum sample was tested in triplicate, and the precision and ac-
curacy of the assay as determined by intraassay coefficient variation was below 10%.

Multiomics analyses. Correlation analysis of immune factors, differential metabolites, and signature
microbes based on Spearman rank correlation coefficient was done with the R packages Hmisc (version
4.6.0) (34) and corrplot (version 0.90) (35). We used multivariate analyses to explore the interrelation-
ships between the microbes and immune factors/metabolites. First, the microbial community distance
matrix was calculated based on Bray-Curtis distance using the R package vegan. Then, metabolites rele-
vant to the microbial community were filtered using PERMANOVA for subsequent multivariate analyses.
Furthermore, Metabolites with variance inflation factor (VIF) .10 were excluded to reduce multiple coli-
near relationships. Only the genus or species identified by both LEfSe and random forest were retained
for subsequent redundancy analysis (RDA). Next, we applied RDA to assess how much of the variation in
selected microbes can be explained by the variation in selected metabolites and immune factors using
the R package vegan.

Additionally, we performed mediation analysis using the mediation R package (version 4.5.0) (36) to
explore the underlying causal pathway among gut microbiota, inflammatory factors, metabolites, and the
development of insomnia. Representative microbes identified by LEfSe and random forest, inflammatory fac-
tors, and differential metabolites were included in the mediation analysis. The species and genus count data
were transformed to log counts per million 1 1 (log[CPM 1 1]). Then, we applied mediation analysis to the
gut microbiome-inflammatory factors/metabolites-insomnia triplet. The metabolites and inflammatory
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factors were used as candidate mediators. Lastly, the gut microbes were used as candidate mediators to
explore the inflammatory factors/metabolites-gut microbiome-insomnia axis.

Statistical analyses. All statistical analyses and graphs were done with R software (version 4.0.3).
Data were presented as mean 6 SD. Statistical comparisons were analyzed by the Wilcoxon rank sum
test and Chi-squared tests for categorical and continuous variables, respectively. The false discovery rate
(FDR) was used to correct multiple testing. P, 0.05 was statistically significant.

Data availability. All raw sequencing data created in this study have been uploaded to the National
Omics Data Encyclopedia (NODE; https://www.biosino.org/node/index) with the accession number
OEP002524.
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