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Obesity and type 2 diabetes are now recognized as chronic pro-inflammatory diseases.
In the last decade, the role of the macrophage in particular has become increasingly
implicated in their pathogenesis. Abundant literature now establishes that monocytes
get recruited to peripheral tissues (i.e., pancreas, liver, and adipose tissue) to become
resident macrophages and contribute to local inflammation, development of insulin resis-
tance, or even pancreatic dysfunction. Furthermore, an accumulation of evidence has
established an important role for macrophage polarization in the development of metabolic
diseases. The general view in obesity is that there is an imbalance in the ratio of M1/M2
macrophages, with M1 “pro-inflammatory” macrophages being enhanced compared with
M2 “anti-inflammatory” macrophages being down-regulated, leading to chronic inflamma-
tion and the propagation of metabolic dysfunction. However, there is emerging evidence
revealing a more complex scenario with the spectrum of macrophage states exceeding
well beyond the M1/M2 binary classification and confused further by human and animal
models exhibiting different macrophage profiles. In this review, we will discuss the recent
findings regarding macrophage polarization in obesity and type 2 diabetes.

Keywords: macrophage, inflammation, obesity, type 2 diabetes, M1/M2, polarization

Inflammation is a fundamental biological process whose role is
not only to enable host protection against pathogens, but also to
stimulate and modulate repair and healing when cellular damage
occurs. During an inflammatory event, once the initial insult is
contained, a primary objective is the restoration of tissue home-
ostasis. Failure to appropriately resolve an inflammatory stimulus
can result in persistent immune system activation, which can actu-
ally cause tissue damage and disease. Significant literature over the
last decades has established obesity to induce a state of chronic
low-grade systemic inflammation (1). Importantly, the inflamma-
tion accompanying obesity is distinctly different to that of acute
inflammation, as the inflammatory stimulus fails to be resolved.
This is of particular significance as chronic low-grade inflamma-
tion is implicated in the etiology of atherosclerosis, hypertension,
type 2 diabetes (T2D), and even certain cancers, which can all
be associated with obesity (2, 3). Considering the economic bur-
den from the increasing prevalence of these chronic metabolic
diseases, it is not surprising that considerable scientific attention
has focused on how and why obesity promotes chronic low-grade
inflammation.

Immune cells are the primary effectors of most inflammatory
reactions and are categorized into the innate and acquired immune
systems. With respect to obesity, leukocytes from both immune

systems have been implicated in the development of chronic
low-grade inflammation and metabolic dysfunction (1). How-
ever, adipose tissue macrophages have received the lion’s share of
attention of the immune cells involved. Macrophages can display
remarkable phenotypic heterogeneity with the ability to perform
vastly different roles depending on the biological situation (4).
Thus, a spectrum of many different macrophage populations has
been characterized by combinations of membrane markers and
gene expression profiles. This led to the establishment of a com-
plex nomenclature, which over time has become simplified into
two main macrophage phenotypes, M1 pro-inflammatory and M2
anti-inflammatory macrophages. This classification is obviously a
simplistic view of the situation as it is now clear that macrophages
dynamically evolve from one phenotype to the other according to
their environment and can occupy various points of the spectrum
with mixed characteristics [for updated nomenclature see Ref. (5,
6)]. For clarity purposes, we will mostly mention macrophages as
either M1 or M2.

MACROPHAGE ACCUMULATION IN THE OBESE ADIPOSE
TISSUE
Phagocytosis is a main function of macrophages that allows
them to contribute to tissue homeostasis through surveillance,
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maintenance, and repair. Though long-lived macrophage pop-
ulations reside within almost all bodily tissues, in 2003, two
separate laboratories reported macrophage accumulation in the
white adipose tissue (WAT) of both obese patients and rodents
(7, 8). Importantly, this was completely in line with Hotamis-
ligil’s landmark article 10 years earlier observing TNFα secretion
from the adipose tissue in obese rodents (9). Indeed, it appeared
these macrophages were the source of the elevated inflammatory
cytokines reported in obesity and their accumulation was associ-
ated with insulin resistance (7, 8). These landmark studies were
the first to link obesity and insulin resistance with adipose tissue
macrophage content and inflammation. Later it appeared that the
accumulation of macrophages is not limited to the WAT in obesity
with macrophages found to accumulate in many other organs criti-
cal for glucose homeostasis such as liver,pancreas, gut, and even the
brain (3). Regardless, the most significant immunological changes
occurring during obesity originate within the adipose tissue. Of
interest, despite the adipose tissue representing a small portion
of whole body glucose disposal, immune dysfunction within this
tissue is sufficient to impair systemic glucose metabolism (1).

MACROPHAGE POLARIZATION IN OBESITY AND T2D
Macrophages constitute an important fraction of non-adipocyte
cells within the WAT. Indeed, within a “normal” lean WAT, they
can account for almost 10% of total cell number. Profiling of
lean adipose tissue revealed these macrophages to possess an
M2 phenotype. These macrophages perform tissue surveillance
and remodeling functions and are associated with maintaining
WAT insulin sensitivity. Indeed, the manipulation of peroxi-
some proliferator activator receptor (PPAR) transcription factors
required for macrophage M2 polarization was associated with
metabolic dysfunction (10–12). The current theory supports that
weight gain induces local inflammation and chemokine produc-
tion to promote recruitment of circulating pro-inflammatory
(Ly6Chi) monocytes. Recruited monocytes differentiate into an
M1 macrophage phenotype and their accumulation leads to
an imbalance between M1 and M2 macrophages. Increased
cytokine production from M1 macrophages and/or reduced anti-
inflammatory signals from the M2 macrophages promote adipose
tissue dysfunction and impairs glucose tolerance.

Evidence for the detrimental role of M1 macrophages in pro-
moting adipose tissue insulin resistance has been reported in
several studies. Lumeng and colleagues first reported that the
macrophages accumulating in obese WAT possessed an inflam-
matory CD11c+ M1 phenotype and gathered around necrotic
adipocytes in Crown like structures (CLS) (13, 14). Further-
more, M1 macrophage numbers were shown to correlate with
insulin resistance in high-fat fed rodents (15). Whether WAT
M1 macrophages could be targeted therapeutically has proven
more challenging. Clodronate is a toxic compound adminis-
tered in liposomes that gets taken up by macrophages thereby
inducing their apoptosis. Clodronate liposome injections suc-
ceed in decreasing visceral WAT macrophage accumulation and
improve glucose metabolism and insulin sensitivity in HFD-fed
mice (16). However, this approach has limitations as clodronate
liposomes targeted all WAT macrophage phenotypes as well as

liver Kuppfer cells. One could envisage a deleterious effect from
depleting M2 macrophages on a long term basis. A more specific
removal of M1 macrophages was achieved in an elegant study
published by Olefsky’s group. They demonstrated that ablation
of M1 macrophages, achieved by targeting diphtheria-sensitive
CD11c+ cells with diphtheria toxin, was associated with improved
glucose tolerance (17). While CD11c expression allows discrim-
ination between M1 and M2 macrophages, its expression is not
exclusive for M1 macrophages. Dendritic cells and neutrophils also
express CD11c and the elevation of these cells in obese WAT may
contribute to the increased CD11c+ cell population and insulin
resistance (18, 19). From these studies, it is clear that targeting
established M1 populations within obese WAT will prove complex.
For these reasons, studies investigating mechanisms leading to
macrophage accumulation may yield more promising therapeutic
targets.

POTENTIAL MECHANISMS FOR MACROPHAGE
ACCUMULATION IN OBESITY
White adipose tissue macrophage accumulation is thought to
occur through two main processes. First, increased chemokine
secretion from adipocytes and resident macrophages promotes
the recruitment of Ly6C+ blood monocytes to obese WAT. Most of
these monocytes subsequently differentiate into M1 macrophages
in response to inflammatory signals within the adipose tis-
sue. Of the chemokines produced from obese WAT, monocyte
chemoattractant protein-1(MCP-1) and its receptor C–C motif
receptor-2 (CCR2) appear particularly important. For example,
mice lacking either CCR2 or MCP-1 have reduced ATMs, whereas
adipocyte specific over-expression of MCP-1 leads to enhanced
ATMs (20, 21). However, these knockout models did not normal-
ize macrophage numbers suggesting additional mechanisms are
likely to be involved in obesity-induced macrophage accumula-
tion (20). Indeed, obese WAT secretes many chemokines including
LTB4, MIP, MIF, and MCP-3 implicated in macrophage accu-
mulation and glucose intolerance (22). Interestingly, in addition
to chemokine secretion, signals from obese WAT also influence
bone marrow progenitor cells to increase myelopoiesis. Indeed, we
have recently demonstrated that in obese mice, IL1β production
from CD11c+ ATMs promoted bone marrow myelopoiesis further
perpetuating adipose tissue inflammation (23). Second, resident
ATMs have a strong proliferation capacity in both human beings
and rodents. Indeed, Jenkins et al. showed that IL4 is a strong pro-
moter of macrophage proliferation (24). Hence, in the lean state
where eosinophils secrete high levels of IL4 in the WAT, prolif-
eration is considered the major mechanism to maintain resident
M2 macrophage populations (24–26). Interestingly, Amano et al.
revealed that MCP-1 could enhance macrophage proliferation in
the visceral WAT independent of its chemokine function (27). It
is clear that further studies are required to determine the contri-
bution of macrophage proliferation and recruitment to adipose
tissue macrophage accumulation in obesity.

MACROPHAGE FATE
While the recruitment and source of macrophages present in obese
adipose tissue are well documented, the fate of these recruited
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macrophages remains less studied. Unlike resolving inflamma-
tion in which levels of inflammatory leukocytes subside following
the restoration of tissue homeostasis, adipose tissue inflammation
induced by excessive adiposity fails to resolve naturally. During
resolving inflammation, it is well appreciated that the initially
recruited polymorphonuclear neutrophils undergo swift apoptosis
prompting their phagocytosis by macrophages. Despite early evi-
dence for macrophage emigration and drainage to lymph nodes as
a significant contributor to macrophage disappearance following
acute inflammation, recent work from the Randolph laboratory
has revealed that macrophage apoptosis is largely responsible
for their removal in acute inflammation (28). Whether these
mechanisms contribute to adipose tissue macrophage accumu-
lation in non-resolving inflammation is not well studied. For
example, whether M1 macrophages accumulate within obese adi-
pose tissue due to pro-survival/anti-apoptotic signals remains
unknown. However, it is also possible that macrophages are
actively retained within the adipose tissue in response to various
cues. Netrin-1, best described for its role in neural development,
has recently been implicated in macrophage retention within obese
adipose tissue (29). However, these findings are somewhat at
odds with the plethora of studies showing the importance of
monocyte/macrophage recruitment, repopulation (e.g., after bone
marrow transplantation), and proliferation to the macrophage
burden in the obese adipose tissue and perhaps plays only a
minor role.

A MORE COMPLEX PICTURE THAN M1 OR M2
Macrophages are able to modify their phenotype according
to their environment. However, whether macrophage pheno-
type switching occurs in obesity remains unresolved (30, 31).
Shaul et al. demonstrated that in HFD-fed animals’ classical M1
macrophage accumulation is observed after 8 weeks of diet, how-
ever, after 12 weeks of diet, these CD11c+ macrophages exhib-
ited an increased expression of M2 associated transcripts (32).
While the M1 macrophages maintained their pro-inflammatory
phenotype, they also adopted some remodeling features in a con-
text of increased adipogenesis reminiscent of M2. Conversely,
M2 macrophages are able to secrete pro-inflammatory media-
tors in specific conditions (33). These studies reveal extremely
dynamic macrophage populations and newer technologies such
as live imaging undoubtedly will enhance our understanding of
the changes occurring in macrophage polarization state upon
weight gain. Indeed, Haase et al. showed recently that most adi-
pose tissue macrophages arising in situ stained positive for the
M2 markers CD206 and CD301 (34). Live imagery and track-
ing techniques allowed the revelation that newly formed M2
macrophages originates within the CLS before they migrate to the
interstitial space. Given that CLS form around dying adipocytes,
the presence of M2 macrophages could be viewed as a resolving
mechanism. Given that macrophages are able to alter their phe-
notype and that most studies assess adipose tissue macrophage
content at one single time, care must be exercised when inter-
preting data. For example, one cannot expect to predict a meta-
bolic phenotype based upon observed adipose tissue macrophage
polarity.

It remains plausible that the inflammation associated with obe-
sity initially constitutes a physiological rather than pathological
process within the adipose tissue. Indeed, in an elegant study,
Scherer and colleagues have demonstrated that adipocyte inflam-
mation is essential for adipose tissue expansion and remodeling
(35). Using the “adipochaser mouse,” they tracked newly formed
adipocytes and distinguished them from older “blue” adipocytes
expressing β-galactosidase. They determined that acute inflamma-
tion promotes adipogenesis and improved adipose tissue function
and insulin sensitivity. Conversely, they demonstrated that abro-
gation of inflammation within the adipose tissue led to defective
adipogenesis followed by ectopic lipid accumulation and glucose
intolerance (35). These findings highlight a previously unap-
preciated role for inflammation per se in healthy adipose tissue
function.

CAN WE TARGET IMMUNITY TO TREAT T2D?
It is important to ensure that the findings made in rodent mod-
els are useful in human pathology. It is clear that macrophages
also accumulate in adipose tissue of obese humans (7) and have
been correlated with insulin resistance (36).Wentworth et al. also
showed that pro-inflammatory CD11c+ macrophages are posi-
tively associated with systemic insulin resistance in obese patients
(37). Furthermore, macrophage content is reduced in the adipose
tissue following gastric bypass surgery (38). Importantly, in these
patients, the macrophage status was switched toward a less pro-
inflammatory profile. However, other groups have shown that the
accrued macrophages in human adipose tissue present M2 surface
markers associated with a more anti-inflammatory phenotype (39,
40). Nonetheless, Zeyda et al. showed that these M2 macrophages
possess a strong capacity to produce pro-inflammatory medi-
ators (39). These discrepancies may be explained by different
experimental protocols. In most studies, WAT is obtained from
subcutaneous depots whereas fewer studies report data obtained
from omental WAT. Furthermore, the sex and degree of adipos-
ity of the patients may also account for some of the differences
reported. The same reasons may partly explain the inconsistencies
observed between mice and human beings. In addition, impor-
tant metabolic differences between rodents and human beings
contribute to the difficulty of translating mouse data into human
therapies.

In addition, there are further evidences that inflammation and
macrophages should be targeted with the greatest care in T2D.
Indeed, Chawla’s group recently reported that M2 macrophages
can secrete catecholamines in response to cold exposure, activat-
ing thermogenesis of brown adipose tissue and lipolysis of WAT
(41). They later found that M2 macrophages were directly involved
in the “beginning” of adipose tissue (42). In addition, a current
article proposed that M2 macrophages strongly promote β-cell
proliferation (43). The presented studies tend to suggest that the
positive effects of macrophages in obesity and T2D are carried
on by repair macrophages exhibiting an M2 phenotype. Hence,
there appears to be rationale targeting the enhancement of M2
populations as opposed to depleting M1 macrophages, which may
jeopardize the patient’s immune function. However, increased M2
macrophage function is also tightly linked to tumor proliferation
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FIGURE 1 | Immune cells modulation in adipose tissue during obesity. In
the lean healthy adipose tissue, M2 like macrophages self-maintain through
proliferation. They ensure tissue remodeling and pathogen screening. In the
obese adipose tissue, overnutrition leads to larger adipocytes, which coupled
with various intrinsic and extrinsic cellular stress, and promotes the

development of a pro-inflammatory environment. In this context, M1 like
macrophages start to accumulate due to some M2 macrophages switching
phenotype, bone marrow stimulation of myelopoiesis contributing to the
recruitment of pro-inflammatory monocytes, and possibly reduced egress of
macrophages.

so manipulating M2 populations must be considered carefully
as obese patients already present with an increased incidence of
cancer (2).

CONCLUSION
It is increasingly appreciated that immune cells play a crucial role
in the control of whole body metabolism (2). In light of this view,
it seems clear that the macrophage accumulation within the adi-
pose tissue is associated with metabolic dysfunction observed in
obesity. However, the role of macrophages in the pathogenesis of
obesity and diabetes is still conflicting. In addition to the com-
plexity of the immune response itself, different rodent models,
the use of different high-fat diets and of different intervention
time courses not to add the different environments of each ani-
mal facility, have often led to contradictory results raising more
confusion within the field. As it was nicely exposed in a recent
review by Murray et al., it is important for the coherence of results
in this domain that researchers try and decide which models to
focus on to allow the field to progress and result in more human
translational potential (5).

In this review, we have summarized the recent findings on
the role of macrophages in obesity and T2D. M1 macrophage

accumulation within the adipose tissue remains tightly associated
with obesity. It is still unclear how much this accumulation con-
tributes to the glucose intolerance and insulin resistance described
in obese rodent models. There is growing literature suggesting
their presence could be required for physiological adaptations
of the adipose tissue (35). Perhaps these findings reflect the
dynamic nature of macrophage polarity and the essential role of
macrophages in the biology of adipose tissue (Figure 1). However,
it is also important to take a “non-glucose/insulin resistant-centric
view” with respect to the role of adipose tissue macrophages
and to appreciate that they could also contribute significantly
to the risk of other associated diseases including cardiovascu-
lar disease and cancer. As a whole, these data advocate that
macrophages should be targeted with the greatest care in metabolic
diseases.
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