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Here we describe methods for synthesizing a cationic, multi-arm Avidin (mAv) nano-construct that has a 

wide range of applications in drug delivery and imaging of negatively charged tissues. We use Avidin-biotin 

technology that gives the flexibility for conjugating biotinylated Dexamethasone to mAv by simple mixing at 

room temperature. We also describe methods to control hydrolysis rates of ester linkers to enable sustained (and 

tunable) drug release rates in therapeutic doses. 

• Multi-arm structure provides multiple sites for covalent conjugation of drugs 
• Use of Avidin-biotin reaction gives multi-arm nano-construct a modular design enabling conjugation and 

delivery of similar sized biotinylated drugs. 
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More specific subject area: Charge-based drug delivery platform for targeting negatively charged tissues 

Method name: Avidin-biotin technology to synthesize multi-arm nano-construct for drug 
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Method details 

Overview 

Targeted drug delivery to joint tissues like cartilage remains a challenge that has prevented clinical

translation of promising osteoarthritis (OA) drugs [1] . Local intra-articular (IA) injection of drugs

suffers from rapid clearance from the joint space and slow diffusive transport through the dense,

avascular cartilage matrix comprising of negatively charged aggrecan-glycosaminoglycans (GAGs). The 

high negative fixed charge density (FCD) of cartilage provides a unique opportunity to use electrostatic

interactions for enhancing transport, uptake, and retention of cationic drug carriers [2] . We recently

showed that there exists an optimal net positive charge to deliver a drug of given size to a tissue of

known FCD that will result in rapid penetration through the full thickness of tissue, highest intra-

tissue uptake and long-term retention [3] . Optimal net positive charge on the carrier is chosen to

enable weak and reversible binding with the intra-tissue negatively charged groups such that the 

drug and its carrier can penetrate through the full tissue thickness and not get stuck in the tissue’s

superficial zones. Despite weak binding, the high negative FCD of aggrecan-GAGs inside cartilage 

greatly increases the residence time of optimally charged cationic drug carriers. Similarly, cationic 

glycoprotein, Avidin, due to its optimal net size ( < 10 nm hydrodynamic diameter) and charge

(between + 6 and + 20) was shown to penetrate through full thickness of rabbit cartilage following

IA injection resulting in a high intra-cartilage uptake ratio of 180 (implying 180x higher concentration

of Avidin inside cartilage than surrounding fluid at equilibration) and was still found to be present

through the full-thickness of cartilage two weeks following its IA administration in a rabbit anterior

cruciate ligament transection model of post-traumatic OA [4–6] . 

Here we synthesize a multi-arm nano-construct of Avidin (mAv) by conjugating it with four 

biotinylated 8-arm PEGs using Avidin-biotin binding that provided 28 sites for covalent conjugation 

of small molecule drugs. We conjugate mAv to Dexamethasone (mAv-Dex), a broad spectrum 

glucocorticoid, using a combination of hydrolysable ester linkers derived from succinic anhydride 

(SA), 3,3-dimethylglutaric anhydride (GA) and phthalic anhydride (PA) in a 2:1:1 molar ratio that 

enabled 50% drug release within 38.5 ± 1.5 h followed by sustained release in therapeutic doses over

two weeks. We show that mAv-Dex can rapidly penetrate through the full thickness of cartilage in

high concentration, have long intra-cartilage residence time in both healthy and arthritic cartilage 

via weak-reversible binding with negatively charged aggrecan-GAGs and effectively reverse cytokine 

induced catabolic activity significantly greater than free (unmodified) Dex; these results are discussed 

in detail in our recent paper published in the Journal of Controlled Release [7] . In the current article,

we present a detailed method for synthesizing mAv nano-construct and ester linkers with different

hydrolysis rates for conjugating a small molecule OA drug, Dex. 

mAv can be conjugated with a broad array of small molecule OA drugs and their combinations for

sustained delivery to chondrocytes enabling OA treatment with a single injection, thereby eliminating 

toxicity issues associated with multiple high dose injections [8] . Drug release rates can be tuned by

using a combination of linkers presented here, depending on the type of drug, tissue and the desired

https://doi.org/10.1016/j.jconrel.2019.12.020
https://doi.org/10.1016/j.joca.2015.07.010
https://doi.org/10.1016/j.jconrel.2019.12.020
https://doi.org/10.1016/j.joca.2015.07.010
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elease rates and dosing. This charge-based platform can also be used for delivering a wide range

f drugs to other tissues with similar properties, such as meniscus, intervertebral disk, and fracture

allus. 

xperimental 

aterials 

10 kDa 8-arm polyethylene glycol (PEG) amine hydrochloride salt was purchased from

dvanced Biochemicals (Lawrenceville, GA). N 

–Hydroxysuccinimido (NHS)-biotin, 1-ethyl-3-(3

imethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide (NHSS), Avidin

nd Avidin-Texas Red conjugated, 4 ′ -hydroxybenzene-2-carboxylic acid (HABA), 3.5 kDa molecular

eight cut-off (MWCO) and 7.0 kDa MWCO SnakeSkin dialysis tubing, 2x Tris-Glycine Native sample

uffer, acetonitrile, pyridine, trifluoroacetic acid, acetic acid, sodium hydroxide and 1 N hydrochloric

cid solution was purchased from Thermo Fisher Scientific (Waltham, MA). Dexamethasone (Dex),

uccinic anhydride (SA), 3,3-dimethylglutaric anhydride (GA), phthalic anhydride (PA), dimethyl

ulfoxide-d6 (DMSO-d6) containing 0.03% (v/v) tetramethylsilane, fluorescein isothiocyanate isomer I

FITC), dimethylaminopyridine (DMAP), potassium iodide, iodine, barium chloride, β-mercaptoethanol

nd other salts were purchased from Sigma-Aldrich (St. Louis, MO). 2x Laemmli Sample Buffer, 4–20%

ini-PROTEAN® TGX 

TM Precast Protein Gels (12-well), Coomassie Brilliant Blue R-250 were purchased

rom Bio-Rad (Hercules, CA). 

iotinylation of 8-arm PEG 

The first step is to add one biotin to 8-arm PEG. PEG was biotinylated by reaction with NHS-biotin

ollowing scheme ( 1 ) . Briefly, 10 mg (0.001 mmol, 1.0 equiv.) of 8-arm PEG was dissolved in 500 μL of

anopure water and 1.7 mg (0.005 mmol, 5.0 equiv.) of NHS-biotin was dissolved in 500 μL of DMSO.

HS-biotin solution was then added dropwise to the PEG solution (5:1 molar ratio) and reacted for

 h under gentle rotation (10 rpm, HulaMixer Sample Mixer, Thermo Fisher Scientific, Waltham, MA)

t room temperature. Excess NHS-biotin was removed from the PEG-biotin conjugate solution using

ialysis (7.0 kDa MWCO) for 24 h against phosphate buffer saline (PBS). A 5:1 molar ratio of NHS-

iotin and 8-arm PEG was chosen as it enabled conjugation of one biotin per PEG. The extent of

iotinylation was confirmed using the HABA dye assay [9] as described below. 

(1)

haracterization of biotinylated PEG 

The extent of biotinylation of PEG (PEG-biotin) and the loading of PEG-biotin on Avidin were

etermined by using the HABA colorimetric assay [9] . Changes in absorbance of HABA-Avidin complex

t 500 nm due to competitive displacement by the biotinylated PEG was used to estimate the degree

f biotinylation ( Fig. 1A ). HABA dye was dissolved in 10 mL of nanopure water (2.42 mg/mL) and

ltered using 0.2 μm filter. Excessive HABA dye was added to Avidin solution to a final concentration

f 0.82 mg/mL (initial absorbance of 1.2 detected by Synergy H1 Microplate Reader, BioTek, Winooski,

T). 20 μL of graded concentrations of PEG-biotin were added to 180 μL of HABA-Avidin complex (1:1

hrough 8:1 molar ratio of PEG-biotin to HABA-Avidin) that competitively displaced HABA from biotin

inding sites of Avidin thereby reducing the absorbance value. 100% PEGylation of Avidin was achieved

hen the change in absorbance achieved a plateau. As shown in Fig. 1 B, the reduction in absorbance

alue with increasing molar ratio of biotinylated PEG to HABA-Avidin from 1:1 to 4:1, following which

 plateau is achieved meaning that a majority of biotin sites on Avidin were occupied by PEG-biotin

ndicates the formation of 1:4 mAv. Using the Beer-Lambert Law [9] , an average of 1.28 ± 0.02 biotin
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Fig. 1A. Schematic of HABA dye assay: HABA binds with Avidin resulting in high absorbance value but is competitively 

displaced by biotin or biotinylated PEG reducing the absorbance value. B. Titration curve of biotinylated PEG with HABA-Avidin 

mixture. Absorbance value dropped with increasing biotinylated PEG: HABA-Avidin molar ratio, and a plateau was achieved 

after 4:1 molar ratio confirming that all four binding sites of Avidin (Av) were occupied by PEGs to form 1:4 mAv configuration. 

1:2 mAv has 2 PEGs conjugated to Avidin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

per PEG molecule was estimated. In addition, matrix-assisted laser-desorption ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) was used to confirm the molecular weight of biotinylated PEG. 10

μL of 8-arm PEG, or 10 μL of 8-arm PEG-biotin (1 mg/mL) was mixed with 10 μL sinapinic acid matrix,

and the change in molecular weight before and after biotinylation of 8-arm PEG was confirmed using

MALDI-TOF spectrometry (Bruker Microflex II). 

Synthesis of mAv nano-construct 

1:4 mAv containing four 8-arm PEGs was synthesized by mixing 4 mol of biotinylated PEG with 1

mol of Avidin in nanopure water for 30 min under gentle rotation (10 rpm, HulaMixer Sample Mixer)

at room temperature. The HABA dye assay ( Fig. 1 B) was used to confirm that all four biotin binding

sites on Avidin were occupied with PEG-biotin as subsequent addition of PEG-Biotin to the Avidin-

HABA mixture did not change the absorbance value. This confirmed the successful synthesis of 1:4

mAv. 

Characterization of mAv 

Conjugation of PEG-biotin to Avidin was also confirmed by using native polyacrylamide gel 

electrophoresis (PAGE) in 7.5% separating gel. Since temperature-dependent dissociation of Avidin 

tetramer was witnessed when temperature was higher than 25 °C [10] , it was common to find an

Avidin monomer band (~17 kDa) using SDS-PAGE even if we didn’t denature the protein samples

before loading. Therefore, native PAGE in reverse polarity was used to analyze Avidin conjugates. 

In brief, 12 μL of protein samples (~7.5 μg protein) were mixed with 4 μL of 2x Tris-Glycine Native

sample buffer (Novex) without heating. Since the isoelectric point of Avidin is 10.5 and the protein

mobility depends on both its own charge and molecular weight in the native PAGE gel, the electrode

polarity had to be reversed (anode was inserted at the top of gel and cathode was inserted at the

bottom of gel). Electrophoresis was performed for approximately 4 h in 1x solution of non-SDS tris-

base running buffer at 200 V, 40 mA and 4 °C [11] . 

Native gel was stained using iodine solution and Coomassie Brilliant Blue R-250. Gel was fixed by

fixing solution (10% acetic acid, 30% water and 50% ethanol) and then washed with deionized (DI)

water for 20 min. Gel was then incubated in 5% barium chloride solution for 15 min followed by

3 washes in DI water. Subsequently, the gel was stained with potassium iodide and iodine solution

(dissolve 2.0 g potassium iodide (KI) in 50 mL DI water and then add 1.3 g of iodine to KI solution

when the solution has cooled to room temperature) for 5 min to identify free or conjugated PEG.

Following destaining iodine solution by DI water, the gel was then stained with Coomassie Brilliant

Blue R-250 for Avidin, and de-stained three times in 100 mL of 10% acetic acid solution for 1 h. 
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Fig. 2A. Schematic of Dex conjugation with 8-arm PEG-amine using crosslinkers ( R : SA, GA and PA ) to form different ester 

linker spacers ( X : X 1 , X 2 and X 3 ). B. Yellow point stained by Bromocresol Blue in TLC plate demonstrating that carboxyl group 

was successfully incorporated into Dex. 

 

p  

U  

b  

o  

N

S

 

e  

d  

5  

e  

b  

t  

w  

1  

p  

5  

D  

a  

(  

A  

3  

s  

(  

A  

q  

p  

c  

p  

g  

w

PEGylation of Avidin in 1:2 and 1:4 mAv was further confirmed by using H 

–Class Acquity ultra

erformance liquid chromatography (UPLC) (Waters Corp, Milford, MA) equipped with an Acquity

PLC BEH200 Size Exclusion Column (200 Å, 1.7 μm column, 4.6 × 300 mm) with 20 mM ammonium

icarbonate buffer as the mobile phase at 0.2 mL/min. Avidin was detected at 280 nm. Zeta potential

f Avidin and mAv was measured in nanopure water at 0.45 mg/mL concentration using a Zetasizer

ano-ZS90. 

ynthesis of controlled release ester linkers to conjugate Dexamethasone (Dex) to biotinylated PEG 

Dex was covalently conjugated to the PEGs of 1:4 mAV nano-construct by using a combination of

ster linkers that enabled sustained (and tunable) Dex release over two weeks. Three carboxylated

erivatives of Dex were prepared by reacting 36.0 mg Dex (0.092 mmol, 1.0 equiv.) with 46 mg of SA,

2.0 mg of GA or 67.0 mg of PA (0.458 mmol, 5.0 equiv.) in presence of 2 mg DMAP (0.015 mmol, 0.2

quiv.) as a catalyzer in 1 mL of pyridine ( Fig. 2A ). The reaction for Dex-SA was conducted in a round

ottom flask purged with nitrogen gas for 24 h at room temperature [12] . For Dex-GA and Dex-PA,

he reaction time was 48 h at 37 °C. Following completion of the reaction, pyridine was evaporated

ith constant purging of nitrogen gas, and 4 mL of the cold solution containing 25 mL water and

0 mL concentrated HCl was added to the flask to precipitate Dex-SA, Dex-GA and Dex-PA out. A white

recipitate was observed, which was stirred for 10 min and then centrifuged at 10,0 0 0 g for 5 min for

 cycles. In each cycle, the supernatant was replaced with fresh cold solution. The final products of

ex-SA, Dex-GA, and Dex-PA (Compounds 2, 3, 4 respectively) were lyophilized, weighed and stored

t −20 °C for future use. Their structures were confirmed using Proton Nuclear Magnetic Resonance

 

1 H NMR). Modification of three kinds of Dex were verified using 500 MHz 1 H NMR (Varian Inova.

gilent Technologies). 1–2 mg of mixture of PEG or carboxylated derivatives of Dex (Compounds 2,

, 4 ) was dissolved in 700 μL DMSO–d6. The obtained NMR data was analyzed using MestRe Nova

oftware. The carboxyl groups incorporated in Dex were verified using thin layer chromatography

TLC). First, the baseline was marked about 1.0 cm from the bottom of TLC plate (Silica gel on TLC

l foils, 5 cm × 10 cm, Sigma-Aldrich, St. Louis, MO). Then, a capillary was used to draw in a small

uantity of 10 mg/mL product solution, which was placed at least 1.0 cm from the edge of the TLC

late. The plate was then placed in a chamber containing developing solvent (80% methanol and 20%

hloroform). The chamber was covered with a lid to allow for the solvent front to reach top of the

late. The TLC plate was removed and immersed into Bromocresol Blue solution to stain carboxyl

roups on Dex. Fig. 2 B shows a yellow spot on the TLC plate demonstrating that the carboxyl group

as successfully incorporated into Dex. 
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Fig. 3A. Reverse Phase-HPLC analysis of Dex. B. Standard curve of injected standard Dex (ng) vs absorbance (mAU x s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synthesized carboxylated derivatives of Dex were then conjugated to PEG-biotin using EDC/NHS 

chemistry ( Fig. 2A ) to form compounds 5, 6 and 7 . Briefly, 5.0 mg of Dex-SA, Dex-GA or Dex-

PA (0.010 mmol, 100.0 equiv.) was dissolved initially in 120 μL of DMSO and added 600 μL of 2-

morpholinoethanesulfonic acid (MES) dropwise. Then, 19.2 mg of EDC (0.104 mmol, 104.0 equiv.) and 

21.7 mg NHSS (0.092 mmol, 92.0 equiv.) were added to Dex-SA, Dex-GA and Dex-PA solution, and

all of them were purged with nitrogen to activate the reaction for 30 min. Subsequently, 1.0 mg

of PEG-biotin (0.100 μmol, 1.0 equiv.) was added to each of the solutions and reacted for 2 h at

room temperature, purged with nitrogen gas. Upon completion of the reaction, the final product was

dialyzed using 7.0 kDa MWCO membrane to remove the excessive reagents under 4 °C for 24 h.

The pure product was then lyophilized and stored at −20 °C for future purposes. The formation of

these three chemical compounds 5, 6 and 7 was then confirmed using 1 H 

- NMR following the same

procedures of 1 H 

- NMR mentioned above. 

Dex loading content 

To estimate Dex loading, compounds 5, 6 , and 7 were hydrolyzed using 0.1 N hydrochloric acid

overnight and neutralized against 0.1 N sodium hydroxide. The amount of Dex released was quantified

by HPLC (Agilent Technologies 1260 infinity II) equipped with a Variable Wavelength Detector using a

Poroshell 120 EC 

–C18 4.6 × 150 mm column. A gradient of solvent A (0.1% trifluoroacetic acid (TFA) in

water) and solvent B (0.1% TFA in acetonitrile) was used. The concentration of solvent B was increased

linearly from 5% to 65% over 15 min. Column temperature of 30 °C and a flow rate of 1.0 mL/min were

used. Dex was eluted at 12.3 min (254 nm) and peak area of UV absorbance (mAU 

∗ s) was used

for calculation ( Fig. 3A ). Standard curve plotting absorbance vs injected standard Dex is shown in

Fig. 3 B. Compounds 5, 6 , and 7 were conjugated to Avidin to form 1:4 mAv and the drug loading

content (DLC) of the conjugate was calculated as: 

DLC = 

T otal Dex encapsulated ( g ) 

T otal Dex encapsulated ( g ) + Mass of A v idin ( g ) 

Drug release study 

First, we conjugated Dex to PEG using hydrolysable ester linkers derived from SA ( Fig. 2A ).

However, the fast-release ester linker in PEG-Dex-SA had a half-life of 6.8 ± 0.2 h. The hydrolysis of

an ester bond begins when hydroxide ions of water attack the electrophilic carbon in the ester bond

( Fig. 4A ), breaking the p- π conjugation of ester bond creating a tetrahedral intermediate [13] . Since

the adjacent carbonyl group from the amide bond tends to compete with and withdraw electrons from

the ester bond (inductive effect) resulting in a decrease in the ester bond’s electron density [14] , the

carbon in ester bond becomes more electrophilic and reactive to nucleophilic attack from hydroxide 

ion causing a faster release. Furthermore, hydrophobic Dex conjugated to hydrophilic polymer PEG 
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Fig. 4A. Mechanism of fast hydrolysis of PEG-Dex-SA in PBS (pH 7.4). Carbonyl in amide bond, an electron withdrawing group 

(EWG), withdraws electrons from methylene and ester bonds (inductive effect) thereby decreasing ester bond’s electron density 

and making it more electrophilic ( δ+ ) and reactive to nucleophilic attack from hydroxide ion ( −OH) causing faster hydrolysis 

of the ester bond. Repulsion between hydrophilic PEG and hydrophobic Dex further strains the ester linker making it unstable. 

When X 1 is replaced by X 2 or X 3 , the carbon spacer length is increased that weakens the inductive effect of carbonyl and 

donates more electrons to stabilize the ester bond. This also reduces the repulsive effects between PEG and Dex. B. In-vitro 

setup to study drug release rates. 
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an produce repulsive forces, thereby accelerating the separation of Dex from PEG. As for PEG-Dex-GA,

he GA cross linker will increase the carbon spacer length between the ester and amide bonds thus

eakening the inductive effect of the carbonyl group. The two methyl groups in the GA branched

hain can also donate electrons, thereby stabilizing the ester bond. Similarly, the phenyl group in

A can donate numerous electrons to the ester bond (PEG-Dex-PA). We, therefore, used ester linkers

erived from SA, GA and PA by physically mixing them in 2:1:1 molar ratio of Dex to formulate

ontrolled release PEG-Dex (2:1:1) or abbreviated as mAv-Dex (2:1:1) after conjugation with Avidin,

hich enabled 50% release of Dex in 38.5 h followed by a sustained release of the remaining drug

ver the next two weeks. Dex release rates from Dex-PEG-biotin were estimated in PBS at pH 7.4,

7 °C using dialysis tubing (7.0 kDa MWCO) with continuous shaking under sink conditions: Dex

oncentration was kept 10x lower than the saturation solubility of Dex in PBS ( Fig. 4 B). At different

ime intervals (0 h, 0.5 h, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h and 144 h),

00 μL of release media was used to estimate the Dex concentration by HPLC, which was replaced by

qual amount of fresh release media. 

esults and discussion 

ALDI-TOF MS for biotinylated PEG 

In Fig. 5 A, the molecular weight of PEG was 10,620 Da; this increased to 10,902 Da following

iotinylation ( Fig. 5 B) showing that an average 1.15 biotins per PEG were present. Using the Beer-

ambert Law [9] , an average of 1.28 ± 0.02 biotins per PEG molecule was estimated ( Fig. 1 B), which

s consistent with the mass spectrometry data. 

haracterization of mAv-Dex 

We first tried using SDS-PAGE (4–20% Mini-PROTEAN® TGX 

TM Precast Protein Gels, 12-well) to

onfirm the Avidin tetramer. However, Fig. 6A shows that Avidin had denatured, (d-Av, treated by β-

ercaptoethanol and boiling) resulting in an Avidin monomer band (~17 kDa) in the gel. The Avidin

etramer still dissociated despite effort s to prevent denaturing by mixing it with only 2x Laemmli

ample Buffer (n-Av),. Therefore, native PAGE and UPLC were used instead to confirm PEGylation of

Av. Fig. 6 B shows native PAGE gel in reverse polarity used to confirm PEGylation in 1:2 and 1:4 mAv

ontaining two or four 8-arm PEGs, respectively. PEG was stained yellow with iodine and protein was

tained blue with Coomassie Brilliant Blue R-250. In PEG-staining (left), bands only appear in the
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Fig. 5. Confirmation of A. PEG and B. biotinylated PEG using MALDI-TOF MS. The calculated mass of PEG is 10,620 Da and 

biotinylated PEG is 10,902 Da. 

Table 1 

Zeta potential ( ζ ) and net size (diameter) of Avidin, 1:2 mAv and 1:4 mAv. Data 

shown as Mean ± SD. 

Formulation Avidin 1:2 mAv 1:4 mAv 

ζ (mV) 18.3 ± 0.5 20.3 ± 0.3 25.3 ± 0.7 

Diameter (nm) ~7.0 ~7.6 ~8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PEG and mAv channels. However, in protein-staining (right), bands only appear in the Avidin and

mAv channels. Therefore, bands at the same position in the mAv channels with both PEG-staining

and protein-staining verified the formation of mAv. Furthermore, UPLC confirmed that a majority of 

the population in 1:4 mAv or 1:6 mAv had 4 PEGs conjugated to Avidin (peak ‘b’ at 4.38 min or

4.37 min) followed by a secondary population of mAv with 2 PEGs (peak ‘d’ at 5.33 min) ( Fig. 6 C).

UPLC of 1:2 mAv also confirmed that the majority of Avidin conjugated with two PEGs (peak ‘d’

at 5.35 min) followed by configurations containing three PEGs (peak ‘c’ at 4.80 min) and one PEG

(peak ‘e’ at 5.86 min). No peak for native Avidin (6.29 min) was found in 1:4 mAv and 1:2 mAv

confirming that Avidin was successfully PEGylated. The similar peak shape between 1:4 mAv and

1:6 mAv confirmed that increased molar ratio of biotinylated PEG to Avidin from 1:4 to 1:6 didn’t

increase the percentage of Avidin with 4 PEGs conjugated (peak ‘b’) in this mAv system. Therefore,

1:4 molar ratio of biotinylated PEG to Avidin was finally chosen to synthesize mAv nano-construct.

Due to this heterogeneity, the structural properties determined represent the collective behavior of 

different populations in each formulation. 

PEGylation did not reduce mAv’s zeta potential ( ζ ) suggesting minimum shielding of cationic 

charge ( Table 1 ). Its net size was within the 10 nm size cut-off determined for nanoparticles to

penetrate through the full-thickness of cartilage [15] . The hydrodynamic diameter of Avidin and mAv

was estimated from their molecular weights using the Stokes-Einstein equation [15] . The net size of

mAv was within the 10 nm limit enabling it to penetrate through the full thickness of cartilage similar

to unmodified Avidin. 

1 H NMR spectra of carboxylated derivatives of Dex and PEG-Dex compounds 

The chemical structures of synthesized Dex-SA, PEG-Dex-SA, PEG-Dex-GA and PEG-Dex-PA were 

confirmed by 1 H NMR. The 1 H NMR data of standard 8-arm PEG and Dex is presented and main

proton peaks were identified in Fig. 7 A and 7 B. Based on the NMR spectrum of standard sample Dex,
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Fig. 6A. SDS-PAGE gel (4–20%) of non-denatured Avidin (n-Av) and denatured Avidin (d-Av) stained with Coomassie Brilliant 

Blue R-250. B. Native PAGE gel (7.5%) of Avidin (Av), PEG, 1:2 mAv and 1:4 mAv under reverse polarity stained with (left) 

iodine for PEGs and with (right) Coomassie Brilliant Blue R-250 for protein. C. UPLC analysis of standard Avidin shows peak ‘a’ 

at 6.29 min. 1:6 mAv and 1:4 mAv formulation have similar peak shape showing a majority of mAv with 4 PEGs (peak ‘b’ at 

4.38 min or 4.37 min) and a secondary population of mAv with 2 PEGs (peak ‘d’ at 5.33 min). In addition, 1:2 mAv has three 

peaks, a majority of mAv with 2 PEGs (peak ‘d’ at 5.35 min), a secondary population of mAv with 3 PEGs (peak ‘c’ at 4.80 min) 

and a minority of mAv with 1 PEGs (peak ‘e’ at 5.86 min). 
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he disappearance of hydroxyl signal (4.0 ppm), shift of protons ‘b’ from 4.4 ppm, 4.6 ppm to 4.8 ppm,

.0 ppm, and additional signal of protons ‘a’ at 1.6 ppm suggests the formation of ester in Dex-SA

 Fig. 7 C). The 1 H NMR spectrum of the newly PEG chain introduced to Dex-SA was identified at

.3 ppm (‘a’). At the same time, formation of amide bond was confirmed at ~7.8 ppm in PEG-Dex-SA

roup whereas PEG/Dex-SA physical mixture didn’t display this peak ( Fig. 8 A). The 1 H NMR spectra

f PEG-Dex-GA and PEG-Dex-PA were identical to that of PEG-Dex-SA. The appearance of protons ‘c’

n Fig. 8 B and 8 C indicates the presence of side chains (-CH 3 ) and benzene ring in PEG-Dex-GA and

EG-Dex-PA, respectively. 

rug loading content of PEG-Dex compounds and drug release rates 

The amount of Dex conjugated to PEG was determined by analytical reverse-phase HPLC. As shown

n Table 2 , PEG-Dex-SA, PEG-Dex-GA and PEG-Dex-PA had 6.6 ± 0.5, 1.6 ± 0.4 and 3.3 ± 0.5 molecules

f Dex on one molecule of 8-arm PEG, respectively. After conjugating to Avidin, the DLC for mAv-Dex-

A was calculated as 15.7 ± 1.0%, and 3.8 ± 0.9% and 7.8 ± 0.1%, for mAv-Dex-GA and mAv-Dex-PA,

espectively. 
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Fig. 7. 1 H NMR spectra of ( A ) 8-arm PEG, ( B ) Dex, ( C ) Dex-SA in Dimethyl sulfoxide-d6. The lower-case labels “a~i” indicate 

the resonance peaks corresponding to each proton in the structure. 
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Fig. 8. 1 H NMR spectra of ( A ) PEG/Dex mixture and PEG-Dex-SA, ( B ) PEG-Dex-GA and ( C ) PEG-Dex-PA in Dimethyl sulfoxide-d6. 

The lower-case labels “a~c” indicate the resonance peaks corresponding to each proton in the structure. 
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Table 2 

Hydrolysis half-lives of ester linkers between 8-arm PEG and carboxylated derivatives of Dex. Molar ratio of Dex 

conjugated with PEG for each configuration and the corresponding drug loading content (DLC). Data shown as 

Mean ± SD. 

Ester linker PEG-Dex-SA PEG-Dex-GA PEG-Dex-PA PEG-Dex (2:1:1) 

Half-life (h) 6.8 ± 0.2 79 ± 1.8 86 ± 2.3 38.5 ± 1.5 

Dex: PEG (molar ratio) 6.6 ± 0.5:1 1.6 ± 0.4:1 3.3 ± 0.5:1 4.6 ± 0.5:1 

DLC (%) 15.70 ± 1.0 3.81 ± 0.9 7.85 ± 0.1 11.1 ± 0.8 

Fig. 9. Dex release rates from PEG-Dex compounds at 37 °C, pH 7.4 in PBS. Controlled release PEG-Dex (2:1:1) represents 

combination of ester linkers synthesized from SA, GA and PA in 2:1:1 molar ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The drug release profiles of PEG-Dex compounds were shown in Fig. 9 . About 70% of Dex was

released from PEG-Dex-SA in PBS within the first 24 h resulting in a short release half-life (t 1/2 ) of

about 6.8 h. The adjacent carbonyl group in amide bond and hydrophobic-hydrophilic intermolecular 

reaction resulted in the fast hydrolysis of ester bond in PEG-Dex-SA. We addressed this issue by

increasing the carbon spacer length between the ester and adjacent amide bond by replacing SA with

GA or PA to form carboxylic acid derivatives of Dex. In PEG-Dex-GA, increased carbon spacer length

(from -C-C- to -C-C 

–C-) and the two methyl groups in the GA branched chain weakened the inductive

effect of carbonyl group by donating more electrons to stabilize the ester bond. The resulting half-life

of ester hydrolysis increased to 79 ± 1.8 h. Similarly, the phenyl group in PEG-Dex-PA can donate

electrons to the ester bond thereby increasing the release half-life to 86 ± 2.3 h. Controlled release

PEG-Dex (2:1:1) had a release half-life of 38.5 ± 1.5 h. The products were then lyophilized and stored

at −20 °C until further use. 

A single 10 μM dose of controlled release mAv-Dex (2:1:1) was chosen to achieve a therapeutic

minimum concentration of 10 nM Dex in culture media based on intra-cartilage uptake of mAv-

Dex and Dex release rates from mAv-Dex. Detailed calculations are provided in He et al., Journal

of Controlled Release [7] . mAv-Dex effectively suppressed the cytokine induced catabolic activity 

significantly greater than Dex alone in a cartilage explant culture model of OA [7] . Methods to quantify

intra-cartilage transport of mAv or in-vitro cartilage culture setup are not described here. Readers are

directed to the following references for methods on tissue transport [3 , 6 , 16] and in-vitro cartilage OA

model [12 , 17] . 
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onclusion 

Here we present a protocol for synthesizing cartilage penetrating cationic multi-arm Avidin (mAv)

ano-construct that provides multiple sites for covalent loading of Dex using hydrolysable ester

inkers. We present a method for designing more stable ester linkers by increasing carbon spacer

ength between the ester and adjacent amide bond by replacing SA with GA or PA. The controlled

elease mAv-Dex formulation containing ester derivatives from SA, GA and PA in 2:1:1 molar ratio

howed a release half-life of 38.5 ± 1.5 h providing sustained drug release over at least 10 days. 

This cationic multi-arm Avidin (mAv) nano-construct can enable intra-cartilage delivery of a broad

rray of small molecule OA drugs and their combinations to chondrocytes. Drug release rates can be

odulated by using a combination of ester linkers with different rates of hydrolysis based on the

ype of drug, its target sites and state of disease. Avidin-biotin technology provides the flexibility for

iotinylating other similar sized drugs as Dex that can then be conjugated with Avidin by simple

ixing at room temperature, which can be conducted at the clinic prior to use. This is a platform

echnology that, for example, can also be used for delivering contrast agents for imaging of a wide

ange of negatively charged tissues. 
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