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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human
cancers. Numerous clinical trials evaluating various combinations of chemotherapy and targeted
agents and radiotherapy have failed to provide meaningful improvements in survival. A grow-
ing number of studies however have indicated that photodynamic therapy (PDT) may be a viable
approach for treatment of some pancreatic tumors. PDT, which uses light to activate a photosensi-
tizing agent in target tissue, has seen widespread adoption primarily for dermatological and other
applications where superficial light delivery is relatively straightforward. Advances in fiber optic
light delivery and dosimetry however have been leveraged to enable PDT even for challenging
internal sites, including the pancreas. The aim of this article is to help inform future directions by
reviewing relevant literature on the basic science, current clinical status, and potential challenges in
the development of PDT as a treatment for PDAC.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers.
Clinical trials of various chemotherapy, radiotherapy, targeted agents and combination strategies
have generally failed to provide meaningful improvement in survival for patients with unresectable
disease. Photodynamic therapy (PDT) is a photochemistry-based approach that enables selective
cell killing using tumor-localizing agents activated by visible or near-infrared light. In recent years,
clinical studies have demonstrated the technical feasibility of PDT for patients with locally advanced
PDAC while a growing body of preclinical literature has shown that PDT can overcome drug
resistance and target problematic and aggressive disease. Emerging evidence also suggests the ability
of PDT to target PDAC stroma, which is known to act as both a barrier to drug delivery and a
tumor-promoting signaling partner. Here, we review the literature which indicates an emergent role
of PDT in clinical management of PDAC, including the potential for combination with other targeted
agents and RNA medicine.

Keywords: photodynamic therapy (PDT); photomedicine; pancreatic ductal adenocarcinoma (PDAC);
pancreatic cancer; stroma; combination therapy; drug delivery

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human ma-
lignancies, with a 5-year survival rate of approximately 10% in the USA [1,2]. Surgery is
possible in only 20% to 30% of patients and options are particularly limited for patients
with unresectable disease [3]. Where resection is possible, the Whipple procedure, or
pancreaticoduodenectomy is performed, in which the head of the pancreas, duodenum,
gallbladder, and the bile duct are removed. This is a complex procedure with a significant
impact on quality of life [4,5]. Virtually all clinical trials of chemotherapy drugs, targeted
agents and combinations have failed to provide meaningful improvements in survival and
most patients ultimately end up receiving palliative treatment [6,7].

Cancers 2021, 13, 4354. https://doi.org/10.3390/cancers13174354 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-8263-0409
https://orcid.org/0000-0003-3560-0770
https://doi.org/10.3390/cancers13174354
https://doi.org/10.3390/cancers13174354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13174354
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13174354?type=check_update&version=2


Cancers 2021, 13, 4354 2 of 17

For patients with advanced disease, palliative treatment has traditionally involved
chemotherapy with either 5-fluorouracil (5-FU) or gemcitabine. In a clinical study reported in
1997, gemcitabine was found to impart a slight survival advantage (median = 5.65 months)
compared with 5-FU (median = 4.41 months) and modest improvement in quality of
life [8]. Since then, gemcitabine has become a mainstay for palliative care of advanced
PDAC. More recently, a multidrug cocktail called FOLFIRINOX has been used, which is
the combination of 5-FU with three other chemotherapy regimens (oxaliplatin, irinotecan,
and leucovorin). Compared to gemcitabine, the FOLFIRINOX regimen achieves significant
benefit in median survival of 11.1 months vs. 6.8 months for gemcitabine, though with
significantly increased toxic effects, making it a viable option only for patients who are
otherwise relatively healthy [9]. In a later study, survival benefit was observed to be further
enhanced using a modified FOLFIRINOX combination [10]. Collectively, these results point
to the fact that there remains an urgent need for strategies to overcome this disease.

This review focuses on the clinical and preclinical literature which explores the po-
tential role of photodynamic therapy (PDT) in clinical management of PDAC. PDT is a
photochemistry-based modality that selectively destroys target tissue by exciting a photo-
sensitizer (PS) with light of an appropriate wavelength. The PS is typically administered
intravenously followed by a delay period to allow for accumulation in the tumor prior to
irradiation using a light delivery system appropriate for the target tissue. While the PS
itself accumulates preferentially in malignant tissues, an additional degree of selectivity is
achieved by directing light to target tissue (Figure 1) [11]. The exact manner of light deliv-
ery is highly dependent on the anatomical site of treatment. For treatment of pancreatic
cancer, laser light delivery is achieved through interstitial optical fibers placed directly into
the lesion under either CT guidance or endoscopically ultrasound [12,13] as discussed in
more detail further below.
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Figure 1. PDT workflow schematic. Following PS administration, there is a delay period during
which the PS accumulates in malignant tissue, followed by light activation at the target site.

PDT has been approved by the United States Food and Drug Administration (FDA) to
treat patients with non-small cell lung cancer, esophageal cancer, and Actinic Keratoses, as
well as age-related macular degeneration [14–16]. Clinical trials have also demonstrated
PDT efficacy for mesothelioma, prostate, bladder, brain cancer, and head and neck cancers
as well as bacterial, fungal, and viral infections [16–19]. In many cases, photosensitizing
agents are also used off label with noted successes by clinicians who are comfortable
with photomedicine and laser light delivery. In this review, we focus specifically on the
preclinical and clinical status of PDT for treatment of pancreatic cancer, a lethal disease
which presents multiple challenges for treatment by any modality. We will specifically
examine how the biology of pancreatic cancer, which is characterized by prominent stromal
involvement, presents challenges for drug delivery, and implications and opportunities
for PDT.
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2. PDT Mechanism and Clinical Implementation

When PS molecules absorb light, they undergo excitation from the ground state to an
excited state depending on incident photon wavelength. Excited molecules rapidly drop
back to their lowest vibrational level of the electronic excited state from which they can
return back to the ground state either through non-radiative decay or by emitting photons
with longer wavelength and lower energy (fluorescence). These processes have a short
lifetime (in the order of nanoseconds) and do not lead to subsequent photochemistry. How-
ever, fluorescence emission from the PS, as a tumor-localizing fluorophore, is invaluable for
imaging purposes as reviewed extensively elsewhere [20]. Another possibility is that the
excited PS molecules undergo intersystem crossing to an excited triplet state. The lifetime
of these states is long (in the order of microseconds or milliseconds) since the spin states
are parallel instead of anti-parallel. Thus, it is forbidden for the PS molecules to go back to
the ground state. Instead, they could either initiate photochemical reactions by transferring
electrons to form reactive oxygen species (ROS) (type 1), or transfer their energy to the
ground-state triplet oxygen molecule (3O2) to give rise to singlet oxygen molecule (1O2)
through collisional quenching (type 2). These products are highly reactive and can cause
cellular toxicity (Figure 2) [20,21]. Although type 1 PSs are effective even in a hypoxic
environment, all current clinically approved PSs, including those which have been studied
for pancreatic cancer, impart toxicity primarily by the type 2 mechanism [22].
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PDT does offer several inherent advantages. Depending on the localization of the
PS, PDT can directly damage or alter targets in tumor cells. Additionally, since the visible
or near infrared light used in PDT is non-ionizing, PDT does not carry the accumulating
toxicity associated with radiotherapy [12,23]. However, unlike ionizing radiation, a noted
challenge with PDT is the limited penetration of red and near-infrared wavelengths in
tissue. Light delivery for internal sites such as the pancreas requires careful treatment
planning and dosimetry, though innovative solutions have been developed and clinically
validated as discussed further below.



Cancers 2021, 13, 4354 4 of 17

3. PDT for Pancreatic Cancer: Early Preclinical Development

PDT for pancreatic cancer has been evaluated using a wide variety of preclinical mod-
els and photosensitizing agents. The first-generation PSs tested on pancreatic cancer were
simple organic molecules with moderate inherent selectivity for neoplastic tissues. Several
PS agents such as hematoporphyrin derivative (HpD), dihematoporphyrin ether (DHE),
and Photofrin had a disadvantage of causing skin photosensitivity of up to 2–3 months [24].
Moreover, the necrosis produced in pancreatic cancer in some animal studies (rodents)
using DHE, pheophorbide A, and aluminum-sulphonated phthalocyanine (AlSPc) caused
notable complications such as duodenal perforation due to significant PS accumulation
in the surrounding tissue. However, using a lower dose of PS markedly reduced damage.
This could be avoided by shielding duodenum during light exposure, and also it was
considered less likely to be problematic in human duodenum which is much thicker than
the duodenum in animal models used in studies [24–27]. This work generally underscored
the importance of selection of PS and light delivery strategy. As discussed further below,
these early preclinical studies paved the way for clinical work in addition to wide-ranging
and ongoing preclinical investigation of PDAC response to PDT and PDT combinations
with other treatments for PDAC.

4. Clinical PDT for Pancreatic Cancer: Treatment Planning, Guidance and Monitoring

Over the course of the past 20 years, there has been significant advancement in clinical
use of PDT for treatment of pancreatic cancer using different photosensitizers and strategies
to deliver light to the pancreas. A pilot clinical study of PDT for pancreatic cancer was
conducted by Bown et al. in 2002, on 16 patients using mesotetrahydroxyphenylchlorin
(mTHPC) [12]. To overcome the limitation of light attenuation in tissue, the light was deliv-
ered using fiber optics positioned under computerized tomographic guidance (Figure 3A).
The result showed substantial tumor necrosis. The median survival time after PDT was
9.5 months and there was no treatment-related mortality. A more recent phase I/II clinical
study has successfully established the safety and technical feasibility of PDT for locally
advanced PDAC using verteporfin [28]. This study was comprised of two phases. The
first phase was dedicated to establishing the zone of necrosis based on the delivered light
dose to choose the best light dose for the second part of the study which utilized multiple
fibers. With the chosen dose of verteporfin of 0.4 mg kg−1, the goal of the first phase was
to acquire a light dose to produce a zone of necrosis of at least 12 mm in diameter using
just a single fiber. They started with an initial light dose of 5 J cm−1 and doubled it as
long as there was no evidence of toxicity in any of the patients. The results indicate that
a 12 mm necrosis can be obtained at 40 J cm−1 irradiation. In the second phase of the
experiment, the light was delivered directly to the tumor via multiple fiber optics with
1–2 cm long diffuser tips positioned subcutaneously under CT guidance. The 690 nm laser
was calibrated to deliver 5 J cm−1 along each diffuser tip of the fiber. Moreover, although
some patients who were treated with a single fiber experienced some mild to moderate
complications after PDT such as abdominal pain, transient rise in amylase, and diarrhea,
there was no severe PDT-related complications. In fact, no patient showed any problems
with photosensitivity and no evidence of early duodenal obstruction was reported. The
patients who were treated with multiple fibers, however, showed evidence of inflammatory
change along the needle tract. The investigations showed that although the light intensity
in those regions was significantly less than the emission zones, the overlapping fields due
to using multiple fibers resulted in those areas receiving a higher dose than the patients
treated with a single fiber. Furthermore, the advantages of using verteporfin photosensi-
tizer over mTHPC according to this study were verteporfin’s rapid excretion (peak tissue
concentration within an hour or two), and its strong absorption at a 690 nm wavelength at
which light can penetrate deep into the tissue.
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In planning PDT treatments, accurate dosimetry is a key consideration. Additionally,
in the case of PDT, dosimetry can be challenging, involving complex interactions between
light (and light penetration through tissue) and local concentrations of photosensitizer
and oxygen, which are key determinants of clinical PDT efficacy. Treatment planning
typically requires a combination of accurate clinical measurement of these components,
combined with simulation [29]. In a PDAC clinical trial referenced above, pre-treatment
contrast CT images were used to analyze contrast difference values and ultimately, analyze
the PDT-induced lesion volume [28]. Generally, the dosimetry measurements can be
categorized as either explicit, implicit, or surrogate dosimetry (using a borrowed dosimetry
marker) [29,30]. In explicit dosimetry, the main components of the photodynamic reaction
(light, photosensitizer, and oxygen) are measured directly and incorporated into a dose
model. Implicit dosimetry takes into account the non-measurable effects for contributing to
the dose delivery such as photobleaching [31]. In surrogate dosimetry, some markers will
be borrowed by standard clinical practice. As an example, the amount of contrast uptake in
CT could predict PDT efficacy. As a result, it could be considered as a surrogate dosimetry
measurement to prescribe light doses based on the pre-treatment contrast.

Other studies have taken advantage of the proximity of the stomach as a route for en-
doscopy to the pancreas for endoscopic ultrasound (EUS)-guided PDT [32]. In this method,
after injecting porfimer sodium, a small diameter fiber with a cylindrical light diffuser is
passed through the EUS needle and used to illuminate the tissue with laser light (Figure 3B).
Choi et al. reported the first clinical study of EUS-PDT in pancreatic cancer. The median
volume of necrosis produced by PDT in that study was 4.0 cm3 [33]. A recent phase I clinical
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study of porfimer sodium-mediated EUS-PDT followed by nab-paclitaxel and gemcitabine
chemotherapy on patients with locally advanced pancreatic cancer further demonstrated
the safety and feasibility of this method [34]. Although effective, porfimer sodium has a
long half-life on the scale of days which leads to prolonged duration of cutaneous photosen-
sitivity post procedure. The treatment resulted in a median of 2.6 months progression-free
survival time. The study further showed that the chemotherapy after EUS-PDT may lead
to the tumor downstaging and ultimately permit attempted surgical resection. Benefitting
from the short half-life of verteporfin on the scale of hours, and the fact that it is a United
States Food and Drug Administration-approved second-generation photosensitizer while
offering a significant patient safety advantage, a clinical study published in 2021 evaluated
the efficacy of verteporfin-mediated PDT administered under EUS guidance in patients
with locally advanced pancreatic cancer [13]. This pilot study was performed on eight
patients in stages 1–3. The treatment resulted in the tumor necrosis zone being visible
on CT after 48 h in the majority of patients as well as lower indices of sinistral portal
hypertension and arterial vascular involvement. The study concluded that EUS-guided,
verteporfin-mediated PDT is a safe and promising therapy to enhance tumor response in
selective patients with pancreatic cancer who were not responsive to chemotherapy.

Collectively, these studies indicate the feasibility and safety of the clinical use of
PDT for pancreatic cancer. Additional data from a larger group study with a variety of
conditions such as different energy doses, which were not used in these studies, will help
solidify the optimal patient–procedure factors.

5. Role of PDAC Stroma and Implications for PDT

PDAC is characterized by the development of a particularly dense fibrotic stroma,
including cellular and non-cellular components such as pancreatic stellate cells (PSCs),
which differentiate into heterogeneous fibroblastic cells, type I collagen, immune cells,
adipocytes, and hyaluronan [35]. This complex microenvironment plays multiple roles
in regulating tumor growth and response to therapy, and as discussed here, presents
challenges and opportunities for PDT.

One important consequence of the profound desmoplastic reaction in PDAC is the
impact of compressive stress from accumulated fibrotic stroma, not only on cancer cells,
but on blood and lymphatic vessels as well (Figure 4) [36]. The ill-functioning blood
and lymphatic vessels limit drainage out of the tumor, causing elevated interstitial fluid
pressure (IFP) [37–40]. As IFP increases to the value of microvascular pressure (MVP),
the transportation of molecules to the tumor stops, which can lead to impermeability of
large parts of PDAC tumor to therapeutic deliveries [41]. These hypo vascular tumors are
also highly hypoxic, with oxygen percentage dropping from 7.5%, which is the estimated
level in normal pancreas, to 0.3% in the pancreatic tumor [42]. While targeting tumor
vasculature on one hand is a target for therapy, when vasculature is destroyed to cut off
nutrition in cancer cells, it can also cause hypoxia through stimulation of several signaling
pathways [43–48]. The role of hypoxia is further complicated in PDT, which requires
oxygen and can also exacerbate hypoxia in tumors by consuming oxygen which is already
present in order to produce ROS.

The challenge of tumor hypoxia has motivated efforts to design oxygen delivery/
producing strategies to enhance PDT response in PDAC. As an example, there have
been many studies utilizing oxygen-loaded microbubbles to deliver oxygen to the tumor
microenvironment [49–51]. Additionally, since as cells progress toward malignancy, they
become capable of producing excessive amount of H2O2, some studies have been focusing
on in situ oxygen production by reaction between H2O2 and nanoparticles, nanorods, or
catalase [52–54].
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The profound and stiff stroma in PDAC not only exacerbates PS and oxygen delivery,
but it also can reduce any drug delivery to the tumor. The first approach to improve drug
delivery was to therapeutically target stroma components. This approach later emerged
as a double-edged sword since although removing stroma increased drug delivery to the
tumor, it also eliminated the physical and biochemical barriers that inhibited tumor progres-
sion [55]. Another approach has been using angiotensin receptor blockers (ABRs) which
downregulate TGF-β; thus, inhibiting collagen production [37,56]. Moreover, targeting
discoidin domain receptor 1 and 2 (DDR1 and DDR2) which is a pathway for promoting
tumor progression, in parallel with conventional chemotherapy, has the potential to im-
prove the outcome of PDAC treatment [57]. Sonic hedgehog (Shh) signaling is another
important factor in developing PDAC [58]. Preclinical mouse model of pancreatic cancer
studies demonstrated better drug delivery after inhibiting the Shh pathway [59]. Although
this approach also showed promise in a phase I clinical trial [60], it failed in phase II [61].
Furthermore, a later study demonstrated that Shh inhibition led to acceleration of PDAC
progression [62]. Another approach for improving drug delivery and hypoxia has been
remodeling PDAC blood vessels by transforming the growth factor-β (TGF-β) signaling
pathway which is involved in tumor vascular endothelial cells’ adhesion to pericytes
(capillaries) [63,64]. Additionally, the heteroaromatic rings in the PSs make them prone to
aggregation, thereby limiting ROS production, and decreasing phototoxicity [65,66]. Some
innovative strategies have overcome this challenge as well by encapsulating PSs in nano
carriers. This can facilitate the PSs delivery to the tumor or targeted stromal cells without
self-quenching [67–69]. The role of PDT in this context is discussed later in this review in
emerging and future directions section.

The cross talk between PDAC cells and the prominent cellular components and the
mechanical interactions between extracellular matrix and PDAC have vital roles in tumor
growth, invasion, and epithelial–mesenchymal transition (EMT) [70–72]. Pancreatic stellate
cells (PSCs) are a key player in the PDAC tumor microenvironment [73]. In normal pancreas,
PSCs generally remain in a quiescent phenotype. In PDAC, the quiescent PSC can adopt an
activated phenotype with dramatically altered function as participants in paracrine tumor–
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stroma crosstalk. Stimulation via TGF-β and EGF activates PSCs promoting proliferation,
migration, and production of laminin, fibronectin, collagen type I and III, contributing to
activation of invasive behavior which is marked by downregulation of E-cadherin and
upregulation of N-cadherin, consistent with increased EMT and the adoption of a more
motile phenotype [74,75].

Although the role of interactions between PDAC cells and activated PSCs, which
through differentiation, are the major source of cancer-associated fibroblasts (CAFs) in
PDAC, has been extensively studied, a complete understanding of CAF heterogeneity and
the roles that different CAF subtypes play is still emerging. Recently, studies have focused
on the co-existence of two distinct subtypes of CAFs in PDAC: CAFs that express a high
level of α-SMA which has been implicated with a tumor-suppressive role and is located
primarily adjacent to cancer cells (myCAF), and CAFs that express high levels of cytokines
and chemokines, associated with tumor-promoting behavior, and are located farther away
from the cancer cells (iCAFs) [76]. An in vivo study of single-cell RNA sequencing on
PDAC confirmed the existence of myCAF and iCAF subtypes and identified a new CAF
subtype called antigen-presenting CAFs (apCAF) that can activate CD4+ T cells in an
antigen-dependent manner [77]. Our previous study showed that while PDT response was
enhanced in the presence of two fibroblastic phenotypes (myCAFs and iCAFs), the effect
was more significant in cocultures that gave rise to iCAF phenotype, which were also the
most chemoresistant [78].

The overexpression and accumulation of ECM proteins in PDAC contributes to the
development of a stiff fibrotic stroma, which leads to not only physically restricting drug
penetration, but also abnormal mechanotransduction in cancer cells [72,79]. Integrins
constitute a superfamily of 24 heterodimeric cell surface receptors, and play a vital role in
transducing mechanical signals between the intracellular and extracellular components [80].
Given that integrins regulate cellular proliferation, adhesion, invasion, and cancer progres-
sion, it is not surprising that some integrins have been used as potential therapeutic targets
in PDAC [81–84]. While there have been some studies that focused on the impact of PDT
on integrins in different types of cancers, there have not been any studies that investigated
targeting integrins with PDT in PDAC [85–87].

Moreover, it is important to know that both biophysical and biochemical properties
ultimately impact on the fate of the tumor. Although the stiffness associated with PDAC
desmoplasia can promote invasion and malignancy, biochemical interactions between ECM
and PDAC cells can also regulate tumor growth and cell invasion [88–91]. For example, in
3D cell culture models, increased PDAC invasion has been observed in a softer environment
(rich in collagen I) compared to a stiffer laminin-rich environment, underscoring the
importance of both biochemical and mechanical properties of the ECM [92,93]. There is
also a distinction between the activation of invasive behavior (which can be promoted
by confinement and stiffness of surrounding material) and invasion itself, which requires
enzymatic degradation (and hence softening) of ECM to enable invasive motility. Notably,
in the same study, it was shown that populations of drug-resistant cells with increased
invasiveness correlated with increased EMT were also more responsive to PDT [92]. This
is consistent with a previous report which also showed increased EMT in drug-resistant
PDAC cells [94].

6. PDT in Combination with Other Therapies

The combination of PDT with classical chemotherapy drugs has shown promise for
synergy and to potentially reduce the chemotherapy dose and associated systemic toxic-
ity [95–97]. Chemoresistance in cancer is associated in part with the hallmark characteristic
of resisting cell death by increased antiapoptotic signaling [98]. PDT has been shown to tar-
get the anti-apoptotic proteins such as BCL-2, thus tipping the balance toward pro-apoptotic
signaling and making cancer cells more responsive to chemotherapy [99]. Gemcitabine,
although it only provides marginal survival benefit, has remained the primary treatment
for advanced pancreatic cancer [96,100]. It has been shown that combination of PDT with
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low-dose gemcitabine significantly reduced the volume of the pancreatic tumor without
any adverse effect in vivo [101]. One study investigated the possibility of enhancing oxali-
platin efficacy using benzoporphyrin derivative-mediated (BPD, verteporfin)–PDT in 3D
culture models [102]. The results from this study indicate that the combination of these
therapies was significantly more effective compared to either therapy alone. This was
due to the distinct cytotoxic mechanisms of these therapies. While oxaliplatin induced
DNA damage, BPD–PDT mainly targeted mitochondrial membrane and as a result lacked
any overlap in toxicity of the chemotherapy agent. This is an important point to consider
since it provides better disease management to healthy tissue. The study also showed that
combining two mechanistically distinct therapies did not guarantee the enhancement in the
therapy response and emphasized the need for physiologically relevant models to assess
combinations. Similar treatment effects were observed in other cancer models that suggest
in general PDT synergizes with platinum-based chemotherapies [103–106]. Moreover, PDT
and chemotherapy not only have distinct mechanisms of action within the cell, but they
also target different cells within the tumor. The results from a 3D model of PDAC showed
that while chemotherapy was able to decrease the live volume of the spheroid, it had
almost no effect on the invading cells. The same study showed that the opposite result was
true for PDT, where invading cells died the most after treatment [92]. Additionally, it has
been shown that PDT is able to disrupt adherent junctions between cancer cells [107]. This
could be potentially significant if PDT is administrated prior to chemotherapy, enhancing
paracellular drug transport into nodules, as well as by depleting surrounding stroma as
discussed earlier. Furthermore, use of PDT as a pre-treatment in which the light-based
production of ROS by design is not sufficient to surpass the cytotoxicity threshold but does
elicit biological response. This approach, which has been termed photodynamic priming
(PDP), has been shown to overcome chemotherapy resistance by combination with vitamin
D3 receptor activation in the pancreatic tumor microenvironment (TME) [108].

In addition to interacting with classical chemotherapies, PDT may also play an in-
herently complementary role with other light-based approaches. Photothermal therapy
(PTT) is a therapeutic technique that uses photothermal agents (usually gold) to convert the
absorbed light into heat, which induces cancer cell death [109,110]. This method by itself
or in combination with other therapies have been used for pancreatic cancer. The combina-
tion of PDT and PTT provides a promising strategy to enhance therapeutic efficiency in
PDAC [111]. Although PTT by itself is unable to eliminate all cancer cells in the tumor due
to constant heat lost by circulating blood, when combined with PDT, it can compensate
(for the reduced efficacy) of oxygen-dependent PDT in the hypoxic tumor [112,113].

An inherent challenge in PDT treatment of solid tumors is the limitation of light
penetration in biological tissue. Sonodynamic therapy (SDT) is another ROS-dependent
strategy that works based on the synergistic interaction of drugs and ultrasound. Due to
the relatively low tissue attenuation coefficient of ultrasound, it can penetrate deeply into
the tissue [114]. Yet another ROS-dependent strategy is chemodynamic therapy (CDT),
which works based on H2O2 conversion into toxic hydroxyl radicals (OH) and leads to
cell apoptosis [115]. Combination of PDT and SDT or CDT are relatively new approaches
that can overcome the hypoxia in PDAC and as a result enhance the generation of ROS in
pancreatic cancer [116–118].

PDT is also conducive to combination with radiation therapy (RT), with which it shares
similar dosimetry and overlapping communities of practitioners and medical physicists.
For example, it has been shown that Cerenkov radiation produced by high-energy X-rays
passing through tissue can activate PS [119–121]. Photosensitizers for PDT may also serve
as radiosensitizers, potentially providing improved radiation delivery to target tissue while
reducing overall radiation dose. The combination of PDT and RT has also been explored
through the innovative combination of radioluminescent nanoparticles which are excited
during RT with deep-tissue-penetrating X-rays, producing luminescence which in turn
activates conjugated PS to achieve a low-dose PDT effect in deep tissue [122]. A recent
study on 3D pancreatic cancer coculture models investigated whether PDT synergizes with
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RT when combined in the absence of nanoparticles and showed the beneficial effect of PDT
on RT efficacy [123]. This study suggests the potential of nanoscintillator-induced PDT
as another strategy for deep-tissue treatment, where both therapies are simultaneously
activated by the ionizing radiations.

Immune checkpoint blockade (ICB) therapy has demonstrated promising responses
in several types of cancers. A recent study has surveyed the effect of PDT, RT, and PTT on
stimulating a number of immune modulatory effects [124]. In pancreatic cancer, however,
ICB therapy has shown limited benefits, since its TME has been shown to be highly
immunosuppressive [125]. The immunologic effects of PDT, such as releasing antigens and
immunogenic factors from generated ROS, make PDT an interesting option for combination
with immunotherapy in tumors [126]. In a mouse model study, they were able to boost
T-cell activation and overcome adaptive immune resistance by combining PDT with BRD4
inhibitor (BID4i) [125].

7. Emerging and Future Directions

Given the noted role of stroma in PDAC progression and as a barrier to drug deliv-
ery, the concept of therapeutically targeting PDAC stroma has emerged as a potentially
important strategy. As discussed here, multiple lines of evidence suggest that PDT may
have some role to play in this context. In a 3D PDAC co-culture model, it was shown that
while the nodules in the presence of fibroblasts were more chemoresistant, PDT response
was enhanced in the presence of fibroblasts [78]. Another study on PDAC cocultured
with fibroblasts in monolayer showed non significantly higher PDAC cell death in the
presence of non-activated fibroblasts [127]. Furthermore, a study demonstrated that PDT
not only depleted stromal fibroblasts, but also interrupted crosstalk with stromal signaling
partners that gave rise to enhance tumor survival [128]. Combined with additional evi-
dence that PDT can induce breakdown of ECM components [129], these preclinical results
collectively indicate a potential role for PDT in depleting cellular and non-cellular PDAC
stromal components to enhance subsequent drug delivery. Clinically this scenario could be
leveraged by activating the PS at early timepoints following delivery when initial stromal
accumulation is highest.

In consideration of how PDT may play a role in the next generation of cancer therapeu-
tics, the opportunity for interactions with RNA medicine emerges as a potentially exciting
avenue of investigation. In recent years, RNA medicine has demonstrated exciting potential
for a wide variety of diseases, including, specifically, PDAC, through targeting of microR-
NAs (miRNAs) [130–133]. MiRNAs are small (~18–25 nucleotides) non-coding RNAs
that can bind target mRNAs in a sequence-specific fashion to induce post-transcriptional
downregulation. Several studies have already identified miRNAs with significantly altered
expression between normal pancreas and PDAC tissues; among them, miR-21, miR-196a,
and miR-196b, which are strongly correlated with decreased survival [134,135]. In a mouse
model of miR-21 over-expression, it has been revealed that the mice develop tumors in
tissue where miR-21 is over-expressed, and that these tumors depend on the continued
expression of miR-21 for survival [136]. These lines of evidence highlight the role of ‘on-
comiR addiction’ in regulating key pathways promoting tumor growth, survival, and
chemoresistance [137]. Furthermore, miR-21 depletion using a nanoparticle to carry an
anti-miRNA inhibitor also inhibits organoid growth, suggesting the potential of this ap-
proach as a therapeutic strategy [130]. At the same time, this approach opens new potential
avenues for synergy with PDT. Inhibition of miR-21 has been shown to increase levels of
the pro-apoptotic factor BAX, while PDT with verteporfin is known to target anti-apoptotic
factors BCL-2 and BCL-XL [138,139]. Similarly, targeting of another PDAC onco-miR,
miR-196b, has also been shown to promote resistance to late-stage apoptosis in PDAC
cells [140]. Combination of PDT with selective therapeutic inhibition of these oncomiRs
could synergistically increase the Bax/Bcl-2 ratio (pro-/anti-apoptotic) in PDAC cells and
tip the balance toward apoptosis in these otherwise stubbornly drug-resistant cells. In
addition to synergizing at the molecular level, combination with PDT could also enhance
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delivery of RNA medicines through depletion of stromal components. As noted above,
the notoriously dense fibrotic stroma in PDAC is problematic for delivery of virtually all
therapeutic agents, and this may be especially true for RNA medicine. While various
anti-miRNA strategies have been discussed for the past decade, a lack of adequate delivery
to most disease tissues has restricted current therapeutic uses to liver and kidney disease.
Collectively, these observations point to the potential benefits of leveraging nanoparticle
delivery systems that could simultaneous carry light-activated agents for PDT to target
PDAC stroma for enhanced delivery of RNA medicine agents, while at the same time
priming tumor cells for enhanced biological response to these therapies.

8. Conclusions

Collectively, the literature points to multiple significant roles for PDT in the clinical
management of PDAC. The clinical studies discussed above have established the tech-
niques for light delivery which enable PDT as a primary treatment for locally advanced
PDAC, which could play a key role especially for disease which is unresectable. However,
biological responses to PDT may also synergize with systemic therapies as part of a com-
plete treatment strategy. At the same time, active and ongoing research continues to reveal
new roles for PDT and its potential to interact with other promising strategies that are just
beginning to emerge.
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