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Abstract: NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are
the major source of reactive oxygen species (ROS), and are involved in many important processes
in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing
evidence shows that NOXs play crucial roles in plant immunity and their functions in plant
immune responses are not as separate individuals but with other signal molecules such as kinases,
Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar
way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized
here the complex role and regulation mechanism of NOXs in mediating plant immune response,
and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is
also proposed.

Keywords: NADPH oxidases; reactive oxygen species; kinases; Ca2+; hormones; abiotic stress;
biotic stress

1. Introduction

Plants are frequently affected by various adverse stress factors throughout their whole life cycle.
These stress factors are generally grouped into two kinds, biotic and abiotic stresses. The former
mainly includes pathogens, like fungi, bacteria, viruses, nematodes, and herbivorous insects [1],
causing massive losses to global agriculture. The latter includes heat, cold, drought, salinity, light,
water, ozone, heavy metals, UV radiation, and other factors [2], and statistics indicate that it reduces
overall yields of staple crop plants by more than 50% [3]. Animals can move from place to place when
they encounter dangerous environments, but plants can not move away when they are subjected to
environmental stresses. On the basis of this, plants have developed specific strategies that protect them
from defective and complex stress conditions.

In the traditional sense, plant immunity refers to the biotic stress response. During biotic stresses,
in addition to the external barriers of plant cells wall, the internal innate immune system shows
a complex defense signaling network that plants use to cope with microbial threats. Firstly, the
surface-localized pattern recognition receptors (PRRs) recognize the pathogen-associated molecular
patterns (PAMPs), which triggers the first line of plant innate immune system and is termed PAMP
triggered immunity (PTI) [4]. However, to achieve more effective infection, many pathogens have
acquired the ability to inject virulence effector proteins into host cells, further dampening the host
immune systems or interfering with host physiological and cellular responses [5]. The intracellular
immune receptors that are most often nucleotide-binding domain and leucine-rich repeat-containing
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receptor (NLR) proteins can recognize those effectors and elicit a second layer of defense defined as
effector-triggered immunity (ETI) [6].

A common feature of plant response to both biotic and abiotic stresses is the burst of the so-called
reactive oxygen species (ROS), which include singlet O2, hydroxyl radical (OH´), hydrogen peroxide
(H2O2), superoxide radical (O2

´), etc. ROS play a central role in the defense process of plants [7].
For example, ROS can induce plants to generate defense molecules that arrest pathogen growth [8].
It was reported that abscisic acid (ABA) is closely related to a broad range of stress responses
of plants and the ABA-induced ROS production causes stomatal closure, increasing resistance to
penetration by pathogens and at the same time decreasing water loss under drought conditions [9].
ROS promote the establishment of systemic acquired resistance (SAR), a type of long-distance signaling
response following exposure to pathogens [10]. However, the function of ROS is dependent on their
intracellular concentration. Numerous studies have shown that low-concentration ROS can act as
signal molecules mediating the regulation of plant acclimatory signaling in the stress response, whereas
high-concentration ROS can destroy cellular redox state equilibrium, result in damage to chemicals,
and then change the state of cell metabolism and induce programmed cell death (PCD) [11–13]. ROS
are involved in ETI-induced hypersensitive response (HR) in plants, a PCD process that promotes
cell death around the infection site, which limits the spread of the pathogens [14] and restricts the
amount of cell death in response to pathogen recognition [15]. However, it is also important for
plants to scavenge redundant ROS so as to prevent excess induction of PCD. Because stress-induced
PCD significantly affects plant yield and productivity, it is therefore of fundamental importance in
agriculture [16]. All these results suggest that ROS production is of vital importance in plant immunity.

Many studies have shown that the plasma membrane-localized NOXs are major ROS producers of
plants under normal and stress conditions [17,18]. They produce O2

´ in the apoplastic space, and then
the produced O2

´ can be converted to H2O2 by superoxide dismutase [11–13]; the H2O2 diffuses into
the cytosol. Several different mechanisms have been found to be involved in apoplastic ROS sensing
and downstream reactions in plants [19] and apparently, as the major ROS producers, NOXs might
play vital roles in plant immunity. Understanding the role and regulation mechanism of NOXs in plant
immunity could help us protect plants from adverse effects resulting from excess ROS production
under various environmental stress conditions. Here, we fully discuss how the NOXs interact with
signaling molecules in plant immunity, and the viewpoint that abiotic stress response may be a part of
plant immunity is also proposed.

2. NOXs Participate in Plant Immunity

NOX, called respiratory burst oxidase (RBO) in mammals, was first identified to function in
mammalian ROS production, and total seven types of NOXs, namely NOX1, NOX2, NOX3, NOX4,
NOX5, and two dual oxidases (DUOX1 and DUOX2) were identified in animals [20,21]. All the
animal NOX/DUOX proteins contain a six membrane-spanning domain, two hemes, and a conserved
domain involved in NADPH and flavin adenine dinucleotide (FAD) binding. In addition, NOX5
also contains four calcium-binding EF-hand motifs in its N-terminus while DUOX proteins also
contain two EF-hand motifs and an additional transmembrane domain (a peroxidase-like domain)
in their N-terminus [21]. NOXs in plants are RBO homologs (RBOHs) [17,18]; however, only
NOX5-like homologs have been found in plants, even though multiple members exist in different
species [18,21,22]. The first studied NOX gene in plants was Oryza sativa OsRbohA [23]. Since then, NOX
genes were identified and cloned in tomato [24], tobacco [25], potato [26], Arabidopsis thaliana [18],
Medicago truncatula [27], Phaseolus vulgaris [28] and maize [29]. The plant NOX proteins are often
composed of a six-transmembrane domain, two hemes, a C-terminal FAD and NADPH hydrophilic
domains, and two N-terminal EF-hand motifs [18] (Figure 1). The EF-hand is defined by its
helix-loop-helix secondary structure as well as the ligand presented by the loop to bind the Ca2+. In
rice, the NOX proteins share from zero to three EF-hand motifs among the typical nine homologs [30].
The rice NOX, OsRbohB, not only has two EF-hand motifs but also has two EF-hand-like motifs;
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however, Ca2+ only binds to the first EF-hand motif [31]. In addition, using protein kinase inhibitor
treatment and a quantitative phosphoproteomics method, it was revealed that multiple different
phosphorylation sites exist in the plant NOXs, for example, the potato StRbohB and Arabidopsis thaliana
AtRbohD proteins [32–34]. In spite of the similar structural characteristics, plant NOXs show different
numbers of isoforms among the different species. For example, Arabidopsis thaliana has ten NOX
proteins from AtRbohA to AtRbohJ [35] and eight ancient forms from ferric reduction oxidase 1
(AtFRO1) to AtFRO8 [36], whereas rice possesses nine typical NOXs (OsNOX1–9) and only two
OsFRO1 and 7 [30,37]. To illuminate the phylogenetic relationships among members of FRO and NOX
family in plants, we generated an unrooted maximum-likelihood phylogenetic tree stemming from
50 FROs and 77 NOXs identified from 20 species of plants [22]. In the maximum-likelihood tree, the
FRO and NOX homologs in plants can be classified into four subfamilies, namely NOX, FRO I, FRO II,
FRO III, and based on their structure characteristics, the members of FRO I, FROII, FROIII could be
considered as ancestor NOXs [22].
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Figure 1. The schematic representation of NADPH oxidase (NOX) proteins in plants. The plant NOX
proteins are often composed of a six-transmembrane domain, two hemes, a C-terminal flavin adenine
dinucleotide (FAD) and NADPH hydrophilic domain, and two N-terminal EF-hand motifs. The NOX
proteins obtain electrons from the cytoplasmic electron donor NADPH, and then transfer the electrons
through the membrane to the extracellular electron acceptor O2 to generate O2

´.

The roles of NOXs in plant immunity are relatively more studied in Arabidopsis and rice. It has
been shown that two Arabidopsis NOX genes AtRbohD and AtRbohF can control many cellular processes
in pathogen defense [5,6,17]. Plants deficient in AtRbohD and AtRbohF generate less H2O2 and are
shown to be more susceptible to pathogens than wild-type plants [25,38]. The stomatal closure of guard
cells is also impaired in the mutants [26]. By using suspension cells, Yoshie et al. (2005) found that
two rice NOX genes, OsRbohA and OsRbohE, participate in ROS-dependent immune responses [38,39].
In addition, inoculation of rice with yellow pathogenic bacterium strain PXO99 can improve the
expression levels of two rice NOX genes, OsRbohA and OsRbohB [40,41], further suggesting that the
NOX genes take part in plant immunity.

A large number of studies have shown that the functions of NOXs in plant immunity come as
the result of their extensive interactions with other immunity signaling molecules including Rac/Rop
small GTPases (like rice OsRac1) [42,43], hormones (like ABA and ethylene (ET)) [44–46], and kinases
(like receptor like kinases (RLKs), receptor-like cytoplasmic kinases (RLCKs), calcium-dependent
protein kinases (CDPKs), mitogen activated protein kinase (MAPK) cascades, and open stomata 1
(OST1)) [44,46–51]. These signaling molecules were found to be tightly involved in plant immune
responses from pathogen perception to gene expression regulation. Interestingly, these signaling
molecules have been demonstrated to be also involved in activation of NOXs. In fact, the structural
feature of NOXs provides the basis for the interaction of the proteins with these immunity signaling
molecules [48,49,52–54]. A large number of experiments have shown that some kinases could
phosphorylate NOXs directly [32–34,44]. According to these findings, the interaction of NOXs
with these signaling molecules can be divided into two ways, the phosphorylation-dependent way
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(Figure 2) and phosphorylation-independent way (Figure 3); the two ways work together to promote
the activation of NOXs in plants.
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Figure 2. Phosphorylation-dependent regulation of NOXs during plant immunity. (1) Upon PAMPs
perception, PRRs (pattern recognition receptors), such as chitin-elicitor receptor kinase 1 (CERK1),
elongation factor-Tu receptor (EFR) and flagellin sensing 2 (FLS2), and co-receptor brassinosteroid
insensitive 1 associated receptor kinase 1 (BAK1), directly phosphorylate and activate botrytis-induced
kinase 1 (BIK1). Phosphorylated BIK1 has a higher binding affinity for AtRbohD and phosphorylates it
on some specific sites; (2) In addition, the stress-mediated perception of ABA (abscisic acid) leads to
activation of OST1 (open stomata 1), then it phosphorylates AtRbohF; (3) The produced H2O2 itself
may trigger further activation of Ca2+ channel(s), forming a positive feedback regulation; (4–6) At the
same time, a central second messenger Ca2+ activates CDPKs (calcium-dependent protein kinases)
and CBLs (Calcineurin B-like), then they phosphorylate AtRbohD and AtRbohF, respectively. CaM
(calmodulin) is also activated by Ca2+, then CaM regulates NADK (NAD kinase) to produce NADPH.
The solid lines and dashed lines represent determinate and potential interactions, respectively.
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Figure 3. Phosphorylation-independent regulation of NOXs during plant immunity. (1) ET (ethylene)
receptor 1 (ETR1)-and ethylene insensitive 2 (EIN2)-mediated signaling also activates AtRbohD; (2)
Upon PAMP perception, PRRs in rice, such as chitin elicitor-binding protein (OsCEBiP) and OsCERK1,
function as the receptor complex. OsCERK1 directly phosphorylates and activates OsRacGEF1, leading
to GTP binding to OsRac1; at the same time, OsRac1 also interacts with the N-terminus of the OsRbohB
directly or via the RACK1A (receptor for activated C-kinase 1 A) protein; (3) ABA induces the
production of PA (phosphatidic acid), which binds to and activates AtRbohD; (4) Cytosolic Ca2+

binds to EF-hand motifs of NOXs, which leads to activation of NOXs. The produced H2O2 itself may
trigger further activation of Ca2+ channel(s); (5–7), MAPK cascades serve as positive regulators of
NOXs and produced ROS also activates MAPK cascades, ending in MAPK cascades activating or
inhibiting some transcription factors (TFs) by phosphorylation to induce defense gene expression. The
solid lines and dashed lines represent determinate and potential interactions, respectively.
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3. Phosphorylation-Dependent Regulation of NOXs during Plant Immunity

Protein phosphorylation is the most important molecular mechanism during the responses of
the cells to external and internal signals when plants are growing under both normal growth and
environmental stress conditions. It is well known that protein phosphorylation is the most common
and important mechanism to control protein vitality. For example, MAPK cascades activate or inhibit
some TFs by phosphorylation, which have an effect on the expression of target genes [55]. The function
of NOXs in plant immunity is also regulated by phosphorylation. The existing studies have shown
that many kinases, such as RLCKs, Ca2+-regulated kinases and OST1, can phosphorylate NOXs, and
therefore play important roles in plant immunity.

3.1. Receptor-Like Kinases (RLKs)-Receptor-Like Cytoplasmic Kinases (RLCKs) Complexes-Mediated
Phosphorylation of NOXs

RLKs include three major domains that are an extracellular domain, a transmembrane domain,
and an intracellular kinase domain, whereas RLCKs only possess a cytoplasmic kinase domain [56,57].
It is now clear that RLKs are key PRRs for recognition of PAMPs from pathogens, while some
RLCKs often functionally and physically associate with RLKs to relay intracellular signaling via
transphosphorylation events [58], and then induce downstream immune responses [59]. Among these
responses, RLKs or RLCKs can interact with NOXs by directly or indirectly phosphorylating the
proteins for transmitting pathogen signals during plant immunity [52,60].

It was found that one NOX protein, AtRbohD, fuctions as the key resource of ROS during
plant immunity in Arabidopsis, and botrytis-induced kinase1 (BIK1), a protein of RLCKVII subfamily
members, can phosphorylate AtRbohD to produce ROS in the plant [52]. At the same time, BIK1 was
found to directly bind to multiple RLKs PRRs in the resting state, such as flagellin sensing 2 (FLS2),
elongation factor-Tu receptor (EFR) and chitin-elicitor receptor kinase 1 (CERK1) [61–63]. These three
proteins are the most widely studied PRRs in plant immunity, and they can specifically perceive a
conserved 22 amino acid peptide of bacterial flagellin (flg22), a conserved N terminal peptide sequence
of the bacterial elongation factor-Tu (termed elf18) and chitin, respectively [61–63], leading to activation
of a series of immune responses that culminate in slowing or halting of pathogen proliferation [61–63].
Upon flg22 or elf18 perception, FLS2 or EFR rapidly associates with co-receptor BAK1, and then induces
phosphorylation of both proteins (FLS2 and BAK1) to initiate the downstream responses [64,65]. Then,
BIK1 interacts with the two RLKs, FLS2 and BAK1, to be rapidly phosphorylated. The phosphorylated
BIK1 then directly phosphorylates AtRbohD [63] to produce ROS. Further proteomic analyses and
kinase assay revealed that BIK1-specific phosphorylation sites are located in the residues of Ser39,
Ser339, Ser343 and Ser347 within the N-terminal part of AtRbohD, and the mutations in these
phosphorylation sites could suppress the PAMP-triggered ROS bursts in the plants [47]. Because
of the high conservation of NOXs in structure among different species of plants [32,37], the residues
phosphorylated of NOXs by BIK1 found in Arabidopsis may also occur in other species.

Not only BIK1, but also other RLCKs participate in activation of NOXs in plants. It was found
that Brassinolide-signaling kinase 1 (BSK1) and PBS1-like 1 (PBL1), which belong to the subfamily
RLCK-XII and VII, respectively, can also associate with FLS2 in vivo in Arabidopsis [61,62,66]. In rice,
a RLCK, namely OsRLCK185, can interact with OsCERK1 in vivo [67], implying that it may also
participate in the activation of NOXs. In addition, other RLCKs, such as PBL2 and PBL5, were found
to be genetically required for the full PAMP-induced ROS production [62,63]. More recently, we found
that the levels of transcripts of three RLKs, namely OsRPK1, OsRPK2 and OsRPK3, were correlated
with the level of OsRbohA transcripts in rice [30], indicating that these OsRPKs might be essential for
the function of OsRbohA in the plant defense response. However, further study is needed to determine
whether the mechanism also depends on the phosphorylation of OsRbohA by these three RLKs.

Different from these PAMP-triggered PTI, ETI is specifically induced by the interaction of
intracellular disease resistance (R) proteins and cognate effectors produced by pathogens [6].
For instance, resistance to pseudomonas syringae 5 (RPS5), one intracellular R protein, functions
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as a guard to monitor bacterial effector AvrPphB [68]. It is well known that R proteins are most often
NLR proteins that are imported into the nucleus where they are apparently active, suggesting that R
proteins may function in the nucleus apart from the cytoplasm [69–71]. ROS production is one of the
earliest responses, starting only a few minutes after PAMP treatment, while the production of ROS
during ETI occurs at a much slower pace [72]. Thus, it is possible that R proteins first bind to targeted
defense genes that then have an effect on the regulation of NOXs in infected cells, thus slowing the
rate of ROS generation. However, the regulatory mechanisms of NOXs in ETI signaling remain unclear.
However, some studies have shown that plants have established a positive relationship between ETI
and PTI through BIK1 during bacterial infection [62]. The aforesaid bacterial effector AvrPphB can
interact with BIK1 and then proteolytically cleave BIK1, whereas RPS5 can detect the changes in BIK1
and contribute to its functioning in the regulation of AtRbohD [62].

3.2. Ca2+-Regulated Kinases-Mediated Phosphorylation of NOXs

Ca2+ is a central secondary messenger in plants, contributing to a plethora of signaling responses.
An increase in cytosolic Ca2+ concentration usually occurs as early event in plant-pathogen interactions,
then the stimuli is transduced to intracellular responses [73]. Patch clamp studies suggested that
a cell membrane Ca2+-permeable ion channel can be activated to conduct Ca2+ afflux inwardly by
elicitors during pathogen infection in plants [74]. In addition to the extracellular pool functioning
as a Ca2+ source, the internal stores, such as the endoplasmic reticulum and vacuoles, are gaining
appreciation [75].

Ca2+ exerts three important functions in the process of NOX-mediated signaling in plant immunity.
Firstly, NOXs have Ca2+-binding EF-hand motifs in their N-terminal regions and thus Ca2+ can
directly regulate the activity of NOXs and therefore participate in ROS production in plants [76].
Secondly, Ca2+ works together with its binding proteins in the regulation of NOX activity. Plants
are endowed with two principal classes of Ca2+-regulated kinases. The first class is composed of
CDPKs [77]. Experiments based on quantitative phosphoproteomics and selected reaction monitoring
tandem mass spectrometry revealed that multiple different Ser residues in the N-terminal region
of AtRbohD were phosphorylated in response to PAMP stimulation in Arabidopsis [33,34]. Four
CDPKs, namely AtCDPK4, AtCDPK5, AtCDPK6 and AtCDPK11, were identified as positive regulators
of AtRbohD after flg22 treatment [48]. A further study proved that AtCDPK5 is involved in the
phosphorylation of Ser39, Ser148, Ser163 and Ser347 of AtRbohD [53]. In addition, it was found that
NtCDPK2VK, the constitutively active mutant of tobacco NtCDPK2, could induce ROS production,
while StCDPK5VK, the constitutively active mutant of potato StCDPK5, could phosphorylate StRbohB
in Nicotiana benthamiana leaves [78,79]. These results suggest CDPK-dependent phosphorylation occurs
widely in different species in the regulation of NOX activity. The second class of Ca2+-regulated kinases
is represented by Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) that become activated
upon interaction with CBL Ca2+ sensor proteins [80,81]. A recent report showed that calcium sensor
CBL10 and its interactor protein kinase Cipk6 contribute to ROS generation during PTI and ETI in
the interaction of Pseudomonas syringae pv tomato DC3000 and Nicotiana benthamiana [82], which may
work through direct phosphorylation of NbRbohB. Additionally, in Arabidopsis, CIPK26 interacts with
the plasma membrane-localized Ca2+ sensors CBL1 and CBL9; they work together to phosphorylate
AtRbohF by CIPK26 interaction with the N-terminus of AtRbohF [83]. Many studies have shown
that CBL-CIPK complexes contribute to the tolerance of plants to various abiotic stresses such as salt,
cold, and drought [84–86]. It is possible that CBL-CIPK complexes participate in regulation of NOXs;
therefore, they function in plant stress tolerance. Thirdly, Ca2+ indirectly regulates the activity of NOXs
in plants by binding to calmodulin (CaM). A previous study reported that three types of tobacco CaM
isoforms participate in the activation of NAD kinases (NADKs) [87]. NADKs are the enzymes found in
both prokaryotes and eukaryotes. They generate the important pyridine nucleotide NADPH/NADP
from substrates ATP and NADH/NAD [88] and therefore regulate the activity of NOXs. The evidence
now accumulating suggests that ROS and other free radicals can activate Ca2+-permeable channels in



Int. J. Mol. Sci. 2016, 17, 805 7 of 18

the plant plasma membranes causing Ca2+ elevation in the cytosol [17]. It seems that NOXs, ROS, Ca2+

and Ca2+-regulated kinases can form a signaling loop in the plant stress response.

3.3. Open Stomata 1 (OST1)-Mediated Phosphorylation of NOXs

NOXs also participate in the regulation of stomatal movement in plants. It was reported that
NOX-dependent ROS production in guard cells plays an important role in ABA-mediated stomatal
closure [40], and several lines of evidence show that ABA-induced ROS accumulation originates from
two NOX proteins, AtRbohD and AtRbohF, during stomatal closure [9]. Stomatal closure in guard
cells is a basic defensive strategy of plants to prevent biotic and abiotic stresses. OST1 is a member
of the sucrose non-fermenting 1 (SNF1)-related protein kinase 2 family (SnRK2s), and a mutation
in the OST1 gene impairs ABA-triggered ROS production in guard cells, suggesting that OST1 acts
upstream of NOX in this signaling cascade [54]. In addition, flg22 treatment could induce stomatal
closure in wild type plants but not in the ost1 mutant in Arabidopsis [89], and further experiments
proved that OST1-mediated ROS generation in guard cells involves the phosphorylation of AtRbohF
by OST1 [44]. In this process, ABA can be perceived by the pyrabactin resistance protein 1 (PYR1),
the resulted PYR1 receptor complex then leads to suppression of protein phosphatase 2Cs (PP2Cs),
which function as negative regulators of OST1 [90]. The OST1-mediated phosphorylation of AtRbohF
mainly occurs on Ser13 and Ser174 of the NOX protein but Thr91 and Ser97 of the protein might also
be phosphorylated during the signaling transduction [44]. Considering the highly conserved serine
residues on other NOX proteins, it is reasonable to believe that they can be phosphorylated by OST1
and/or other members of the SnRK2 family kinase proteins in the regulation of stomatal movement
of plants.

4. Phosphorylation-Independent Regulation of NOXs during Plant Immunity

Although phosphorylation-based regulation is required for the activation of NOXs, other
phosphorylation-independent regulation probably exists. Indeed, studies have shown that MAPK
cascades, Rho-type GTPases, and hormones also tightly participate in the activation of NOXs during
plant defense responses.

4.1. MAPK Cascades-Mediated Regulation of NOXs

MAPK cascades are one of the most important and highly conserved signaling cascades, which
consist of three tier components, MAPKKKs, MAPKKs, and MAPKs, carrying out phosphorylation
reactions from upstream receptors to downstream targets. For instance, MAPK cascades activate or
inhibit some specific TFs by phosphorylation [91], and thus regulate the expression of many defense
genes in plant stress responses. TFs transmit the signals to the nucleus where the downstream target
genes are transcriptionally regulated via interaction with the cis-acting elements on the promoters
of the genes. Downstream targets of MAPK cascades include many kinds of TFs, for example, those
in the WRKY family, TGA transcription factors, and hormone response factors such as ethylene
insensitive 3 (EIN3) [92]. Interestingly, apart from TFs acting downstream of MAPK cascades, an
increasing number of studies have shown that MAPK cascades also serve as positive regulators of
NOXs for ROS production and the produced ROS in turn activates MAPK cascades [49–51]. Despite the
fact that MAPK cascades are involved in most of the signaling pathways through the phosphorylation
reaction, the mechanism of MAPK cascade functioning in NOX activation is not yet clear. No direct
evidence shows that NOX proteins could be phosphorylated by MAPKs. Therefore, in this stage we
presumably classified the mechanism as being non-phosphorylated.

It has been found that two MAPKKs, MEK1 and MEK2, can promote NOX-derived ROS
production in Nicotiana benthamiana during the plant immune response [49]. In Arabidopsis, a MAPKKK,
namely MEKK1, which initiates a signaling of MEKK1-MKK4-MPK3/6, was found to act as upstream
of NOX, stimulating H2O2 production in pathogen attack, and the resulted H2O2 in turn activates
MPK3 and MPK6 in leaf cells of the plant [50]. In maize, a 46-kDa MAPK (p46MAPK) was found
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to positively regulate NOX for H2O2 production, and similarly, the produced H2O2 in turn activates
p46MAPK as well [51]. It is well known that both abiotic stress factors such as salt, cold, wound,
and drought, and biotic stress factors like bacterial and fungal elicitors, can activate MEKK1, but
the followed MAPK cascades of MEKK1-MKK2-MPK4/6 and MEKK1-MKK4/5-MPK3/6 operate
separately in the downstream regions of ROS signaling during abiotic and biotic stress responses
of plants [93–95]. However, during the ABA-mediated stress response, MAPK cascades may act
both upstream and downstream of the ROS production. For instance, a study in maize revealed that
ABA activates a 46-kDa MAPK that acts downstream of H2O2 and further positively regulates NOX
for H2O2 production [51]. Therefore, the interaction between NOXs and MAPKs forms a feedback
adjustment process by ROS production in plant immunity. However, the mechanism for the feedback
regulation remains to be elucidated.

4.2. Rho-Type GTPases-Mediated Regulation of NOXs

Rho-type GTPases belong to the Rat sarcoma (Ras) superfamily of small GTP-binding proteins,
and plants have a sole subfamily of Rho-type GTPases, called ROPs (Rho of plants) or RACs (for the
sequence similarity they share with animal Racs, a Rho subfamily). The Ras superfamily serves
as two-state molecular switch depending on its GDP- or GTP-bound conformation [96]. Guanine
nucleotide exchange factor (GEF) enhances the release of GDP from Rac/Rop, thereby promoting
the binding of GTP, and GEFs typically exert their actions in large molecular complexes linking
RLKs to the activation of small GTPases [97–99]. A good deal of evidence has shown that ROP
activity is correlated with NOX-catalyzed ROS accumulation during polar root hair and pollen tube
growth [98,99]. For example, in Arabidopsis, it was found that RopGEF interacts with the receptor
kinase FERONIA, functioning as an upstream regulator of ROP GTPase signaling during polar root
hair development [98] while FERONIA-related ANXUR receptor-like kinases, ANXUR1 and 2, may
activate ROP GTPases through RopGEFs during pollen tube growth, preceding the activation of the
NOX-catalyzed ROS accumulation [99].

The roles of the Rac/Rop small GTPases in plant innate immunity have also been studied in rice,
barley and other species [42]. For instance, rice OsRac1 regulates cell death, stimulates expression
of pathogenesis-related (PR) genes and production of phytoalexins [100,101]; these processes may
be constructed by activating ROS production. The most typical example of RLK/GEF/Rho-type
GTPases/-mediated regulation of NOX in plant immunity was found in chitin signaling [60]. Chitin is
one of the best-characterized PAMPs in pathogenic and non-pathogenic fungi. There are two PRRs
in rice, OsCEBiP and OsCERK1. OsCEBiP is a receptor like protein (RLP), it can directly bind to
chitin, whereas OsCERK1 is a RLK, it does not directly bind to chitin. However, the two immune
proteins could form a receptor complex to transduce the chitin signals to the downstream components
during the resistance of rice plants to fungal infection [102,103]. More recently, it was found that an
OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module participates in the immunoresponse in rice [60].
OsRacGEF1 can be directly phosphorylated at Ser549 after chitin treatment by OsCERK1; this leads to
the activation of OsRacGEF1 and then boosts the binding of GTP to OsRac1 [60]. The activated OsRac1
then directly interacts with the N-terminus of OsRbohB and thereby stimulates ROS generation [43].
In addition, rice contains two receptors for activated C-kinase 1 (RACK1) genes, RACK1A and
RACK1B [104]. It has been found that RACK1A can interact with the GTP form of Rac1, as well
as with the N-terminal region of OsRbohB [104] and therefore contributes to ROS production and
defense gene expression in rice cells. Obviously, as discussed above, the interactions between ROPs
and NOXs occur under both normal plant development and the defense response.

4.3. Hormone-Mediated Regulation of NOXs

There is now a substantial body of literature concerning hormones that participate in plant
immunity, such as ABA, jasmonic acid (JA), salicylic acid (SA), ET, etc. [10,45,46,105]. Intrinsic to
their participation in plant immune is the interplay between ROS and these hormones, as well as
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hormone-dependent ROS balance through the regulation of NOX activity and ROS-scavenging capacity.
For example, as a part of the complex signaling cascades of ABA-induced stomatal closure in guard
cells, phospholipase D (PLD) produces the second messenger phosphatidic acid (PA), which binds to
and activates AtRbohD [45]. In addition, an enhanced expression of genes associated with ET synthesis
and signaling as well as a high level of AtRbohD-derived ROS accumulation was found in Arabidopsis
after pathogen treatment [106]. The results obtained from the analysis on ethylene-insensitive
mutants and atrbohD after flagellin treatments revealed that an ET receptor 1 (ETR1)- and ethylene
insensitive 2 (EIN2)-mediated signaling is required for flagellin-induced AtRbohD-dependent ROS
accumulation [46]. ET not only potentiates the accumulation of ROS, but together with ROS,
also regulates cell death during plant stress responses [107]. Thus, when plants are exposed to
environmental stimuli, ET and ROS may form an amplification loop that mediates cell death. ROS
also plays a crucial role in SA-mediated cell death during pathogenesis responses, and in turn,
SA participates in ROS-mediated SAR [10]. In the ROS/SA-mediated signal path, H2O2 signaling
stimulates synthesis of SA, and SA disturbs cellular redox homeostasis by inhibiting catalase in
the peroxisome [108,109]. NPR1 protein functions downstream of SA in plant immunity, sensing
SA-induced cellular redox changes [110,111]. The redox-activated NPR1 translocates to the nucleus
where it acts in concert with TGA transcription factors to regulate the expression of PR genes, then
induces the establishment of SAR [111].

Biotic attacks also result in the rapid synthesis of JA and its receptor-active derivative,
jasmonoyl-L-isoleucine (JA-Ile) [112]. JA promotes the expression of virtually all major classes
of secondary metabolites and proteins that have established roles in defense, including alkaloids,
terpenoids, phenylpropanoids, amino acid derivatives, anti-nutritional proteins, and some PR
proteins [105]. It was found that MYC2, a basic helix-loop-helix transcription factor, has a direct role in
JA-triggered immunity [113] and the two NOX genes, AtRbohD and AtRbohF, were found to be essential
for the expression of the MYC2-regulated genes [114]. These results emphasize that NOXs, ROS, and
associated redox processing are an integral part of hormone regulation, functioning in the control of
plant immunity. Further studies on the complex network of interactions and mechanisms between the
hormones and ROS will facilitate the understanding of the function of NOXs in plant immunity.

Recently, we found that the treatments of many hormones strongly influenced the expression of
NOXs at the transcriptional level [22]. Many cis-elements, which are responsible for the treatments
of different hormones such as auxin, gibberellin, ABA, ET, SA and methyl jasmonic acid (MeJA),
were identified in the promoter regions of both Arabidopsis and rice NOX family genes. A further
quantitative real-time PCR analysis showed that a very complicated expression profile exists in the
NOX genes under different hormone treatments. For example, some NOX genes (AtRbohB and H)
are markedly downregulated by ABA and MeJA treatments while some NOX genes (AtRbohA, C, D,
E, F and I) are upregulated by these hormone treatments. In addition, the expression profiles of rice
NOX genes display large tissue specificity in the shoot and root under different hormone treatments,
implying the inducible complexity of the NOX genes responding to hormones.

5. Abiotic Stress Response May Be a Specific Plant Immunity

As discussed above, the NOX-mediated signaling strongly overlaps with the response of plants to
a number of biotic and abiotic stresses. This is particularly true during stress-induced stomatal closure.
Some NOXs, such as OsRbohB, AtrbohD and AtrbohF, are not only closely involved in the abiotic
stress responses of plants, but also widely participate in the biotic stress responses. In addition, many
studies have shown that biotic and abiotic stress factors occurring in combination may be considered
interactive [115–118]. For example, an increase in wheat temperature can create a negative interactive
effect by lowering resistance to bacterial, viral, fungal, and nematode pathogens [113–115]. In both
sorghum and the common bean, drought-treated plants had a higher susceptibility to the charcoal
rot fungus Macrophomina phaseolina [116,117]; however, drought stress enhanced the resistance of the
plants to the fungus Botrytis cinerea in tomato [118].
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Apart from the similar activation mechanism of NOXs as described above, a growing body
of evidence has shown that the responses of plants during biotic and abiotic stresses have some
additional similar mechanisms. A long-distance ROS-induced signaling response called systemic
acquired acclimation (SAA) is considered to operate following perception of abiotic stresses, which is
similar to SAR in biotic stresses. ROS is also a messenger produced in abiotic stresses activating MAPK
pathways. A single MAPK cascade is involved in two or more different stress responses because
of different downstream targets and thus different responses. For instance, MEKK1 is activated by
ROS upon abiotic factors and biotic factors, which then activates different downstream modules, as
discussed above. Despite that SA was proposed as the central component in plant immunity, it was
also detected to participate widely in abiotic stress responses [109,119]. In fact, SA has been shown to
improve plant tolerance to major abiotic stresses by SA-mediated control of H2O2 accumulation [119].
In addition, it was found that H2O2 can act as a downstream factor of ET signaling, conferring salinity
tolerance to plants by improving Na+/K+ homeostasis in Arabidopsis, which is partially dependent on
AtRbohF activity [120]. These findings suggest that hormones /ROS/NOXs function as an integral
part involved in plant immunity, as well as in response to abiotic stresses. Hence, all these results
suggest that NOX/ROS is a hub of crosstalk between different signaling pathways in resistance against
both abiotic and biotic factors.

Beyond this, plants share a set of antioxidant systems when suffering from stresses whether
biotic or abiotic stresses [9,121]. Any kind of biotic or abiotic stress leads to an increased level of
ROS production. When the concentration of ROS is excessive, it will act as damaging [7,11–13]. Thus,
plant stress tolerance can be improved by increasing in vivo levels of antioxidant systems. The plant
antioxidant defense system can be divided into two parts, the non-enzymatic system and the enzymatic
system. The non-enzymatic constituents include superoxide dismutase, catalase, ascorbate peroxidase,
guaiacol peroxidase, glutathione reductase, glutathione peroxidase, monodehydroascorbate reductase
and dehydroascorbate reductase, whereas, the pivotal non-enzymatic antioxidants include ascorbic
acid, glutathione, proline, carotenoids and flavonoids [7]. It has been reported that ROS-mediated
stress tolerance can be attributed to increases in the expression and activities of the antioxidant system
in plants [122]. Therefore, based on the similar mechanism and common members during plant
response to abiotic and biotic factors, it is reasonable to believe that the response cascade of plants to
abiotic stresses is a specific plant immunity (Figure 4).
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Int. J. Mol. Sci. 2016, 17, 805 11 of 18

6. Future Perspective

In summary, NOXs function as the specific sources of apoplastic ROS, playing fundamental roles
in plant immunity. The regulation of NOXs is closely associated with many signaling molecules.
Although the regulation of NOXs has been described in many literature sources, the exact molecular
mechanisms of regulation of NOXs and their related ROS signaling in a specific stress response are
still under investigation in plants. Furthermore, the crosstalk between NOXs and protoplastic ROS
production system remains to be discovered. Therefore, further work on the clarification of the
aforesaid relationships is urgently required in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

NOX NADPH oxidases
RBOH Respiratory burst oxidase homologs
ROS Reactive oxygen species
PCD Programmed cell death
PRR Pattern recognition receptor
PAMP Pathogen associated molecular pattern
BAK1 Brassinosteroid insensitive 1 associated receptor kinase 1
ETI Effector triggered immunity
flg22 22 amino acid peptide of bacterial flagellin
GEF Guanine nucleotide exchange factor
HR Hypersensitive response
RACK1 Receptor for activated C-kinase 1
RLK Receptor like kinase
RLCK Receptor-like cytoplasmic kinase
CDPK Calcium-dependent protein kinases
MAPK Mitogen activated protein kinase
OST1 Open stomata 1
NADK Nicotinamide adenine dinucleotide kinases
TFs Transcription factors
BIK1 Botrytis-induced kinase1
FLS2 Flagellin sensing 2
EFR Elongation factor-Tu receptor
ABA Abscisic acid
PTI PAMP triggered immunity
CBL Calcineurin B-like
CIPK CBL-interacting protein kinase
SAR Systemic acquired resistance
ET Ethylene
JA Jasmonic acid
SA Salicylic acid
PA Phosphatidic acid
ETR1 Ethylene receptor 1
EIN2 Ethylene insensitive 2
SAA Systemic acquired acclimation
CaM Calmodulin
DUOX Dual oxidases
FRO Ferric reduction oxidase
RPS5 Resistance to pseudomonas syringae 5
CERK Chitin-elicitor receptor kinase
CEBiP Chitin elicitor-binding protein
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