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Abstract

Background: While hundreds of genes have been implicated already in the etiology of schizophrenia, the exact
cause is not known or the disease is considered multigenic in origin. Recent discoveries of new types of RNAs
and the gradual elimination of the “junk DNA" hypothesis refocused the attention on the noncoding part of the
human genome. Here we re-analyzed a recent dataset of differentially methylated genes from schizophrenic
patients and cross-tabulated them with cis regulatory and repetitive elements and microRNAs known to be
involved in schizophrenia.

Results: We found that the number of schizophrenia-related (57) microRNA targets follows a scale-free distribution
with several microRNA hubs and that schizophrenia-related microRNAs with shared targets form a small-world
network. The top ten microRNAs with the highest number of SZ gene targets regulate approximately 80 % of all
microRNA-regulated genes whereas the top two microRNAs regulate 40-52 % of all such genes. We also found
that genes that are regulated by the same microRNAs tend to have more protein-protein interactions than
randomly selected schizophrenia genes. This highlights the role microRNAs possibly play in coordinating the
abundance of interacting proteins, an important function that has not been sufficiently explored before. The
analysis revealed that GABBR1 is regulated by both of the top two microRNAs and acts as a hub by interacting
with many schizophrenia-related genes and sharing several types of transcription-binding sites with its interactors.
We also found that differentially methylated repetitive elements are significantly more methylated in schizophrenia,
pointing out their potential role in the disease.

Conclusions: We find that GABBR1 has a central importance in schizophrenia, even if no direct cause and effect
have been shown for it for the time. In addition to being a hub in microRNA-derived regulatory pathways and
protein-protein interactions, its centrality is also supported by the high number of cis regulatory elements and
transcription factor-binding sites that regulate its transcription. These findings are in line with several genome-wide
association studies that repeatedly find the major histocompatibility region (where GABBR1 is located) to have the
highest number of single nucleotide polymorphisms in schizophrenics. Our model also offers an explanation for the
downregulation of protein kinase B, another consistent finding in schizophrenic patients. Our observations support
the notion that microRNAs fine-tune the amount of proteins acting in the same biological pathways in schizophrenia,
giving further support to the emerging theory of competing endogenous RNAs.
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Background

Schizophrenia, a devastating disease affecting about 1 %
of the human population, has been first described and
phenomenologically characterized for the English-
speaking world by Emil Kraepelin in 1919, nearly a hun-
dred years ago [1]. Nevertheless, the exact cause of the
disease is still not known and there are no molecular
tests that would help diagnose a new case. While it is
possible to identify the phenotype of the disease in most
cases, with a clear genetic component, the scientific
community is settling on the consensus that it is a poly-
genic disease [2, 3] with many different individual genes
contributing to it, with distinct mutations in different
families and geographic regions.

The recently discovered altered microRNA expression
in schizophrenia [4] gave rise to new theories regarding
the cause of schizophrenia, highlighting the importance
of gene networks [5], further supporting the notion that
schizophrenia is a multigenic disease.

In this work we analyzed several datasets, namely: a
genome-wide data set of differentially methylated CpGs
in a large cohort of schizophrenic patients using Illumi-
na’s 450 k probe set [6], all known microRNAs known to
be differentially expressed in schizophrenia and com-
pared them with a set of genes annotated by Genecards
[7] to be related to schizophrenia and related them to
known protein-protein interactions as recorded in
STRING [8].

We found that the targets of microRNAs follow a
power-law distribution where most miRNAs have a
small number of gene targets and a few miRNAs have
many. The two miRNAs with the highest number of tar-
gets both regulate GABBR1, a feature shared only by a
few other schizophrenia-related genes. GABBR1 had also
the highest number of differentially methylated CpGs in
a subset of patients (in [6]), all of them hypermethylated
whereas a large majority of the differentially methylated
genes had both hyper- and hypomethylated CpGs in the
same study.

A protein-protein interaction network, constructed
from schizophrenia-related, differentially methylated
genes, regulated by one of the top two microRNAs
revealed that almost all of the interacting partners of
GABBR1 were also hypermethylated. AKT1, a protein
kinase B, known to be downregulated in schizophrenia,
is also regulated by miR-26b, the second most abundant
microRNA, and both proteins interact with ATF2, acti-
vating transcription factor 2, which is also hypermethy-
lated in schizophrenics in [6].

Our analysis supports a scenario where the initial
pathogenic event might be the downregulation of
GABBRI1 (possibly brought about by an external factor
such as a viral infection as we hypothesized before in
[9]) perhaps through one of the regulatory cis elements
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of GABBR1, whose perturbation is propagated into its
network of genes, connected via shared microRNAs.

We also found that CpG probes that match repetitive
elements in the human genome are significantly hyper-
methylated in schizophrenics.

Methods

Data collection

We collected schizophrenia-related microRNAs from
the literature [10-26] and retrieved their experimentally
validated targets from miRTarBase [27]. Schizophrenia
related genes were retrieved from Genecards, v. 3.12 [7]
and Malacards [28]. Differentially methylated genes were
taken from Wockner et al. [7], miRNA abundances were
taken from miRBase (release 21) [29].

Power law fitting and testing

We cross-tabulated the genes from the 3 datasets: ex-
perimentally validated targets of miRNAs implicated in
schizophrenia, genes related to schizophrenia and genes
differentially methylated in schizophrenia. We then
counted the number of target genes for each miRNA in
this combined dataset and fitted a power law distribu-
tion to the resulting counts.

Goodness of fit test was performed using Kolmogorov-
Smirnov statistic and bootstrapping procedure as de-
scribed in [30] using the “poweRlaw” package [31] in R.
We used 2500 synthetic sets which allowed p-value to
be accurate to about 2 decimal digits [30]. Here p-value
is the fraction of the time the resulting Kolmogorov-
Smirnov statistic for the synthetic set is larger than the
statistic for the empirical data. Thus small p-values allow
us to rule out power law distribution. In our test we
obtained p-value = 0.25. Considering p-value=0.1 as a
threshold [30] we cannot rule out power law distribution
for this subset of the data.

Small-world net

We constructed a miRNA-miRNA network based on
shared targets. To see if the network has small-world
property, we constructed random graphs using the Erdés—
Rényi algorithm with the same number of nodes and the
same average number of edges for each node. We
compared the clustering coefficients and characteristic
path lengths between the two graphs. The clustering
coefficient proved to be bigger for the real graph than
the random one while the characteristic path length
were the same — thus meeting the criteria for small
world property [32].

Protein-protein interaction network construction

Protein-protein interaction networks of miRNA targets
were constructed based on the interactions data in
STRING v9.1 [8]. Combined score cutoff used to include
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an interaction was 0.4. The network for the top 2 miR-
NAs was visualized using Cytoscape, v.3.2.0 [33]. Differ-
ences of M-values between schizophrenia patients and
healthy subjects for genes are averages of differences for
probes reported differentially methylated in [6].

Interactions between genes regulated by the same miRNA
We selected genes randomly from the list of all
schizophrenia-related genes in the amount equal to the
number of genes regulated by each miRNA and counted
the number of interactions between them. Calculated in-
teractions were normalized by dividing them by the
maximum number of edges in the corresponding undir-
ected graph for each miRNA target set. This procedure
was repeated 3000 times. We subtracted from the nor-
malized number of interactions between genes regulated
by the same miRNA the number of interactions (nor-
malized) in each corresponding simulated gene set. This
was done for all miRNAs implicated in schizophrenia
and for the results single-sample Wilcoxon signed-rank
tests were performed.

Differentially methylated repetitive elements

As explained in [6] the authors organized their differ-
entially methylated CpG probes into 3 separate data
sets (in three supplementary tables in [6]), where set
1 contained all the differentially methylated probes
between patients and controls, set 2 contained the
age-adjusted values, whereas set 3 contained differentially
methylated probes between two markedly different patient
subgroups.

After acquiring the sequences of the Illumina 450 k
probe set (120 nucleotides each, surrounding the middle
CpG dinucleotide queried in the methylation studies) we
determined if they are substantially similar to any repeti-
tive elements. To do this we ran BLASTN [34] to com-
pare the sequences of all probes to the human subset of
Repbase [35], a public database of all repetitive elements
in the human genome. We then selected those probes
that match a repetitive element using an e-value thresh-
old of le-5, for each probe selecting the best matching
repetitive element. We then sorted the Mval values (the
measure of differential methylation in [6] between
schizophrenics and controls or between the two sub-
groups of patients) for all differentially methylated
probes and also the subset of repetitive probes into 21
bins (in the range from -1 to +1, with increments of
0.1) for each of the 3 sets of differentially methylated
probes in [6] and counted the number of probes in each
bin. At the end each distribution was normalized to 100
as shown in Fig. 5, so that adding up the values amounts
to 100 in each case.

To determine if the values differ between the entire
sets and those containing only the repetitive elements
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for each of the 3 data sets in [6] we used Student’s ¢-test.
We repeated the tests by separating the negative and
positive values to avoid unnecessary complexities arising
from the bimodal character of the methylation value
distributions.

Code availability

All the analyses, data randomizations and statistical tests
were carried out by in-house Perl, Python and R scripts.
They are freely available from the authors on request.No
experiments were carried out on any living creatures.

Results

Cross-tabulation of microRNAs, schizophrenia genes and
differentially methylated genes in schizophrenia

First we collected all schizophrenia-related microRNAs
from the literature [10-26]. We then cross-tabulated
(for the overlap between the various data sets see
Additional file 1: Figure S1) this set of 129 microRNAs
with those genes that were differentially methylated in
schizophrenics according to [6] (using subset 2 from [6]
where the differentially methylated probes were corrected
for age and PMI, post-mortem interval), and are regulated
by any of the 129 microRNAs according to mirTarBase
[27], a collection of experimentally verified targets of
microRNAs (shown in Additional file 2: Table S1). We
then took a list of 2065 genes associated with schizophre-
nia according to Genecards [7] and cross-tabulated them
with the differentially methylated set of genes from [6],
selecting only those genes that are also regulated by at
least one microRNA in mirTarBase.

Table 1 shows the 253 genes associated with schizo-
phrenia in Genecards [7] and regulated by a microRNA,
ranking the microRNAs according to the number of
their known targets. Table 1 shows only the top ten
microRNAs, the latter ranked according to the number
of known targets for them. Apparently, out of the 253
schizophrenia-related, microRNA-regulated, differen-
tially methylated genes (in 6) listed by Genecards, 205
(81 %) are regulated by one of the top ten microRNAs
(Table 1). However, not every gene is regulated by micro-
RNAs. Out of the 2931 genes differentially methylated in
schizophrenics in [6] only 1547 (53 %) are regulated
by at least one microRNA implicated in schizophrenia
(Additional file 2: Table S1). This is in line with the
finding of others, who also found that in schizophre-
nia only about half of all coding genes are regulated
by a microRNA [36].

We also indicated (gene names typed in red in Table 1)
if the gene is associated with schizophrenia according to
Malacards [28], a compendium of diseases and related
genes. In Fig. 1 the ratio of microRNA-regulated genes
are shown for various numbers of microRNAs (for the
top, top two and top ten microRNAs, respectively; see
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Table 1 Differentially methylated genes associated with schizophrenia according to Genecards targeted by schizophrenia-related

microRNAs, cross-tabulated for the top ten microRNAs. Genes classified as schizophrenia-related by Malacards are shown in red
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microRNA with the most targets, there is also a ten-
dency for their relative number of targets to increase
when the schizophrenia-related evidence increases.
The ratio of the targets of the top two microRNAs is
around 40 % for the first data set (where all differen-
tially methylated genes from Wockner et al. [6] are
taken into account), however it increases to 46 % and
53 %, for Genecards and Malacards, respectively. Fig-
ure 1 shows that in all four cases the ratios for the
targets increases with increasing evidence for schizo-
phrenia (i.e. always the highest for the Malacards set).
This may support the role of microRNAs in schizo-
phrenia in general and that of the top two micro-
RNAs in particular.

Using the known miRNA-target relations we con-
structed two types of networks: a miRNA- > target and a
miRNA-miRNA network. The network of miRNAs and
the genes regulated by them, not including interactions
between these genes, is a bipartite directed network with
miRNA- > target directed links. This network can be
characterized by in-degree (in this case the number of
miRNAs controlling a given gene) distribution and out-
degree (the number of genes controlled by a given
miRNA) distribution. In Fig. 2 we depicted the out-
degree distribution of this network. We tested goodness
of fit using Kolmogorov-Smirnov statistic as described in
Methods, which demonstrated that this distribution
follows the power law.

Analysis of the miRNA-miRNA network constructed
based on the shared genes between any two miRNAs
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demonstrated small-world properties. By definition [32],
the clustering coefficient of a small world net is bigger
than the clustering coefficient of a random graph (with
the same number of nodes and same average number of
edges per node), while characteristic path lengths are
approximately equal [32]. Clustering coefficient and
characteristic path length of our network are 0.807
and 1.717, respectively, while these parameters for the
corresponding random network are 0.330 and 1.669,
respectively.

Top two microRNAs and protein-protein interactions
among schizophrenia-related genes
To investigate the potential role microRNAs might play
in coordinating protein-protein interactions (PPIs), using
STRING [8] we determined the number of PPIs for the
network of schizophrenia-related proteins regulated by
the two most frequently occurring microRNAs, mir-335
and mir-26b. To see if they have more interactions than
those proteins not regulated by the same microRNAs we
performed randomization and a statistical test described
in the Methods section. Results are shown in Additional
file 4: Table S3. Apparently, proteins that are regulated
by the same microRNAs tend to have more interactions
and one of the main regulatory roles of the microRNAs
might be actually this coordinating effect, to make sure
that interacting proteins have the correct stoichiometry
in the cell [37].

Protein-coding genes that interact with each other
according to STRING, are associated with schizophrenia
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Fig. 2 Cumulative Distribution Function (CDF) of the number of targets of microRNAs in schizophrenia shown as the fraction of the total number
of targets on a log-log scale. Only genes found differentially methylated by Wockner et al. [6] are taken into account. The distribution could be
fitted with a straight line, which is typical of scale-free networks, i.e. the fraction of nodes having k connections in the network could be described
by P(k) ~ k“ where c is a constant exponent, characterizing the distribution. For this network ¢ was calculated to be 2.14
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and regulated by mir-335 or mir-26b, are shown in Fig. 3.
The network contains two main hubs, AKT1 and
GABBRI1, which, although do not have a direct inter-
action, both interact with ATF2. AKT1, protein kinase
B is an important molecule in signaling pathways and
is known to be downregulated in recent-onset schizophre-
nia although the source of this downregulation is not
known [38]. While the interacting partners of AKT1 are
both hyper- and hypomethylated (the level of methylation
indicated on a grey scale for each partner, the most meth-
ylated genes shown in black) the interactors of GABBR1
are almost all hypermethylated, with the exception of
NPY, neuropeptide Y. GABBR1 was also the most consist-
ently hypermethylated gene in the entire set in [6].

We also checked the abundance of the microRNAs
taken from the resource mirbase.org, which has the
most comprehensive annotation about microRNAs in
human tissues across tens of different experiments [29].
After performing Shapiro-Wilk normality test, which in-
dicated non-normal distribution of the data, we have
run Spearman’s rank correlation test. Using those human
miRNAs that have experimentally validated targets in

miRTarBase, we obtained statistically significant positive
correlation between target counts and mature miRNA
read counts (rho=0.44, p-value <2.2e-16) (Fig. 4a) as
well as between target counts and stem-loop transcripts
read counts (rho=0.67, p-value<2.2e-16) (Fig. 4b).
Statistically significant positive correlation was also
observed when we use only the schizophrenia related
miRNA set (Additional file 5: Figure S3). Thus, these
results support the theory of “competing endogenous
RNAs” [39], which inherently assumes that microRNAs
with more targets are also expressed in higher quantities,
to carry out their regulatory functions.

Cis regulatory elements for schizophrenia-related genes

To see if regulation of gene expression by microRNAs
can be related to cis regulatory elements (enhancers and
silencers) regulating the transcription of schizophrenia-
related genes we also listed the number of cis and pro-
moter elements identified by Thurman et al. [40] for each
gene that was present in their study. The numbers for
both elements are listed in Additional file 2: Table S1. A
correlation analysis showed that the number of regulating
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microRNAs or the presence of certain microRNAs does
not correlate with the numbers of promoter and cis
elements (data not shown), thus apparently providing
independent regulatory mechanisms, regulating differ-
ent aspects of gene expression.

Transcription factor binding sites in cis regulatory elements
of GABBR1 and 16 network-neighborhood genes

We also studied transcription factor binding sites (TFBSs)
in the regulatory cis and promoter elements of GABBR1
and 16 of its neighboring genes in the PPI network in
Fig. 3 to see if the interacting genes share any common
TEBS motifs. We mapped the motifs identified for the en-
tire human genome by [41] to the regulatory elements of
GABBR1 and 16 of its neighbors in the PPI map in Fig. 3,
the results are shown in Additional file 6: Table S2. Appar-
ently, the table is highly populated, with the most highly
represented transcription factor binding sites appearing
more than 20 times. GABBR1 shares several TFBS motifs
with most of the interacting proteins (at least one with
each) and neighborhood proteins in Fig. 3.

Differential methylation of repetitive elements in
schizophrenic brains
We also investigated the potential role repetitive elements
might have in the etiology of schizophrenia, with special
respect to endogenous retroviruses that have been found
by several studies to be abnormally expressed at the onset
of the disease [42]. We hypothesized before [9] that a long
terminal repeat (LTR) of the endogenous retrovirus
HERV-W in the cis regulatory region of GABBR1 might
account for the downregulation of GABBR1 in schizo-
phrenia [43].

We studied the methylation of the repetitive elements
by comparing the sequences of the differentially methyl-
ated probes in all three data sets in [6] to Repbase, a

collection of all repetitive elements in eukaryotic ge-
nomes [35] using BLASTN as described in Methods.

While we did not find any particular repetitive element
(such as the LTR of an endogenous retrovirus, e.g.
HERV-W) enriched in the differentially methylated
probe sequences (each probe sequence defined as 121
nucleotides, encompassing the queried CpG dinucleotide
in the middle), using Student’s t-test we did find data sets
1 and 2 significantly more methylated (p-value < 1le-5) if
they matched a repetitive element. It can be observed in
Fig. 5 by comparing the histograms of methylation values
(x1_mval through x3_mval, where x1, x2 and x3 refer to
the 3 differentially methylated sets of probes in [6])
derived from the entire sets (Fig. 5a) to methylation
values derived from a subset of probes in each re-
spective set (x1 to x3) that matched a repetitive elem-
ent in Repbase (x1rep, x2rep and x3rep in Fig. 5b), as
described in Methods. Apparently, for the x1 and x2
sets (that represent differentially methylated probes
between patients and controls, with x2 containing
only age- and HMlI-corrected probes of x1) the re-
petitive probes (xlrep and x2rep in Fig. 5b) have sig-
nificantly higher numbers of hypermethylated probes
(higher values in the positive range in Fig. 5b) when
compared to the distributions in Fig. 5a. For the x3
data set (representing differentially methylated probes
between two distinct patient groups) there was only a
marginal difference, with the repetitive element matching
probes being slightly less methylated than the entire
set (p-value = 0.017).

Discussion

Converging experimental and clinical evidence suggests
that dysfunction of proper GABAergic inhibition
(GABA, gamma-aminobutyric acid is the main inhibitory
neurotransmitter in the mammalian brain) in GABA
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Fig. 5 Methylation value distributions for CpG probes in repetitive elements. a. All differentially methylated probes for the 3 data sets in [6].
b. Probes in the 3 data sets overlapping a repetitive element in RepBase [35]

neurons in the cerebral cortex underlies at least part of
the pathophysiological process in schizophrenia [44]. In
line with the evidence, several pathways and the dys-
function of associated genes were suggested to be the
primary cause of schizophrenia, such as that of GAD1
(glutamic acid decarboxylase 1, producing GABA from
glutamate) [45], N-methyl-D-aspartate (NMDA) recep-
tor (a glutamate receptor and ion channel protein) and
both GABA A [46] and GABA B [9, 43] receptors.

It must be noted that implicating GABA receptors in a
GABAergic dysfunction is quite a plausible argument in
itself. In this paper we focused on the role GABA B1 re-
ceptor (GABBR1) might play in schizophrenia. GABBR1
was recently found to be the most consistently hyper-
methylated gene in a large-scale methylome study in [6].
GABBRI is also located in the MHC region that was
found to carry the highest number of SNPs in a meta-
study of large numbers of schizophrenic patients [3].

In addition, we found that the top two microRNAs
with the highest number of targets known to be asso-
ciated with schizophrenia both regulate GABBRI, a

feature shared only by 9 other differentially methyl-
ated genes listed in Genecards (Table 1). What is
more, the top microRNA in the set, miR-335, regu-
lates 394 of the 1547 differentially methylated genes
(25 %) (Additional file 2: Table S1) whereas it regu-
lates 70 of the 253 (28 %) Genecards genes and 8 of
the 19 Malacards genes (42 %) (Table 1). There is a
similar increase for the fraction of regulated genes for
the top 2, top 5 and also for the top ten microRNAs
when we limit the number of genes to those of increasing
evidence for their involvement in schizophrenia (Fig. 1).
What is more, the transcription of GABBRI1 is also
regulated by a high number of cis regulatory and pro-
moter elements (105 and 8, respectively, Additional
file 2: Table S1, taken from [40]), highlighting another
aspect of central importance of GABBRI.

While several studies have tackled already microRNA-
derived networks of interacting proteins both in physio-
logical and disease processes [13, 47, 48], they usually
combine both experimental and predicted targets, whereas
we found the latter highly non-reliable, depending on the
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actual prediction method, therefore we restricted our
study to experimentally verified microRNA targets only.

We found that the distribution of microRNA targets
follows the power law. The miRNA-miRNA network is
tightly connected, forming a small-world type of net-
work where the average number of hops needed to reach
a node from another is only 1.7. This is also reflected in
the fact that the top ten microRNAs regulate 80 % of all
microRNA-regulated genes implicated in schizophrenia,
a number that increases to 89 % when considering only
the cross-section of differentially methylated genes and
those identified by Malacards as schizophrenia-related.

After constructing a protein-protein interaction net-
work among the genes that are regulated by either of the
top two microRNAs we identified two hubs (Fig. 3),
GABBRI and AKT1, interacting with a high number of
other proteins in the network. GABBRI interacts with
GABA receptor Al and shares network neighbors with
several other GABA receptors. Most GABA receptors
and the majority of directly interacting proteins, such as
HTRIA, a serotonin receptor, are also significantly hyper-
methylated in the study.

AKT1 has been found to be downregulated in schizo-
phrenia and its downregulation is thought to be instru-
mental in abnormal hippocampal neuroplasticity and
cognition in schizophrenia [49]. While the cause of this
downregulation has not been known till recently [38], a
recent paper found that the activation of GABA B recep-
tors inhibits Aktl/GSK-3 signaling [50]. AKT1 and
GABA B receptors do not directly interact with each
other, but via beta-arrestin according to the model in
[50]. This model could also explain how perturbing the
expression of GABBR1 would change the expression of
AKT1 and cause the deregulation of the AKT1-related
pathways [51]. While not directly interacting with each
other, both AKT1 and GABBRI interact with ATF2 in our
model (Fig. 3), which is also differentially methylated in [6].

Several other bioinformatics studies have reconstructed
microRNA-derived networks, including PPIs, protein ex-
pression values and transcription factor binding sites for
both schizophrenia and other diseases [13, 48, 52], identify-
ing network hubs that have the most potential to influence
the networks’ overall behavior. Interestingly, Hansen et al.
[13] also identified ATF2 in their network of schizophrenia-
related genes although they started out from two other
microRNAs, mir-206 and mir-198, in which they found
SNPs in the studied schizophrenia patient cohort.

We reconstructed a PPI network for the targets of the
top two microRNAs, based on the observation that
common miRNA targets tend to appear in the same
biochemical pathways (as they tend to have more
protein-protein interactions as shown for the top ten
microRNAs in Additional file 4: Table S3). As noted
by Liang [53], miRNAs have a greater importance in
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connecting inter-modular than intramodular PPI hubs
(i.e. hubs appearing in different vs. the same subnetworks),
which also seems to be the case for GABBR1 and AKT1
in our network in Fig. 3. As GABBR1 is regulated by both
of the two most prevalent microRNAs, it has an even
higher chance to be the major driver of the affected
biochemical pathways in schizophrenia.

Genome-wide association studies ranked the extended
MHC region (where GABBR1 is also located) to have
the highest number of SNPs [3] but this region is also
the second most gene-dense genomic region, therefore
identifying the exact causative variation will be a very
complex task. While no systematic sequencing has been
carried out to analyze all mutations in the high number
of regulatory elements of GABBRI1, the possibility that
epigenetic, rather than genetic changes in its vicinity are
to account for the disease cannot be excluded either.

Conclusions

Taken together, we find that GABBR1 has a central im-
portance in schizophrenia, even if no direct cause and
effect have been shown for it for the time. The protein-
protein interaction map of genes regulated by one of the
two top microRNAs shows that GABBR1 and AKT1 are
both hub proteins, forming a plausible network of inter-
acting proteins, comprising several key players in the
GABA and signaling pathways in schizophrenia. Our
model also offers an explanation for the consistent down-
regulation of AKT1 in recent-onset schizophrenia.

We also found that targets of the same microRNAs tend
to have more protein-protein interactions than randomly
chosen genes and that microRNA abundance correlates
positively with the number of its targets. Both these obser-
vations support the notion that microRNAs fine-tune the
amount of proteins acting in the same biological pathways
in schizophrenia, giving further support to the emerging
theory of competing endogenous RNAs [54].

Reviewers’ comments

Responses to Reviewer 1 (Jaap Heringa)

We appreciate the reviewer’s efforts and thorough
criticism in reviewing our manuscript.

The authors come up with a few potentially interesting
findings on regulation and PPI in schizophrenia, these
work more like snapshots than elaborately researched
aspects. Furthermore, none of the findings are placed in
a biological perspective. For example, if true, why would
schizophrenia be more regulated via miRNA than other
diseases or normal cell situations?

We do not say that schizophrenia is “more regulated”
by miRNA than other diseases or normal situation, only
that miRNA are implicated in schizophrenia: there are
several papers some of which we cite that point out the
involvement of microRNAs in schizophrenia.
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Stoichiometry of interacting target proteins seems not to
be an argument that would hold only for schizophrenia.

Certainly true but we studied here only schizophrenia-
related phenomena/abnormalities.

I have the following reservations against this manu-
script that I think the authors should address:

1. As a first point: Somewhat annoyingly, the authors
did not insert page numbers in their manuscript, while
their line numbering is of no help since line numbers
start at 1 at every new page.

We are sorry about that, we number the pages now.

2. Although the paper is written compactly, it was at
times difficult to grasp what exactly the authors have
done. For example, the authors present data on a num-
ber of data sets, but it remains unclear how they have
assembled these. There are descriptions of data collection
in Methods and results, but these appear inconsistent.
The authors should improve clarity here.

We tried to clarify now these issues, referring back to
the appropriate Methods section.

Figure 1 provides some information, but the main text
should provide the information. Later on in the paper,
the authors talk about “data sets 1 and 2", where some
more explanation would be helpful.

Data sets 1, 2 and 3 as explained in the text now, refer
to the 3 supplementary tables in the large-scale methy-
lome studies by Wockner et al. (reference 6 in our
manuscript) where they listed [1] all differentially meth-
ylated probes between patients and controls; [2] all dif-
ferentially methylated probes between patients and
controls corrected for age and PMI, post-mortem inter-
val and [3] differentially methylated probes between two
patient subgroups, respectively.

3. Considering the alluded bias for miRNA-directed
regulation in schizophrenia, the authors write: “Remark-
ably, approximately 80 % of all schizophrenia-related
genes are targeted by only the ten most frequently occur-
ring microRNAs. We also calculated this ratio for the
total number of genes regulated by this set of microRNAs,
where it also proved to be a value close to 80 %.” Assum-
ing that “the total number of genes” are all the genes in
the Wockner et al. dataset, these statements appear to
imply that if there is anything remarkable about the
80 %, it has nothing to do with schizophrenia, as there is
no difference between schizophrenia and the general situ-
ation in the human brain in this regard. 4. In the text,
the authors say that 1547 out of 2931 (53 %) of the genes
implicated in schizophrenia (differential methylation -
Wockner et al.) are regulated by one or more miRNAs.
However, in Fig. 1 the percentages for only the top-10
and top-2 miRNAs (Wockner) are close to 80 and 40,
respectively. Something must be wrong here.

Great point, thanks for pointing this out! As men-
tioned in the text now, not all schizophrenia-related
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genes are regulated by microRNAs (as per current
knowledge, August 2015, this ratio might change as it is
such an actively researched topic). According to others
(see Caputo et al, ref 36 in the manuscript), only half of
all protein-coding genes are regulated by microRNAs.

5. The authors make a point on the regulatory control of
the top-2 miRNAs by writing: “As shown in Fig. 1, the ratio
of the targets of the top two microRNAs is around 40 % for
the first data set (Where all differentially methylated genes
from Wockner et al. [6] are taken into account), however it
increases to 46.4 % and 52.6 %, respectively, for the last
two data set combinations, which combines the schizophre-
nia evidence from Genecards and Malacards, respectively.
This may support the role of microRNAs in schizo-
Pphrenia in general and that of the top two microRNAs
in particular.” The conclusion that more confirmed
data is more correlated with top-2 miRNA-directed regula-
tion is just based on a single dataset of 19 elements. This is
not a compelling argument.

There are 3 data sets: the Wockner set, the Genecards
set and the Malacards set. We also added the ratio of
targets for the top microRNA, miR-335-5p and also for
the top five (in Fig. 1). While there is a more dramatic
increase in ratios between the Genecards set and the
Malacards set, there is also a slight increase between the
Wockner set and the Genecards set. We hope the figure
looks more convincing now.

6. Why did the authors only present data on the top 10
and top 2 miRNAs? They could draw a plot from top 1
to top 15 to show how the coverage falls off.

We extended Fig. 1 now, also calculating the ratios for
the top 5 and the top one microRNAs. We hope the
tendency is clear and convincing.

7. To check the scale free network property, the authors
have made a network of miRNAs, but it is unclear to this
reviewer what are the nodes and edges in the network.
They use miRNAs and the numbers of genes each of those
regulate, but how these data are converted in a network
is obscure. An edge might have been declared whenever
two miRNAs regulate the same target gene, but the
authors should be clear on this. If the latter is indeed the
procedure that is followed by the authors, then the bio-
logical importance of this network is questionable, and so
are the findings that this network has scale free and
small world properties. - In any event, the fashion of
deriving scale free and small world properties is now
mainly moot in the biological literature, since this has
hardly led to increased biological understanding. As to
inferring a power law from double-logarithmic plots, it is
quite difficult in practice not to get a straight line using
these, so the scale-freeness is not compelling, at least not
to this reviewer.

Thank you for pointing out this lack of clarity in the
text. We fixed this in the new version of the paper.
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The network consists of miRNAs and genes regulated
by them. If we do not include the protein-protein inter-
actions between these genes it can be considered a bi-
partite directed network (biological example - Martinez
and Walhout, 2009 *) with miRNA- > target directed
links. This network can be characterized by in-degree (in
this case the number of miRNAs controlling a given
gene) distribution and out-degree (the number of genes
controlled by a given miRNA) distribution. In Fig. 2 we
depicted the out-degree distribution of this network. In
addition to the plot, we performed goodness of fit test
using Kolmogorov-Smirnov statistic as described in the
Methods, which demonstrated that this distribution fol-
lows the power law.

*Martinez NJ, Walhout AJ. The interplay between
transcription factors and microRNAs in genome-scale
regulatory networks. Bioessays. 2009 Apr;31 [4]:435-45.

We also constructed a miRNA-miRNA network based
on shared genes between any two miRNAs. For this net-
work we found that it has small-world property. Small-
world network has high average clustering coefficient
and small characteristic path length.

Regarding the biological meaning: Clustering coeffi-
cient demonstrates how tightly connected any miRNA is
to its neighbors in the miRNA-miRNA network; thus
high clustering coefficient can mean that a gene is typic-
ally regulated by several microRNAs which can indicate
the robustness of this control — malfunction of one
miRNA or even several of them can be overpassed by
the remaining miRNAs.

Our graph parameters:

Clustering coefficient: 0.807

Characteristic path length: 1.717

After generating a random graph using the Erdos-
Renyi algorithm with the same number of nodes and the
same average number of links per node (52.327) we
found:

Clustering coefficient: 0.330

Characteristic path length: 1.669

Apparently, the real network has a higher clustering
coefficient (0.807) than the random Erdos-Renyi graph
(0.330).

8. On the potential role of miRNAs in schizophrenia,
the authors write: “To see if they have significantly more
interactions than those proteins not regulated by the
same microRNAs we performed randomization and a
statistical test described in the Methods section. Appar-
ently, proteins that are regulated by the same microRNAs
tend to have more interactions and one of the main regu-
latory roles of the microRNAs might be actually this co-
ordinating effect, to make sure that interacting proteins
have the correct stoichiometry in the cell [37].” Could the
authors provide some data to show that proteins regu-
lated by the same miRNA do indeed interact more?
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We provided the results of simulation in Additional
file 4: Table S3 for the top 10 schizophrenia-related miR-
NAs. In the table the actual connections between targets
regulated by the same miRNAs and the average number
of connections across 3000 simulations for each miRNA
are given.

9. In addition to a bias in interaction for proteins regu-
lated by the same miRNA, did the authors check whether
PPI in schizophrenia is biased in general, so regardless of
miRNA regulation?

Perhaps the referee meant if there are more PPI
among the schizophrenia-related genes than between
schizophrenia-related and unrelated genes? We did
not check this. Considering that there are more than
schizophrenia-related 2000 genes, the results would be
probably inconclusive.

10. On miRNA expression, the authors write: “We also
checked the abundance of the microRNAs taken from the
resource mirbase.org, which has the most comprehensive
annotation about microRNAs in human tissues across
tens of different experiments [29). The data for the most
abundant microRNAs are shown in Fig. 4, plotted
against the number of known targets. Apparently there is
a positive correlation between the two values, supporting
the theory of “competing endogenous RNAs” [39], which
inherently assumes that microRNAs with more targets
are also expressed in higher quantities, to carry out their
regulatory functions.” Although the authors claim there is
a positive correlation (What is the r-value?) the plot looks
rather erratic. It would be interesting to check the correl-
ation when some outliers are removed. As another point,
was the data used here specifically for schizophrenia?
The resource mirbase.org seems more general.

Because the data deviated significantly from the nor-
mal distribution we have run Spearman's rank correl-
ation test, which is also robust regarding the outliers. As
we described in “2.6. Correlation between the abundance
of miRNAs and the number of miRNA targets” section
of Methods we obtained statistically significant correl-
ation with Spearman's rank correlation coefficient rho =
0.52 between target counts and mature miRNA read
counts and rho = 0.67 between target counts and stem-
loop transcripts read counts (p-value <2.2e-16 in both
cases). We provided the plots on logarithmic scale.

We also tested correlation between schizophrenia
miRNA target counts and read counts for these miRNAs
and demonstrated statistically significant correlation with
Spearman's coefficient, rho =0.47 (p-value = 1.012e-09)
for mature schizophrenia-related miRNA read counts;
and rho=0.49 (p-value =2.255e-11) for SZ miRNAs
stem loops.

11. On differential methylation of repetitive elements,
the authors write: “We studied the methylation of repetitive
elements by comparing the sequences of the differentially
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methylated probes in all three data sets in [6] to Repbase,
a collection of all repetitive elements in eukaryotic ge-
nomes [35]. While we did not find any particular repeti-
tive element enriched in the differentially methylated
probes, using Student’s t-test we did find data sets 1 and
2 significantly more methylated (p-value< le-5) if they
matched a repetitive element when compared to the
methylation value distributions derived from the entire
sets (Fig. 5 a and b) whereas for data set 3 the repetitive
element matching probes were slightly less methylated
than the entire set (p-value = 0.017).” This section is not
clear to this reviewer, while the results seem inconsistent.
This section should either be elaborated or deleted.

We expanded this section, we hope it is clear now. In
principle, we compared the sequences of each probe
(that was found differentially methylated in the Wockner
paper) to each repetitive element in Repbase. When we
compare the methylation value distributions for the
repetitive probes only (in Fig. 5b) to the distributions of
the methylation values of all differentially methylated
probes (Fig. 5a), it is clear that for set 1 and set 2 (x1
and x2 in Fig. 5) the patients’ have higher methylations
levels (the positive side of the histograms in Fig. 5b
increase when compared to Fig. 5a) whereas for the x3
data set (also from the Wockner set, comparing two
patient subgroups) methylation distribution (histogram)
remains the same for the repetitive subset (in Fig. 5b)
when compared to the total set (to be more precise, it is
marginally different, p-value being 0.017).

12. In their Conclusions section the authors only reiter-
ate earlier findings that are not the topic of the current
manuscript. In summary, this paper presents a number
of very interesting findings, but the work needs to be
elaborated and the results should be placed in a bio-
logical/evolutionary context.

We changed the Conclusions section accordingly and
expanded on the biological meaning in the Discussion.
Thanks for the suggestions and the overall positive im-
pression about our findings.

Responses to Reviewer 2 (Sandor Pongor)

In this work the authors analyzed several recent data
sets: (i) a methylome study, (ii) microRNAs’ experimentally
verified targets collected from the literature, (iii) STRING,
a protein-protein interaction database, (iv) Genecards, (v)
regulatory regions of human genes and transcription factor
binding sites mapped to the human genome, concluding
that GABBRI plays a significant role in the etiology of
schizophrenia. It is certainly of interest, considering that
schizophrenia affects 1 % of the population with heavy toll
on society both in financial and human terms. Interest-
ingly, the work is in line with a previous finding by the au-
thors, also published in Biology Direct, where they also
concluded that the downregulation of GABBRI via an
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endogenous retroviral element might be the cause of schizo-
Phrenia. In this study they start their investigation with
microRNAs implicated in schizophrenia, finding that
microRNA targets form a scale-free network and, accord-
ingly, the top ten microRNAs regulate 80 % of all
schizophrenia-related genes. The top two microRNAs regu-
late 40-52 % of all genes, the ratio depending on the data
set they use. They suggest that the more relevant the gene
set is to schizophrenia, the higher this ratio is, highlighting
the importance of microRNAs in schizophrenia. The top
two microRNAs both regulate GABBRI, from which they
conclude again that this gene is of special interest in
schizophrenia.

Thanks for the overall positive view.

The authors may want to deal with the following issues:
1. The selection of genes in Additional file 6: Table S2
seems rather arbitrary. While they also implicate AKT1 as
a gene of importance from the protein-protein interaction
network they draw of genes regulated by one of the top 2
microRNAs, there is no data about transcription factor
binding sites (TFBSs) for AKT1.

We tried to select the most important genes. There
was no available data on the cis regulatory and promoter
regions in the Thurman data set about AKT1.

2. There is no data for KCNJ9 (in the same table)
whereas it directly interacts with GABBRI.

We fixed this, the gene is now included in Additional
file 4: Table S2.

3. It is difficult to see the significance of the TFBSs. The
authors should at least calculate the correlation between
the genes they list in Additional file 6: Table S2.

We felt that this would place too much emphasis on
the TFBSs and draw the attention away from the main
focus of the paper, which was the microRNA-regulation
and protein interaction networks.

4. Does the - approximately - scale-free nature of the
network have a biological significance?

See our response in this respect to reviewer 1 above. It
is the robustness of the network that is supported by the
scale-free nature of the network, which will probably
increase over time as more microRNA-target relations
will get discovered, considering how novel and intensely
researched the subject is.

Responses to Reviewer 3 (Zoltan Gaspari)

Schizophrenia is a disease with unknown aetiology des-
pite numerous efforts to find its cause for over more than
a century. In this study Gumerov and Hegyi approach
the subject from the point of view of microRNAs. They
combine microRNA target data with a methylation study
conducted in schizophrenic brains, a protein-protein
interaction database, STRING, and various gene sets
such as Genecards and Malacards, mostly derived from
text mining of the literature. The authors find that the
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mostly hypermethylated gene in the methylation study,
GABBRI is also the target of the top two microRNAs
with the highest number of targets in their set. Combin-
ing this with protein-protein interaction data they find
that most proteins form a network of interactions with
two hubs where one of the hubs is again GABBR1 while
the other hub is AKT1, protein kinase B, an important pro-
tein in signal transduction. From this they conclude that
GABBRI1 might play a causative role in schizophrenia. I
think the work is original and describes observations that
can be of importance in understanding schizophrenia.

Thanks for taking on our manuscript and for the posi-
tive tone.

I have a few notes that I ask the authors to address in
the final published version:

1. If the genes in question form a network by being tar-
geted by shared microRNAs as they suggest, should not
these microRNAs also be hyper- or hypomethylated in
the methylation study they analyze in this study? There
is no mentioning of this in the manuscript.

There were only a handful of differentially methylated
microRNAs in the methylome study we based our study
on, none of them particularly outstanding.

2. How do the transcription factors with binding sites
in the cis regions of the genes in the network in Fig. 3
relate to the shared microRNAs? Aren’t they more im-
portant in the regulation of the interacting genes than
the microRNAs they focus on? (Also, there is no data on
promoter transcription factor binding sites, only on cis
regulatory elements). This gives an incomplete picture.

We found that the two different types of regulatory
mechanisms (transcription factor binding sites in the cis
regions and microRNA-targeting) are two unrelated
mechanisms, which we mention in the paper. We
wanted to focus on the latter (microRNAs — protein tar-
gets) in this study.

3. There seems to be an inconsistency regarding the
hyper- and hypomethylation of the genes that interact
with each other. E.g. the authors claim that AKTI is
downregulated in schizophrenics whereas AKT1 seems to
be only mildly hypermethylated based on its shade of
grey in Fig. 3.)

This is a very good point. However, we found that
most genes are both hyper- and hypomethylated in the
Wockner study. Also, the difference between earlier
studies and the current methylome study may lie in the
fact that while the study that found AKT1 consistently
downregulated in schizophrenic patients investigated the
gene expression patterns in the blood of patients and
with recent-onset disease, the methylome study analyzed
the brains of (dead) schizophrenic patients, with appar-
ently longer histories of the disease.

4. It would be interesting to see whether in the full
available interaction network of the proteins in question
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(i.e. not only those regulated by the selected miRNAs
and/or indicated in schizophrenia) GABBRI and AKTI
still stand out with some properties.

We tried to generate a network using PPIs in STRING
for the fully available interaction network. However,
AKT1 seems to have a lot more (known) interactions
than GABBRI, therefore the picture seemed a lot more
complex and nonspecific. As far as we know, there is no
PPI database that would show only tissue-specific pro-
tein interactions.

Minor issues: — When using data from mirbase.org,
were the tissue origins of the miRNAs considered? —

Yes, we did additional plots, as there was available data
for the prefrontal cortex only. Our findings are still valid
(Additional file 5: Figure S3).

In Fig. 4, might the existence of the correlation be better
visualized on a logarithmic scale? —

Yes, thanks for the suggestion, we did it and it looks
better.

In the abstract the authors mention a scale-free
network. I would refrain from this notation even if the
power-law distribution for miRNA targets is valid
because the nodes in the full network are not equivalent
(miRNAs and regulated proteins).

We expanded on this issue clarifying the networks we
had in mind and removed the term “scale-free network”.
Using the known miRNA-target relations we constructed
two types of networks: a miRNA- > target and a miRNA-
miRNA network. The network of miRNAs and the genes
regulated by them, not including interactions between these
genes, is a bipartite directed network with miRNA- > target
directed links. This network can be characterized by in-
degree (in this case the number of miRNAs controlling a
given gene) distribution and out-degree (the number of
genes controlled by a given miRNA) distribution. In Fig. 2
we depicted the out-degree distribution of this network.
We tested goodness of fit using Kolmogorov-Smirnov
statistic as described in Methods, which demonstrated that
this distribution follows the power law.

Supplementary information is available at the journal’s
website.

Additional files

Additional file 1: Figure S1. Pairwise overlaps among the three datasets:
A — cross-tabulation of verified schizophrenia-related miRNA targets
(SZmiRNATargets) with differentially methylated genes from the subset 2 of
[6] (WocknerTab2); B — cross-tabulation of intersection A with schizophrenia
genes in Genecards; C — cross-tabulation of intersection A with schizophrenia
genes in Malacards. (DOC 211 kb)

Additional file 2: Table S1. All experimentally verified targets that were
found differentially methylated in schizophrenics by Wockner et al. [6]

(in promoters overlapping a CpG island) of all microRNAs associated with
schizophrenia. The number of promoter and cis elements associated with
each gene as found by Thurman et al. [40] are shown in columns 2 and 3,
respectively. (XLSB 247 kb)



http://www.biologydirect.com/content/supplementary/s13062-015-0089-y-s1.doc
http://www.biologydirect.com/content/supplementary/s13062-015-0089-y-s2.xlsb

Gumerov and Hegyi Biology Direct (2015) 10:59

Additional file 3: Figure S2. Proportions of genes regulated by
schizophrenia miRNAs in 2 datasets. A — differentially methylated genes
from the subset 2 of [6]; B — intersection of differentially methylated genes
in the subset 2 of [6] with schizophrenia genes in Genecards. X axis — ranks
of miRNAs according to the number of regulated genes. First 10 miRNAs:
mMiR-335-5p, MiR-26b-5p, miR-16-5p, MiR-124-3p, miR-92a-3p, miR-484,
miR-155-5p, let-7b-5p, mMiR-193b-3p, MiR-21-5p. (DOC 139 kb)

Additional file 4: Table S3. Results of randomization and statistical
tests for top 10 schizophrenia miRNAs. Columns from the left to the
right: 1 - miRNA, 2 - number of genes regulated by miRNA in the subset
of genes studied in this paper, 3- maximum number of connections in
the undirected graph with the number of nodes equal to the number of
genes regulated by a given miRNA, 4 — actual number of connections in
this graph, 5 — normalized number of connections in the graph, 6 —
average number of connections in 3000 simulated graphs with the
number of nodes equal to the number of genes regulated by a given
mIRNA, constructed based on the randomly selected schizophrenia
genes from Genecards, 7 — normalized average number of connections
in these 3000 graphs, 8 — p-values of Wilcoxon signed-rank tests.

(DOC 40 kb)

Additional file 5: Figure S3. Scatterplot of the number of experimentally
validated targets (taken from mirTarBase) vs. the abundance of miRNAs
(from mirbase.org) implicated in schizophrenia. A and B — mature miRNA
read counts and stem-loop transcripts read counts averaged across several
tissues presented in mirbase.org; C and D — mature miRNA read counts and
stem-loop transcripts read counts of mMIRNAs expressed in frontal cortex.
(DOC 301 kb)

Additional file 6: Table S2. The number of different transcription
factor-binding sites for 15 GABBR1-related genes (binding partners and
neighborhood genes of GABBR1 in Fig. 3) mapped to the cis regulatory
elements as identified by Thurman et al. [40] based on the compilation
of all TFBSs in the human genome by [41]. (XLSB 58 kb)
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