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Abstract: Printing technologies have been attracting increasing interest in the manufacture of elec-
tronic devices and sensors. They offer a unique set of advantages such as additive material deposition
and low to no material waste, digitally-controlled design and printing, elimination of multiple steps
for device manufacturing, wide material compatibility and large scale production to name but a
few. Some of the most popular and interesting sensors are relative humidity, temperature and strain
sensors. In that regard, this review analyzes the utilization and involvement of printing technologies
for full or partial sensor manufacturing; production methods, material selection, sensing mechanisms
and performance comparison are presented for each category, while grouping of sensor sub-categories
is performed in all applicable cases. A key aim of this review is to provide a reference for sensor
designers regarding all the aforementioned parameters, by highlighting strengths and weaknesses
for different approaches in printed humidity, temperature and strain sensor manufacturing with
printing technologies.

Keywords: printed humidity sensor; printed temperature sensor; printed strain sensor; flexible
sensor; multi-material sensor; printed electronics; flexible electronics

1. Introduction

Some of the most interesting physical sensors which find a wide range of applications
are relative humidity [1], temperature [2] and strain [3] sensors; they can be used in indoor
or outdoor applications, in on-body measurements and other biomedical settings, in envi-
ronmental, agricultural, room monitoring and so on. For developing these sensors to meet
modern application demands, requirements for mass scale, cost-effective approaches with
smart material combinations arise. Manufacturing techniques such as printing technolo-
gies for sensor development are a blooming field which dynamically responds to these
demands. Printed electronics are a type of electronic devices, manufactured by a usually
additive printing process, i.e., direct material deposition onto a substrate in a patterned
manner, or more formally an electronic science and technology based on conventional
printing techniques as the means to manufacture electronic devices and systems [4]. A
generalized comparison between traditional IC and additive manufacturing [4] is presented
in Figure 1. It is obvious that the required steps to manufacture a device are much less com-
plex and straightforward when utilizing an additive process. Also, no etching is required,
providing two more advantages: (a) no active material loss and (b) little to no byproducts
and resulting chemical waste.

Summarizing the benefits of sensor development with printing technologies, the key
advantages are reduced production cost (approximately 1/10–1/100 of an investment
compared to that of Si technology), reduced production time, increased manufacturing
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area, flexibility—mechanical endurance and multiple material—substrate combinations
with one piece of equipment [5].

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

flexibility—mechanical endurance and multiple material—substrate combinations with 
one piece of equipment [5]. 

The Organic and Printed Electronics Association (OE-A) has recently released a de-
velopment roadmap [6] which includes the main sectors that printed electronics are ex-
pected to dominate in the following years:  
• IoT: Optimized maintenance of buildings, smart labels for logistics, environmental 

monitoring, sensors for material monitoring, energy management, autonomous sen-
sors, heating elements. 

• Healthcare: Medical packages, patches for therapy and monitoring, biomarker diag-
nosis, OLEDs, smart wound treatment 

• Automotive: OLED lighting, flexible and OLED displays for mirrors and HMI (Hu-
man-Machine Interface), sensors. 

• Consumer electronics: Flexible displays and sensors, curved touch surfaces with sen-
sors, smart wearables, memories, batteries, RFID tags. 

 
Figure 1. Comparison of Si-based manufacturing and printing process. (a) Traditional IC manufac-
turing; (b) printing process. 

All these categories include sensor applications of the three aforementioned physical 
quantities in different fields. It is therefore mandatory to investigate the current status of 
such important developments in the sensing research community. 

By gathering data from the Web of Science Core CollectionTM (ClarivateTM, Philadel-
phia, PA, USA) an overview of the current trends for various sensors was acquired and is 
presented in Figures 2 and 3 and Table 1. The Web of Science database is considered to 
include publications of high scientific impact and solely scientific publications in contrast to 
other databases [7]. Out of a total of 4462 publications, the percentage of each sensor cate-
gory is extracted and presented in Figure 2, amongst the most commonly presented sensors 
in the literature for the years 2013 to 2020. For the scope of this review, the authors present 
three categories which show a steady increase in attracting more research and present a 
variety of approaches in manufacturing via printing techniques and materials utilization. 
IDTechEx forecasts the market for fully printed sensors will be over $8 billion by 2025 [8]. 
According to the same report the printed sensors field will grow fast and the corresponding 
Compound Annual Growth Rate (CAGR) for the 2015–2025 period, is predicted to follow a 
trend, where humidity and temperature sensors demonstrate the highest growth rate. 

Figure 1. Comparison of Si-based manufacturing and printing process. (a) Traditional IC manufacturing; (b) printing process.

The Organic and Printed Electronics Association (OE-A) has recently released a devel-
opment roadmap [6] which includes the main sectors that printed electronics are expected
to dominate in the following years:

• IoT: Optimized maintenance of buildings, smart labels for logistics, environmen-
tal monitoring, sensors for material monitoring, energy management, autonomous
sensors, heating elements.

• Healthcare: Medical packages, patches for therapy and monitoring, biomarker diag-
nosis, OLEDs, smart wound treatment

• Automotive: OLED lighting, flexible and OLED displays for mirrors and HMI (Human-
Machine Interface), sensors.

• Consumer electronics: Flexible displays and sensors, curved touch surfaces with
sensors, smart wearables, memories, batteries, RFID tags.

All these categories include sensor applications of the three aforementioned physical
quantities in different fields. It is therefore mandatory to investigate the current status of
such important developments in the sensing research community.

By gathering data from the Web of Science Core CollectionTM (ClarivateTM, Philadel-
phia, PA, USA) an overview of the current trends for various sensors was acquired and
is presented in Figures 2 and 3 and Table 1. The Web of Science database is considered to
include publications of high scientific impact and solely scientific publications in contrast
to other databases [7]. Out of a total of 4462 publications, the percentage of each sensor
category is extracted and presented in Figure 2, amongst the most commonly presented
sensors in the literature for the years 2013 to 2020. For the scope of this review, the authors
present three categories which show a steady increase in attracting more research and
present a variety of approaches in manufacturing via printing techniques and materials
utilization. IDTechEx forecasts the market for fully printed sensors will be over $8 billion
by 2025 [8]. According to the same report the printed sensors field will grow fast and
the corresponding Compound Annual Growth Rate (CAGR) for the 2015–2025 period, is
predicted to follow a trend, where humidity and temperature sensors demonstrate the
highest growth rate.
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Table 1. Search results (publications) from Web of Science for “Printed Humidity Sensor”, “Printed Temperature Sensor”
and “Printed Strain Sensor” between 2013–2020.

Query Results Found Sum of the Times Cited Avg. Citations Per Item H-Index

Printed Humidity Sensor 381 5055 13.27 37
Printed Temperature Sensor 1513 21,968 14.52 60

Printed Strain Sensor 774 17,970 23.22 62

The search was conducted on December 2020, while queries served by the database are
presented in Figure 2 legend, accompanied with the terms “printed sensor” (e.g., “printed
humidity sensor”, “printed temperature sensor” and so on). The data extracted is for the
year range 2013–2020.
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It is obvious that there exists an increasing trend in all three fields, with temperature
and strain sensors sharing approximately equal number of citations, but with strain sensors
having approximately half the publications (Figure 3). This indicates amongst others,
(a) the heavy scientific importance of development of such sensors and the overall high
research interest that these devices pose and (b) a set of applications that correlates these
devices, but with printed temperature sensors reaching a more mature state. Printed
humidity sensors have a lower number of publications and citations; nevertheless, the
growth rate is similar, indicating that interest in these sensors is ever-increasing, and can
also indicate a different state of innovation, whether it is material novelty, patterning
methods and geometries and so on.

A key common denominator for all the presented works herein is the direct involve-
ment of a printing process for either full or partial development of sensors. Some statistics
regarding the distribution of printing technique are presented in Figure 4a, from 31 pub-
lications regarding humidity, 16 regarding temperature and 17 regarding strain sensors.
The dominant technologies for either film or electrode patterning are screen printing (48%,
37% and 41% for humidity, temperature and strain sensor development) followed by inkjet
printing (38%, 56% and 23% for humidity, temperature and strain sensor development).
It should be noted here that this graph solely serves as an indicator for involvement of
a printing process in the overall fabrication development; that is, a variety of published
works analyzed herein utilize multiple techniques for sensor development. It is therefore
crucial to include non-printing techniques such as traditional lithography in the overview.
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Material selection is vital in sensor design; as presented in Figure 4b, silver is used in
the vast majority of designs for all three sensor categories, mostly for electrode patterning.
Humidity sensing can be performed by using substrate as sensing layer, as it will be
presented in the humidity sensors analysis. Strain sensors largely rely on polymers and
polymer composites, for their inherent flexibility. Different research groups incorporate
PEDOT: PSS for temperature sensing; this conductive polymer presents a set of advantages,
namely, low cost, biocompatibility, optical transparency and plasticity.

This review presents and assesses the recent developments in printed humidity, tem-
perature and strain sensors design, material selection, fabrication, characterization and
evaluation. For each sensor family, the appropriate categories have been identified and a
corresponding analysis has been performed. Material selection approaches, performance,
fabrication strategies and design considerations have been thoroughly discussed result-
ing in a comparison with the intend to pave a guideline for assisting in selection of all
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the aforementioned parameters and furthermore to demonstrate the state of the art in
each category.

2. Printed Humidity Sensors

Humidity sensors realized with printing technologies offer drastically lower costs and
increased capabilities for large scale production. A general approach for low-complexity
devices is based on the deposition of a single material on a substrate and exploitation
of these two materials’ physical properties for sensing (Figure 4, substrate as sensing
film). On the other hand, in traditionally developed sensors, conductive electrodes are
utilized on a substrate for measuring response of an active film, usually deposited or
developed onto the electrodes (Figure 4, other coating methods for sensing film). Principle
of operation is similar for both cases; water molecules are absorbed from either the substrate
(in the first case) or the active film (in the second case); in both cases they diffuse in the
corresponding layer, therefore inducing changes in its electrical properties. So, we can note
that in the first case the substrate itself acts as a sensing layer, eliminating the need for an
additional sensing layer. This approach usually has a negative impact on performance;
therefore, the sensor designer should always consider the tradeoffs before proceeding to
implementation. Regarding sensing mechanisms discussed herein, it should be mentioned
that humidity (broadly described) influences the conducting mechanism of a given material.
This chapter presents various materials whose electrical properties alternate with humidity
and examples will be given per case. Nevertheless, the vast majority of designs incorporates
a set of interdigitated electrodes (IDEs), with various finger lengths (L), finger spacings (d)
and finger widths (W).

The term sensor memory effect (lag, or hysteresis) is used to describe a common
problem in sensors mainly due to absorption, such as the humidity sensors discussed here.
During exposure to humidity, the sensor absorbs water molecules, which induces a change
of an electrical parameter, leading to successful detection of humidity levels; the problem
arises when the sensor is required to desorb the previously absorbed water molecules.
Various materials are designed for high water absorption such as TiO2 nanoparticle films [9]
and MWCNTs [10] that offer a high surface area to volume ratio, which in turn leads to
difficult desorption of trapped water molecules without external assistance. There are two
approaches in tackling this problem: one being the careful planning and material selection,
for finding material combinations that favor fast and repeatable absorption-desorption
cycles, and the other incorporating an active element serving as heater [10], which assists
in humidity desorption. Returning to our initial consideration for low-complexity, low-cost
and mass production of a sensor, the incorporation of a heater does not converge with
the original requirements, given the fact that it also requires active electronics for driving
the heater.

Another consideration is the sensor readout, which can be either resistive or capacitive,
meaning that variations in environmental relative humidity can be directly reflected to
the terminal pads (as denoted in Figure 5) during the measurement of the corresponding
electrical signal. Measuring electrical resistance implements fewer and simpler electronics,
while for an accurate capacitance measurement more sophisticated electronics are required.
Alternatively, the sensor can be incorporated in an antenna array, and its detuning can be
matched with relative humidity, in a powerless RFID manner [11,12].

Material selection is of vital importance in sensor performance; conductive electrodes
can be printed with Ag [11,13–16] or PEDOT:PSS [17] and flexible substrates utilized can
be PI (Kapton) [10,14,15,18,19], PET [16,20–22], polyester-based [23,24], paper [12,17]; or
rigid, such as glass [25] or ceramic [26]; this is directly correlated to the printing technique.
A hybrid approach has been proposed by numerous research groups, where the conductive
electrodes are not printed but traditionally patterned and the sensing layer is printed on
top [19,26–28]. In this section we will group sensors in categories based on the substrate
utilized, because in the bottom line it is that parameter which indicates the application
range: paper cannot be heated above a certain temperature, prohibiting annealing of an
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active layer, while polyimide, provided by DuPont under its commercial line Kapton, is
extensively utilized for development of flexible electronics and sensors, due to its high
durability in harsh environments and its high glass transition temperature (as high as
400 ◦C [29]), allowing for a wide variety of printed materials. PET is widely used for its
transparency, making it suitable for a variety of applications. It should be noted that some
sensors presented herein utilize drop-cast or spin coating for material deposition. These
deposition techniques can be directly replaced by a printing process; therefore the specific
sensors are included in the review for highlighting the material selection of each work, all
towards a fully additive manufacturing approach. In order to create comparison graphs
from the data extracted of each source, WebPlotDigitizer has been used [30].
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2.1. Resistive Printed Humidity Sensors

This section analyzes recent advances in resistive type humidity sensors fabricated
with printing techniques; resistive output sensors provide a straightforward interface
with measurement electronics. As mentioned above, they can either incorporate a set of
electrodes and a sensing film deposited on top, or exploit the substrate’s electrical response
to humidity variations for humidity detection. The analyzed papers are categorized based
on the substrate utilized, e.g., Kapton, PET, and other substrates such as LiNbO3 and paper.

2.1.1. Kapton—Based Resistive Humidity Sensors

Zhang et al. [10] developed a MWCNT film with gravure printing on Kapton, with
overlayed Ag screen printed electrodes, incorporating a back-plane Ag screen printed
heater as well, for tackling the aforementioned hysteresis problem in the range of
30–60% RH with a resistivity of 0.96%/% RH (12 to 17 kΩ increase for full working
range); evolution of this research resulted in a wider range (10–90% RH) with a total resis-
tance change of 40.0 ± 1.7% from 20 to 80% RH [13]. Jeong et al. [14] gravure printed Ag
electrodes and drop-casted TiO2 nanoflowers as a sensing layer for achieving a sensitivity
of 485.7 RH%−1 between 20 and 95% RH (Figure 6a). Kim and Gong [15] fabricated gold
electrodes by screen printing silver and electroless plating, followed by screen printing a
novel photocured copolymer (MEPAB/CMDAB/MMA) for humidity sensing, offering
great reliability with resistance to water, showing minimal change in behavior when soaked
in water for up to 60 min (Figure 6b).

Lim et al. [18] developed a screen-printable humidity sensing film consisting of two
parts: a thermally curable epoxy resin and a photocurable polyelectrolyte. This combination
(interpenetrating polymer network—IPN) is investigated for its adhesion to polyimide
substrate, because sole polyelectrolyte humidity-sensitive films present poor anchoring to
polyimide (Figure 6c). The following mechanism was exploited for humidity sensing in [19]:
SnO2/rGO drop-casted films resistance presented an increase with relative humidity; it is
known that rGO is a p-type nanomaterial, while adsorbed water molecules act as electron
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donors, therefore there are two mechanisms acting concurrently for resistance increase:
decrease of hole concentration due to water molecules and swelling of rGO which in turn
leads to higher interlayer resistance between SnO2 and rGO.
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2.1.2. PET—Based Resistive Humidity Sensors

Ali et al. [20] proposed a graphene/methyl—red sensing layer over inkjet-printed Ag
electrodes on PET substrate; the mechanism for humidity detection is described to depend
on the graphene flake-to-flake electrical connection via methyl-red; water vapor absorption
from methyl-red leads to better electrical connection, therefore the overall sensor resistance
falls with higher humidity.

A humidity-sensitive carbon nanotube (CNT) film was deposited via gravure printing
on a set of screen-printed Ag electrodes [16] for successfully measuring relative humidity
in the range 20 to 80% RH. Gravure printing was also utilized for depositing a functional-
ized multi-walled carbon nanotube (FMWCNTs)/hydroxyethyl cellulose (HEC) composite
onto screen printed electrodes [21] (Figure 7a). This composite relies on two mechanisms
for enhanced sensor response: on the one hand FMWCNTs, demonstrating p-type semi-
conductor characteristics, exhibit an increase in resistance driven by transfer of more
electrons, due to adsorption via physisorption. Additionally, FMWCNTs owning defective
hydroxyl and carboxyl groups exhibit large hydrophilicity, enhancing interaction with
water molecules, and therefore aiding to electron transfer (resistance increase). In parallel,
HEC swells when exposed to humidity; therefore, the contact gap of FMWCNTs increases,
further contributing to resistance increase. Zhang et al. [22] recently proposed a poly(3,4-
ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO)/ Au NP modified with
polyethyleneimine (PEI) ink for humidity sensing; high transparency, electrical perfor-
mance and sensitivity were observed even after 200 bending cycles, while the sensor was
capable of detecting variations in humidity in the range of 11–98% RH (Figure 7b).

2.1.3. Resistive Humidity Sensors on Other Substrates

Surface acoustic waves (SAW) have been proven to assist both absorption and desorp-
tion of sensors developed on piezoelectric substrate; more specifically, 1 kHz waves used
with sensors developed on LiNbO3 substrate with different PEDOT: PSS-based sensing
materials yielded good response for a wide range of relative humidity (0–90% RH) [27,28].
Paper-based resistive humidity sensors have also been recently presented; these devices uti-
lize cellulose electrical properties modification by high water molecule absorption [12,17];
this approach provides a very cost-effective design guideline, where mass production of
low-cost devices is enabled by simply patterning commercial paper with a conductive ink
(Figure 8a,b). Additionally, a paper-based sensor consisting of inkjet-printed graphene
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oxide sensing on screen-printed graphene electrodes was demonstrated, with a response
time of 6.5 and 2.4 s, respectively [31].
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2.1.4. Resistive Humidity Sensors Comparison

For a comprehensive performance overview of the devices, the most crucial fabrication
parameters alongside some performance characteristics are presented in Table 2.

Figure 9 presents both absolute and relative resistance change (% response) for groups
of devices from Table 2; the information has been divided into three parts for representa-
tion clarity.
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Table 2. Comparison of resistive humidity sensors.

Active Material Electrodes Substrate Range (%RH) Sensitivity 1 Ref.

Gravure printed MWCNTs Screen-printed, Ag PI 30–60 0.96%/% RH [10]
Gravure printed MWCNTs Screen-printed, Ag PI 10–90 – [13]
Drop-cast TiO2 nanoflowers Gravure, Ag PI 20–95 485.7/RH% [14]

Screen-printed MEPAB/CMDAB/MMA copolymer Screen-printed, Ag/Au PI 20–95 0.0586 logΩ/% RH [15]
Screen-printed epoxy/IPN polyelectrolyte Chemical Etching–Plating (Ni/Au) PI 20–95 0.046 logΩ/% RH [18]

Drop-cast SnO2/rGO Chemical Etching–Plating (Cu/Ni) PI 11–97 15.19–45.02% [19]
Spin-coat PEDOT:PSS (15%) + PVA (SAW) Photolithography LiNbO3 0–80 350 Ω/% RH [27]

Spin-coat PEDOT:PSS (5 wt%) + ZnSnO3 (5 wt%) Photolithography, Au LiNbO3 0–90 – [28]
Screen-printed MDBBAC/MMA (70/30)

Polyelectrolyte
Screen-printed, Ag–Plating

(Cu/Ni/Au) Glass Epoxy 20–95 0.0349 logΩ/% RH [25]

EHD Graphene/methyl-red Inkjet-printed, Ag PET 5–95 96.36% [20]
Drop-cast Pt/MoS2 (0.25:1) Photolithography, Au Ceramic 35–85 ~4000 times (85 % RH) [26]

Gravure printed CNT Screen-printed, Ag PET 20–80 0.1%/% RH [16]
Screen-printed TiO2-Cu2O-Na2O Screen-printed, Pt Al2O3 20–95 – [32]

Inkjet-printed PANI – Polyester 20–95 – [23]

Micro-pipette deposited Nafion Screen-printed Ag on
screen-printed PU

Polyester
Cotton Fabric 30–90 – [24]

Gravure printed FMWCNT/HEC (1:6 w/w) Screen-printed, Ag PET 20–80 0.048/% RH [21]
Inkjet-printed PEDOT:rGO-PEI/Au NPs – PET 11–98 7.41–51.60% [22]

Spin-coated Fe2O3 Inkjet-printed, Ag PET 0–100 ~88.89% [33]
Substrate Inkjet-printed, Ag Paper 18–88 – [12]

Substrate Inkjet-printed Ag & PEDOT: PSS Paper 0–85 0.0492 & 0.0551 logΩ/%
RH [17]

1 as reported. Some reports provide only a percentage which corresponds to total change for the full range, e.g., total change in resistance
from 20 to 80% RH (min—max change).Sensors 2021, 21, x FOR PEER REVIEW 10 of 25 
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2.2. Capacitive Printed Humidity Sensors

This section presents recent advances in humidity sensors whose capacitance varies
with relative humidity changes. As mentioned above, capacitance is considered a more
complex physical quantity concerning reliable measurement—acquisition, with the re-
quired electronics design adding a considerable overhead in an end application when
deploying such devices. Nevertheless, research results show that performance-wise, this
type of sensors are notable and should always be considered. One of the first to discuss
utilization of the substrate as active material was Harrey et al. [34] in 2002, where Ag
electrodes were offset printed onto polyimide and polyethersulphone substrates and the
substrates’ own capacitance was used for detecting relative humidity variations.

2.2.1. Kapton—Based Capacitive Printed Humidity Sensors

Rivadeneyra et al. [35] proposed a serpentine geometry (Figure 10) for an inkjet-
printed capacitor electrode for humidity sensing and compared it against a typical interdig-
itated electrode array, finding a slightly better performance (1 fF/% RH better sensitivity,
from 4.2 to 5.2 fF/% RH). This novel geometry improved capacitance by 21% for 180 fin-
gers in the same given area by only printing 3% more material with respect to a typical
IDE geometry.
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Romero et al. [36] recently compared development of a capacitive humidity sensor
on Kapton via inkjet printing Ag lines for a fully printed sensor versus similar electrode
geometries developed by laser-induced graphene and graphene oxide (Figure 11a). The
authors conclude that the printed device exhibits the highest sensitivity and can operate at
higher frequency. An alternative approach which incorporates polyimide has been also
investigated [37]; a set of electrodes was developed with standard photolithography on a
glass substrate and polyimide film was spin-coated on top (Figure 11b). This design also
incorporates a heater for assisting in humidity desorption and a temperature sensor.

2.2.2. PET—Based Capacitive Printed Humidity Sensors

The graphene/methyl-red composite-based sensor [20] has been also investigated for
capacitive changes with humidity and has presented outstanding response: in the full range
(5 to 95% RH), the sensor showed a capacitance change of 2869500% with a response time
of 0.251 s (Figure 12a). Poly(methyl methacrylate) (PMMA) has been used as a humidity
sensitive hydrophilic in PET-based devices [38]. Altenberend et al. [39] conducted a
throughout investigation of the response of inkjet-printed Ag electrodes on PET substrates
and their capacitive response for various relative humidity levels (Figure 12b). Furthermore,
different strategies for sensing layer development and passivation have been examined,
such as sintering conditions of Ag, oxidizing Ag with Ni, overlaying with Parylene-C
and PEUT (poly(ether urethane)), resulting in enhanced long-term stability. Similarly,
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cellulose acetate butyrate and parylene have been utilized as sensing—passivation layer
in paper-based humidity sensors [40]. McGhee et al. [41] presented a capacitive printed
humidity sensor by using in-house indium tin oxide (ITO) and aluminum oxide (Al2O3)
inks for screen printing. The sensors’ properties were tailored by using different design
sizes. Another interesting development regarding custom ink development was the work
recently published by Rivadeneyra et al. [42]: carbon dots (Cdots) were synthesized using
dissolved citric acid and polyethyleneimine (PEI) in water, followed by drop-casting of the
active layer on screen-printed Ag electrodes.
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Figure 12. (a) Graphene/methyl-red composite sensor printed on PET substrate. The sensor exhibits both resistive and
capacitive response to humidity variations (reproduced with permission from [20], copyright 2016, Elesevier); (b) An
inkjet-printed capacitor coated with a protective Parylene-C film on PET (reproduced with permission from [39] copyright
2013, Elsevier).

2.2.3. Capacitive Humidity Sensors Comparison

An overview of the devices based on capacitive output along with their main attributes
are presented in Table 3 for a comparative view of the state of the art.

Figure 13a presents capacitance output values of the analyzed publications. The majority
of the devices exhibits a comparable capacitance range; nevertheless, as seen in Figure 13b, a
number of works report much higher percentage change under humidity variations.



Sensors 2021, 21, 739 12 of 24

Table 3. Capacitive Humidity Sensors.

Active Material Electrodes Substrate Range Sensitivity 1 Reference

7.6 µm polyimide (HN30) (Substrate) Offset, Ag PI 10–90 1.025 pF/% RH [34]
75 µm polyimide (Substrate) Inkjet, Ag PI 20–90 5.2 ± 0.2 fF/% RH [35]

125 µm polyimide (Substrate) Inkjet, Ag PI 20–85 24.71 fF/% RH [36]
4.6 µm spin-coated polyimide Lithography, Au Glass 6–85 15.2 fF/% RH [37]

PEDOT:PSS (5%) + PVA (SAW) Photolithography LiNbO3 0–80 0.33 pF/% RH [27]
Spin-coated PMMA Gravure, Ag PET 40–80 11.9% [38]

EHD Graphene/methyl-red Inkjet, Ag PET 5–95 2869500% [20]
Ni/Parylene-C/Poly(etherurethane) Inkjet, Ag PET 10–90 3.15 fF/% RH [39]

Inkjet, cellulose acetate butyrate Inkjet, Ag Paper 20–80 – [40]

Screen-printed PDMS-CaCl2
Screen-printed

Ag/Au Textile 30–95 10.2% (30 to 60% RH) [43]

Gravure, pHEMA Gravure, Ag PET 30–80 172% [44]
Screen-printed Indium Tin
Oxide/Aluminum Oxide Screen-printed Ag PET 5–95 0.85–7.76 pF/% RH [41]

Drop-cast, Carbon dots Screen-printed Ag PET 20–90 70 fF/% RH [42]
Substrate Inkjet, Ag Paper 40–100 2 pF/% RH [45]

1 as reported. Some reports do not provide the sensitivity but a percentage which corresponds to total change for the full input signal
range, e.g., total change in resistance from 20 to 80% RH (min—max change).Sensors 2021, 21, x FOR PEER REVIEW 13 of 25 
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3. Printed Temperature Sensors

A majority of printed thermometers consist of printed elements whose resistance—
temperature relationship is either positive (resistance temperature detectors—RTD metallic
inks and positive thermal coefficient—PTC materials) or negative (negative temperature
coefficient—NTC materials). The main difference between RTD and PTC materials is that
the later have faster response to temperature variations, but they exhibit a smaller sensing
range. A lot of recently published research on printed temperature sensors focuses on e-
skin—human temperature monitoring [46–54]; mainly because flexible substrates and inks
are not tolerant to exposure to constant high temperatures (keeping in mind that inks are
treated in specific temperatures for sintering), flexible substrates are an appropriate mean
for mounting sensors onto human skin and organic materials used are fully biocompatible.
A general scheme for a printed temperature sensor is presented in Figure 14: a printed
active material which has either positive or negative temperature coefficient of resistance
(TCR) is deposited onto a substrate, and for leveraging the substrate flexibility, it is common
that the temperature detection to be performed on the back-plane; this way, the sensor
under development targets to monitor temperature variations in a surface that its mounted
onto (possibly non-planar). Dominant geometry in published works is a classic meander
with varying width and total length.
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3.1. Printed Temperature Sensors Based on PEDOT:PSS

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) [55,56] PEDOT:
PSS—carbon nanotubes (CNT) solutions [47–51,54] and graphene/PEDOT:PSS [46] solu-
tions are printable, temperature sensitive organic materials and are commonly utilized
for developing temperature sensors. Vuorinen et al. [46] presented inkjet—printed NTC
thermistors composed of graphene and PEDOT:PSS and the sensor’s electrical contacts
were composed by screen printing silver ink, all on adhesive bandage substrate. The sensor
was evaluated in the range of 35 to 45 ◦C and TCR was measured to be an average of
0.047%/◦C (Figure 15a). Honda et al. [47] reported a printed integrated system, a “smart
bandage” on Kapton substrate, which incorporated PEDOT:PSS/CNT paste for measur-
ing temperatures between 22 and 50 ◦C with a sensitivity of 0.61%/◦C. (Figure 15b). A
multifunctional system which includes a screen-printed PEDOT:PSS/CNT temperature
sensor with a sensitivity of 0.89%/◦C is presented in [48] as well. Yamamoto et al. [52]
screen-printed PEDOT:PSS/CNT on pre-patterned PET substrate for a human body tem-
perature sensor as well; this system also incorporates an accelerometer and ECG electrodes.
PEDOT:PSS has been demonstrated to be printable onto other substrates such as a 3D
printed structure for environmental parameters monitoring [56] (Figure 15c). Bali et al. [55]
evaluated both a mixture of PEDOT: PSS and dimethyl sulfoxide (DMSO) (0.3–40 wt%),
and a carbon nanoparticle ink, as inkjet—printed NTC and PTC temperature sensors on
PEN respectively with findings indicating that both approaches offer good performance on
temperature sensing (Figure 15d).
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Figure 15. Various PEDOT:PSS-based temperature sensors, demonstrating a wide range of appli-
cations: (a) on-body temperature measurement patches (reproduced with permission from [46]
copyright 2016, Springer-Nature); (b) (reproduced with permission from [47] copyright 2014, Wiley);
(c) different substrates such as 3D-printed structures can be utilized as well (reproduced with per-
mission from [56] copyright 2017, Wiley); (d) printed thermistors on PEN in bridge configuration
(reproduced with permission from [55] copyright 2016, Elsevier).

3.2. Printed Temperature Sensors Based on Ag

Silver-based temperature sensors are popular, given the fact that Ag is easily printed
in various forms and is compatible with a variety of substrates. Bulk Ag temperature
coefficient of resistance is 3.819 × 10–3 ◦C−1; it is each design-based approach and geometry
that enhances the sensor performance alongside with possible combination with other
materials. Courbat et al. [40] inkjet-printed lines of Ag NP-based ink on paper for the
realization of both humidity and temperature sensors with a TCR of 0.0011 ◦C−1; also, it
has been exhibited that overcoating with parylene did not influence temperature sensing
properties. Similarly, Zikulnig et al. [57] printed and evaluated an Ag meander geometry
on different types of paper; Kapton has also been proven to be an effective substrate
for Ag-based temperature sensors; Dankoco et al. [58] inkjet-printed an organic silver
complex compound ink. The corresponding results include a TCR of 2.19 × 10–3 ◦C−1 in
the range of 20–60 ◦C (Figure 16e). Different measurement modes are discussed in recent
publications [59,60], for example temperature measurements with differential temperature
sensors integrated back–to–back for comprehension of bending effects [59] (Figure 16a–d).
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3.3. Printed Temperature Sensors Comparison

Table 4 presents the most important parameters for materials, fabrication and sensing
of various printed sensors.

Table 4. Printed temperature sensors.

Materials Substrate Process Range (◦C) Sensitivity (%/◦C) Ref.

PEDOT: PSS/graphene/EGC PU Inkjet 35–45 0.064/0.034 [46]
PEDOT: PSS/CNT PI Shadow Mask 22–50 0.61 [47]

PEDOT: PSS/DMSO PEN Inkjet 20–70 2.5 × 10−3 [55]
PEDOT: PSS/CNT (3:1) PET Screen printing 26–45 0.89 [48]

PEDOT: PSS SU-8 Inkjet −20–50 0.018 [56]
PEDOT: PSS/CNT PET Screen printing 20–45 1.3 [52]

Ag PI Inkjet 20–60 2.19 × 10−3 [58]
Ag PET Inkjet 0–100 1.076 × 10−3 [59]
Ag PET Inkjet 30–100 0.1086 Ω/◦C [61]

Au, PTC & NTC pastes PEN/PET Screen printing 20–80 0.06 V/◦C [62]

Ag, Ni PET Inkjet, Electrode-
position −10–60 1.82 × 10−3 [60]

Flake graphite/CNT/PDMS PET Screen printing 40–80 0.028 [63]
Mn2O3/NiO/Co3O4/CuO/ZnOPVDF,

PDMS, CYTOP PI Screen printing 40–140 91.76%
(full range change) [64]

BaTiO3, activated carbon,
thermoset polymeric PET Screen printing 25–55 0.022 [65]

MoSe2, Ag Glass Drop-cast −0.15–99.8 ~−0.51 [66]
Polylactic Acid—Carbon black Free standing 3D Printing 25–36 – [67]

Polyvinyl chloride/carbon
black PET Screen printing 18–44 −0.148 [68]

Ag Paper Inkjet −20–60 1.1 × 10−3 [40]
Ag Paper Inkjet 20–80 1.63 × 10−3 [57]

Ag & PEDOT: PSS Paper Inkjet 25–45 0.938 × 10−3 &
−13.9 × 10−3 [17]

Figure 17a,b present the percentage resistance change versus temperature; in Figure 17a
devices with relatively lower response are grouped, while Figure 17b includes devices that
exhibit a relatively higher response. Ag-based temperature sensors present a lower response,
due to the metallic nature of the material which has a relatively low TCR.
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Figure 17. Temperature sensors relative resistance change to temperature variations: (a) devices with relatively lower
response; (b) higher response.

4. Printed Strain—Bending Sensors

Flexible strain—bending sensors are a blooming sensor category, mostly because of the
exponential growth of smartphone and wearable electronics market. Common application
of such type of sensors are in medical (e.g., minimally invasive surgeries) and automotive
fields, in physical activity measurements and in human–machine interactions as well as in
robotics. In this section, the literature review includes pressure, tactile and bending sensors,
given the fact that depending on the installation and the application, the same sensor can
be utilized both for sensing pressure and stress up to a degree of deformation. Mechanical
stress discussed herein can either be compressive or tensile (Figure 18). Shear stress and
other modes of deformation are not analyzed in this review.
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Figure 18. Different modes of mechanical deformation of a sample at rest (a); (b) tensile stress and (c) compressive stress.

Recent developments in additive manufacturing techniques and materials allow for
realization of different complex structures for mechanical deformation sensing; there are
various modes of operation, depending on the exploited physical phenomenon. There are
three generally utilized groups based on either capacitive, piezoresistive or piezoelectric
principle of operation. For capacitive sensing of mechanical deformation, a patterned
capacitor exhibits alternation in its capacitance under deformation, due to distance changes
between its electrodes (or plates); it is known that capacitance depends on the area of the
plates, the distance between the plates and the dielectric constant of the material between
the plates. On the other hand, piezoelectric and piezoresistive materials form the basis of
the sensing layer by producing an electric field proportional to deformation for piezoelectric
materials and a change in nominal resistance proportional to a deformation for piezoresistive
materials. In a plethora of published works in strain and bending sensor manufacturing a
printing process has been involved, for either partial or fully printed devices.
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4.1. Capacitive Printed Strain—Bending Sensors

Yao and Zhu [69] reported capacitively sensing pressures of up to 1.2 MPa and 50%
strains induced by tensile bending with AgNW/PDMS films and Ecoflex as dielectric ma-
terial. Although response time was fast (~40 ms), a drawback in the reported sensor’s re-
sponse was that sensitivity changes halfway through the measurements (1.62 MPa−1 between
0–0.45 MPa and 0.57 MPa−1 from 0.45 to 1.2 MPa for pressure sensing) (Figure 19A). Similarly,
Woo et al. [70] presented a CNT/PDMS microprinted onto Ecoflex geometry in order to sense
both tensile bending and pressure (Figure 19B). AgNWs have been also incorporated in a
different geometry, forming a capacitor with polyurethane onto PET and flexible bandage
substrates; this ink was spin coated but its rheological properties allow for direct replacement
of spin coating with a printing process [71] (Figure 19C). Capacitive strain—bending sensors
in a matrix topology are an excellent candidate for touch sensing and multi-button array for
user input—tactile input for electronic devices.
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ceptible to electrical noise under circumstances; therefore this category of sensors requires 
electronics for interfacing and signal conditioning. Also, polarization of the devices is re-
quired for operation [72]. Nevertheless, piezoelectric materials such as Polyvinylideneflu-
oride (PVDF) and poly(vinylidenefluoride-co-trifluoro-ethylene) [P(VDF-TrFE)] have 
been successfully utilized for developing such sensors and their output scale is adequate 
(tens of mV). A PVDF foil sensor with inkjet-printed Ag electrodes is presented in [73]; a 
problem which negatively influenced sensitivity was the sintering temperature (150 °C) 
of the printed electrodes which was close to the melting point of PVDF (175 °C), resulting 
in sensing layer shrinkage by approximately 15%. P(VDF-TrFE) has been successfully 
printed on PET substrate and alongside with a bottom Ag vacuum-evaporated electrode 
formed a highly sensitive sensor on bending mode [72] (Figure 20a,b). The fabrication 
steps can be replicated with other printing techniques towards a fully printed approach. 
For example, Khan et al. [74] fabricated sensors with similar material combination 

Figure 19. Various capacitive-based strain and pressure sensors: (A) a PDMS/AgNW/Ecoflex structure: device fabrication
process (a); cross-sectional view of the device (b) (reproduced with permission from [69] copyright 2014, The Royal Society
of Chemistry); (B) a PDMS/CNT/Ecoflex structure utilizing µcontact printing for fabrication. Micro-mold formation (a);
PDMS stamp replication (b); CPDMS pattering via micro-contact printing (c); Ecoflex spin-coating (d); device assembly (e);
thermal curing (f) (reproduced with permission from [70] copyright 2014, The Royal Society of Chemistry); (C) a different
approach utilizing AgNWs and polyurethane on flexible substrate (reproduced with permission from [71] copyright 2015,
The Royal Society of Chemistry). Note: the lowercase letters in the figure are kept from the original works, therefore the
authors herein used capital letters for indication of each corresponding subfigure.

4.2. Piezoelectric Printed Strain—Bending Sensors

Piezoelectric output sensors are based on a piezoelectric material, the voltage output
of which is proportional to mechanical deformation. Voltage output is regarded as sus-
ceptible to electrical noise under circumstances; therefore this category of sensors requires
electronics for interfacing and signal conditioning. Also, polarization of the devices is
required for operation [72]. Nevertheless, piezoelectric materials such as Polyvinylidene-
fluoride (PVDF) and poly(vinylidenefluoride-co-trifluoro-ethylene) [P(VDF-TrFE)] have
been successfully utilized for developing such sensors and their output scale is adequate
(tens of mV). A PVDF foil sensor with inkjet-printed Ag electrodes is presented in [73]; a
problem which negatively influenced sensitivity was the sintering temperature (150 ◦C) of
the printed electrodes which was close to the melting point of PVDF (175 ◦C), resulting in
sensing layer shrinkage by approximately 15%. P(VDF-TrFE) has been successfully printed
on PET substrate and alongside with a bottom Ag vacuum-evaporated electrode formed a
highly sensitive sensor on bending mode [72] (Figure 20a,b). The fabrication steps can be
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replicated with other printing techniques towards a fully printed approach. For example,
Khan et al. [74] fabricated sensors with similar material combination (P(VDF-TrFE)—Ag
electrodes) on PET. This topology exhibits adequate sensitivity to produce a multi-touch
array of sensors on flexible substrate, all using solely screen-printing technology. Recently,
PVDF piezoelectric properties have been exploited to power a self-powered strain rGO
printed sensor, integrated into an actual tire for real-time tire pressure monitoring [75].
(Figure 20c).
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tire monitoring system (reproduced with permission from [75], copyright 2020, Springer-Nature).

4.3. Piezoresistive Printed Strain—Bending Sensors

Piezoresistive sensors are the simplest in terms of readout and accompanying elec-
tronics needed; solely resistance measurements are adequate for extracting information
regarding the mechanical deformation applied to the sensor. Khan et al. [74], alongside with
a piezoelectric sensor presented an Ag/PDMS/MWCNT sandwich structure of piezoresis-
tive sensors. The principle of operation is based on two factors: (a) the nanoscale changes
induced by deformation in the MWCNTS and (b) the modulation of conductive paths in
the matrix. It was found that lesser MWCNT concentration led to higher sensor response,
alongside with a linear full-scale behavior. Xiao et al. [76] recently presented a screen-
printed sensor on PI substrate based on polyvinyl chloride/carbon black composite with
silver electrodes for sensing both tensile and compressive bending with a maximum angle
of 100◦ corresponding to a relative length change (or strain) of 0.14%. The authors prior
to bending experiments applied a repetitive stress to the sensor film in order to create
microcracks which greatly enhanced performance, because contact resistance between
cracks changes depending on the crack gap, which in turn changes with different strain.
A high-frequency dynamic strain sensor was recently developed using inkjet printing
with a composite ink consisting of carbon black nanoparticles and polyvinyl pyrrolidone;
the sensor was capable of detecting dynamic strains up to a frequency of 500 kHz [77]
(Figure 21a–d). Wei et al. [78] formed AgNW-layered double hydroxide (LDH) hybrid
composites, which they patterned on paper substrate. The results show durability over
3000 bending cycles of 180◦, fast response time (120 ms) and good sensitivity (0.16 rad−1)
(Figure 21e). This system, owing to its nontoxicity and low-cost is a great demonstrator for
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mass producible, bending sensor. A multi-layer array design consisting of four different
layers, two conductive, one insulating and one sensing [79]. This study presents important
technical details for a fully printed device, where it is needed to selectively cover areas of
conductive tracks, thus creating equivalent to traditional design vias.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 25 
 

 

ent layers, two conductive, one insulating and one sensing [79]. This study presents im-
portant technical details for a fully printed device, where it is needed to selectively cover 
areas of conductive tracks, thus creating equivalent to traditional design vias. 

 
Figure 21. The printer (a) and (b–d) an inkjet-printed on Kapton piezoresistive dynamic strain sensor 
based on carbon black and polyvinyl pyrrolidone; (reproduced with permission from [77], copyright 
2019, Elsevier); (e) an AgNW/LDH composite sensor for detection of different movements on human 
arm (reproduced with permission from [78] copyright 2015, American Chemical Society). 

4.4. Comparison of Printed Strain—Bending Sensors 
Table 5 includes various bending/strain and pressure sensors alongside their key fac-

tors for manufacturing and sensing. Compared to the other categories, this type of sensors 
requires a more complex combination of both materials and processes. Also, design con-
siderations are more demanding in terms of accurately laying out the appropriate struc-
tures for measuring strain and/or pressure. 

Table 5. Printed Mechanical Deformation Sensors. 

Materials Substrate Process Principle Range Sensitiv-
ity/Gauge Factor 

Ref. 

AgNWs, Ecoflex, 
PDMS 

Embedded 
Screen printing, drop-

casting 
Capacitive 50% tensile GF: 0.7 [69] 

CNTs, Ecoflex, PDMS Embedded μcontact printing Capacitive 50% tensile GF: 0.5 [70] 

AgNW-PU 
PET, Adhesive 

Bandage 
Drop-cast, spin-coat-

ing 
Capacitive 2 mm tensile 

5.54 kPa−1–0.88 
kPa−1 

[71] 

PVDF, AgNPs Embedded Inkjet Piezoelectric 3 N 2.8 ± 0.9 mV/N [73] 
P(VDF-TrFE), Ag PET Vacuum evaporation Piezoelectric –  140 ± 50 nC/N [72] 

Ceramic dielectric, 
Pt/Ag 

Steel Screen printing Piezoelectric 0–18 MPa –  [80] 

P(VDF-TrFE), Ag PI Screen printing Piezoelectric 0.5–4N 0.05 V/N [74] 
Ionic liquid/polymer, 

MWCNT 
TangoPlus 3D printing, molding Piezoresistive –  –  [81] 

MWCNT, PDMS, Ag Embedded Screen printing Piezoresistive 
0–11 N Compres-

sive 
20 kΩ/N [74] 

Polyvinyl chlo-
ride/carbon black, Ag 

PI Screen printing Piezoresistive 0.14% 
GFtensile: 741 

GFcompr: 1563  
[76] 

Figure 21. The printer (a) and (b–d) an inkjet-printed on Kapton piezoresistive dynamic strain sensor
based on carbon black and polyvinyl pyrrolidone; (reproduced with permission from [77], copyright
2019, Elsevier); (e) an AgNW/LDH composite sensor for detection of different movements on human
arm (reproduced with permission from [78] copyright 2015, American Chemical Society).

4.4. Comparison of Printed Strain—Bending Sensors

Table 5 includes various bending/strain and pressure sensors alongside their key
factors for manufacturing and sensing. Compared to the other categories, this type of
sensors requires a more complex combination of both materials and processes. Also, design
considerations are more demanding in terms of accurately laying out the appropriate
structures for measuring strain and/or pressure.

Table 5. Printed Mechanical Deformation Sensors.

Materials Substrate Process Principle Range Sensitivity/Gauge Factor Ref.

AgNWs, Ecoflex, PDMS Embedded Screen printing,
drop-casting Capacitive 50% tensile GF: 0.7 [69]

CNTs, Ecoflex, PDMS Embedded µcontact printing Capacitive 50% tensile GF: 0.5 [70]

AgNW-PU PET, Adhesive
Bandage

Drop-cast,
spin-coating Capacitive 2 mm tensile 5.54 kPa−1–0.88 kPa−1 [71]

PVDF, AgNPs Embedded Inkjet Piezoelectric 3 N 2.8 ± 0.9 mV/N [73]

P(VDF-TrFE), Ag PET Vacuum
evaporation Piezoelectric – 140 ± 50 nC/N [72]

Ceramic dielectric, Pt/Ag Steel Screen printing Piezoelectric 0–18 MPa – [80]
P(VDF-TrFE), Ag PI Screen printing Piezoelectric 0.5–4N 0.05 V/N [74]

Ionic liquid/polymer,
MWCNT TangoPlus 3D printing,

molding Piezoresistive – – [81]

MWCNT, PDMS, Ag Embedded Screen printing Piezoresistive 0–11 N
Compressive 20 kΩ/N [74]

Polyvinyl chloride/carbon
black, Ag PI Screen printing Piezoresistive 0.14% GFtensile: 741

GFcompr: 1563 [76]

Thin graphite nanobelt,
Ti/Au PDMS Modified

Langmuir-Blodge Piezoresistive 40% Strain GF: 1–24 [82]

PDMS, MWCNT Embedded 3D printing Piezoresistive 15% Strain GF: 1–16 [83]
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Table 5. Cont.

Materials Substrate Process Principle Range Sensitivity/Gauge Factor Ref.

PDMS, MWCNT, Ag PET Screen printing Piezoresistive 1.5 kPa–15.5 kPa – [84]
PEDOT: PSS/PUD, Ag PDMS Mold cast, inkjet Piezoresistive 3 Pa–5 kPa – [85]
AgNW, Layered double

hydroxides Paper Screen printing Piezoresistive 180◦ Compressive 0.16 rad−1 [78]

PeDOT, TIPS-pentacene,
Ag, PVPh PI Inkjet Piezoresistive 4000 N GF: 0.35 [79]

PEDOT: PSS & Ag Paper Inkjet Piezoresistive 10% GFtensile: 0.42
GFcompress: 0.15 [17]

PEDOT: PSS PET Inkjet Piezoresistive 0.33% 165 [86]

5. Conclusions—Future Outlook

This review paper aimed at gathering, filtering, categorizing and presenting informa-
tion regarding contemporary applications of printing technologies for sensor development.
More specifically three types of sensors have been analyzed, namely humidity, tempera-
ture and strain sensors. For each sensor category, a literature review has been presented,
alongside with representative examples for the development strategy, material selection
and performance of the devices.

Humidity sensors nominally share a common strategy: electrode deposition with a
printing technique such as inkjet [12,17,20,35,36,39,40,45], screen [10,13,15,16,21,24,25,32,43] or
gravure [14,38,44], or a traditional process such as lithography [26–28,37], followed by a sens-
ing layer deposition either via inkjet [22,23,40], screen [15,18,25,32,43], gravure [10,13,16,21,44],
spin coating [27,28,37,38] or drop casting [14,19,26]. Some groups have presented an ap-
proach where the substrate acts as a sensing layer [12,17,34–36,45,87] thus eliminating the
need for an additional step of deposition of such layer, while humidity sensors can either
provide a resistive or capacitive output (Tables 1 and 2, respectively). Temperature sensors
usually exploit a specific material’s thermal properties, and more specifically thermal
coefficient of resistance (TCR), thus requiring only one material for sensor development.
Various works utilize inkjet or screen-printed silver [17,40,57–60], PEDOT: PSS (pristine
or in combination with graphene or CNTS) [17,46–48,52,55,56] amongst other materials
which exhibit either positive or negative TCR. Mechanical deformation sensors analyzed in
this review have the largest diversity both in terms of material selection and technologies
required for manufacturing. This type of sensors can either provide a capacitive, piezoelec-
tric or piezoresistive output. In most cases, an elastomer such as PDMS [69,70,74,82–85] in
conjunction with a conductive material such as MWCNT form a matrix which can be either
directly utilized as a sensor, or with the additional printing of conductive electrodes onto
it [69,71,72,74,76,79,80,84,85]. PVDF—P (VDF-TrFE) has also been utilized as a piezoelectric
element in piezoelectric output sensors [72–74,80].

Printing technologies such as inkjet printing and screen printing, are evidently being
adopted by numerous scientific groups for partial or full development of electronic devices
development, owning a set of characteristics such as large-scale and low-cost fabrication,
variety of compatible materials and substrates and rapid prototyping implementation. By
leveraging the aforementioned advantages, printed electronics for humidity, temperature
and strain sensor development can act as a platform for future turnkey production, all by
satisfying requirements such as substrate flexibility, multi-material deposition detection.

Application-wise, most of the works presented herein fall in the scope of either envi-
ronmental monitoring or wearable-biomedical metrics from on-body devices. Nevertheless,
it was observed that evaluation was mainly performed using laboratory measurement
equipment. It is therefore concluded that a wide field for future development is the
interfacing electronic circuit for data measurements and transmission to an application
front-end, towards realization of a printed-based system on flexible substrate, which can
implement either printing or traditional patterning techniques. Challenges to be addressed
concerning integration of such devices are (a) the soldering and interconnections of discrete
electronic components such as SMT resistors and microcontroller on the same substrate
with the printed sensors [88], (b) passivation of the devices for long-term endurance in field
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applications outside the laboratory and (c) development of dedicated, low-power, high-
performance electronics for signal acquisition and conditioning. By effectively tackling
these challenges, a revolutionary era for the development of printed sensors for consumer
applications will be closer to realization.
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