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Abstract: Any robust classification system depends on its purpose and must refer to 

accepted standards, its strength relying on predictive values and a careful consideration of 

known factors that can affect its reliability. In this context, a molecular classification of 

human cancer must refer to the current gold standard (histological classification) and try  

to improve it with key prognosticators for metastatic potential, staging and grading.  

Although organ-specific examples have been published based on proteomics, transcriptomics 

and genomics evaluations, the most popular approach uses gene expression analysis as  

a direct correlate of cellular differentiation, which represents the key feature of the 

histological classification. RNA is a labile molecule that varies significantly according 

with the preservation protocol, its transcription reflect the adaptation of the tumor cells to 

the microenvironment, it can be passed through mechanisms of intercellular transference of 

genetic information (exosomes), and it is exposed to epigenetic modifications. More robust 

classifications should be based on stable molecules, at the genetic level represented by DNA to 

improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, 

which is at the origin of tumor progression and is the byproduct of the selection process during 

the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple 

DNA targets and next generation sequencing offer the best practical approach for an 

analytical genomic classification of tumors. 

Keywords: molecular pathology; cancer; neoplasm; classification; analytical genomic 

classification of tumors; genomic pathology; cancer cell biology 
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1. Introduction 

A general definition of neoplasm like “cellular disease characterized by abnormal growth regulatory 

mechanisms” is descriptive and difficult to apply routinely, working definitions being required.  

The introduction of new markers has improved the diagnostic precision, but can potentially result in 

big changes in prevalence and uncertainties for particular lesions. The current WHO classifications of 

tumors incorporate new developments based on pathology and genetics, the leading criteria still being 

morphological; in this context, molecular findings complement the histological evaluation without 

replacing it. Additionally, any new definition should be validated against the accepted standard 

(specificity/sensitivity), should improve patient’s management, and should provide a biologic meaning 

for its application. The first requirement is typically met by the initial design, and the second condition 

would be expected in any successful implementation. The third criterion is harder to put into practice, 

but any new definition should be biologically meaningful and would incorporate core elements in 

tumor biology (in particular genetic and kinetic correlates) [1–5]. These elements need to be included 

in a score system. Examples include the PAX8/PPARγ fusion gene described in follicular thyroid 

carcinomas and adenomas or RET/PTC fusion genes reported in papillary thyroid carcinomas  

and Hashimoto’s thyroiditis. Molecular findings are contributing to a better understanding and 

classification of neoplasms [6–8]. The proposal, to classify neoplasms based only on the identification 

of one molecular abnormality, is naïve, especially considering that neoplasms require several 

mutations to reach the no-return point during the malignant transformation [4,5,9,10]. This approach 

raises fundamental issues in tumor classification and terminology that would need further 

considerations. Any classification is an organization in domains by hierarchical groups, according to 

features generalizable to the members of the groups. Classifications are important because class 

properties are shared among the members of a class, and because members of a class inherit the 

properties of their ancestors. The classification process must also be differentiated from terms like 

identification, discrimination, taxonomy, and ontology that cause considerable confusion among 

pathologists and cancer researchers. Identification is the act of placing something into its correct slot 

within an existing classification. Discrimination is finding features that separate members of a group 

according to expected variations in group behavior, the so-called prognostic factors such as grading 

and staging. A taxonomy is a complete listing of all the members of a classification, and an ontology is 

a rule-based grouping of some portion of a taxonomy. 

2. General Features of Tumor Classification: Current Status 

A classification has certain properties that distinguish it from other ways of organizing data.  

Any classification tries to encapsulate all knowledge related to a domain, but much of the current work 

in the molecular classification of tumors is identification, and discriminant analysis disguised as 

classification. It is impossible to create a molecular classification of tumors based solely on the 

separation of tumors by variations of molecular markers. Clustering by variation only identifies 

differences among tumors and is not sufficient to establish a classification. Classification is the process 

of showing that certain differences reliably distinguish the members of a group from the members of 

all other groups and that these differences apply to the group’s hierarchical descendants. In a modern 
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classification, the elements of the classification serve as annotation keys and are capable of relating  

all data to the classification, incorporating molecular pathways that will be used as targets for new,  

non-toxic chemotherapeutic agents. There have been early successes with tumors sensitive to the 

inhibition of tyrosine kinases (gastrointestinal stromal tumors (GIST) and chronic myelogenous 

leukemia) with imatinib [11]. Both these tumors derive from non-endodermal/ectodermal embryonic 

layers, suggesting that molecular pathways (hence targets for chemotherapy) may be class-dependent. 

Reliable classification systems require a careful use of internationally accepted nomenclature  

based on differentiation-developmental system that represents the current gold standard. The main 

criteria used in tumor classification are founded in tissue differentiation and developmental  

biology [4,9,10,12,13], which result in a system that gives several advantages: assign tumors to  

unique positions within the classification, avoiding the problem of multiple embryologic derivatives 

that can be present within one organ; provide a cell developmental stage that is usually reproduced  

by the differentiation process; give relevant behavioral information, such as the likely metastatic 

dissemination via lymphatics for epithelial neoplasms and by hematogenous spread of mesenchymal 

neoplasms; correlate closely with modern molecular analysis of tumors (sarcomas and lymphomas are 

frequently characterized by simple fusion genes, carcinomas and melanomas cannot be marked by  

a single genetic abnormality, and primitive blastomas share similar markers regardless of the organ  

of origin). For these reasons, the classification nomenclature used internationally is based on this 

terminology. However, current tumor classifications are site or organ system specific, often based on 

medical disciplines rather than biologic principles, appear redundant when subclassifications are 

merged and have problems analyzing heterogeneous biological data. Several fundamental issues in 

tumor classification exemplify the growing rift between morphologic and molecular approaches to 

tumor classification [9,10,14,15]: (1) intratumor heterogeneity and morpho-functional changes associated 

with tumor progression; (2) the distinction between loss of differentiation during progression and 

primary lack of differentiation; (3) the molecular properties shared by morphologically disparate tumors 

with or without a common developmental lineage; (4) the grouping of tumors based on shared cellular 

functions; (5) the separation of epithelial and non-epithelial tumors; (6) the distinction between germ 

cell tumors and pluripotent tumors of non-germ cell origin; and (7) the problem of re-classifying 

morphologically identical but clinically distinct subsets of tumors. If a tumor lacks a morphologic or 

molecular feature at one point in its development and gains it at a later point, the element cannot 

determine a new class of tumor. If a tumor has a good prognosis at one point (e.g., before it has 

metastasized) and a bad prognosis later (e.g., after it has metastasized), then prognostic features 

associated with metastasis cannot be used to determine a new class of tumor.  

The differentiation-developmental classification of neoplasms makes basic assumptions, including: 

morphologic and molecular features of tumors will both fall sensibly into classes determined by tumor 

cell lineage; pathways with molecular alterations producing a tumor phenotype will tend to operate  

in all tumors of a developmental class; and morphologic properties associated with the altered  

pathway will be visible for all class members. It would therefore be sensible to keep the advantages  

of morphological classifications, complementing it with biological concepts and measurable features 

provided by molecular analysis, in particular those coming from genomic evaluations (multigene 

analysis highlights cooperative genetic interactions) [9,10]. Our understanding of embryologic lineage 

has changed very little over the past half century, and a classification based on differentiation and 
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developmental biology permits tumors to be assigned to well-defined classes. Somatic DNA has 

lineage-specific epigenetic modifications that occur throughout development [16–20], opening the 

avenue for measurable and definable patterns of epigenetic modifications (e.g., methylation) as key 

informative features for the developmental lineage of tumors. Kho and coworkers [13] have developed 

a method that projects gene expression profiles of tumors onto a mouse developmental sequence. 

Human medulloblastoma most closely matched the gene expression profile of postnatal day five mouse 

cerebella. Although this study examined only a few tumors, it described a method that allows any 

human tumor to be matched against a library of gene expression profiles collected from normal tissues 

at different stages of development. 

Because classifications are hypotheses about the fundamental nature of a knowledge domain, the 

foundational assumptions of any classification must be continually evaluated and challenged. In this 

scenario, the role of pathologists is essential as the best link to accomplish a robust, reliable and 

biologically founded classification of neoplasms. The pathologist prepares, describes and diagnoses  

the tissue samples; organizes and integrates the available information (demographic, clinical, and  

ancillary techniques); and identifies enriched tissue samples for more reliable molecular results by 

microdissection techniques. In all cases, the clinicopathologic annotations used by the molecular 

biologist are generated in whole or in part by surgical pathologists. It has been noted that, “the 

pathologist’s understanding of anatomic, physiologic, biochemical, immune, and other underlying 

factors that drive mechanisms of tissue responses to noxious agents turns a bewildering array of gene 

expression data into focused research programs” [21]. 

3. Key Cellular and Molecular Processes to Incorporate in a Robust Classification 

Biologically, neoplasms develop through acquisition of capabilities that involve tumor cell aspects 

and microenvironment interactions [9,22,23]. The unrestricted growth observed in neoplasms is 

generally due to a stepwise accumulation of cooperative genetic alterations in oncogenes and  

tumor-suppressor genes, the number being more important than the order of changes; [24] the  

evidence available suggest that 5–7 genetic alterations are required for clinically detectable tumors, 

correlating with morphological progression in some locations. These capabilities are not equally 

relevant at different stages during tumorigenesis, as highlighted by careful morphological evaluations.  

The markers should be selected considering the ability to test and the marker role during tumor initiation 

and promotion. Tumor promotion markers would be more relevantly assessed during progression, which 

needs to be defined on clear clinical and morphological grounds. The main tumorigenesis molecular 

pathways must be evaluated according to the acquired capabilities: self-maintained replication (cell 

cycle dysregulation), extended cell survival (cell cycle arrest, apoptosis dysregulation, and replicative 

lifespan), genetic instability (chromosomal and microsatellite), changes in chromatin, transcription and 

epigenetics, mobilization of cellular resources, and modified microenvironment interactions (tumor 

cells, stromal cells, extracellular, endothelium) [9]. All these aspects must finally be integrated into the 

mechanisms of tumor initiation (including clonality) and progression. The knowledge of these 

pathways in each acquired capability is also essential to plan any sensible molecular evaluation of 

neoplasms (Figure 1): It will allow a marker selection based on biological features and it will allow a 

precise range of surrogate/secondary markers to validate the results. In addition, some pathways are 
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mutually exclusive (i.e., RAS and B-RAF mutations or EGFR and RAS analyses) and have to be 

evaluated simultaneously. 

 

Figure 1. Malignant tumors are heterogeneous biological structures comprising cancer cell 

clones along with tumor-associated components necessary for maintaining the autonomous 

growth (stromal cells, extracellular matrix, inflammatory cells and endothelial cells).  

This heterotypic biology is self-maintained by acquired capabilities that promote both 

endless growth (proliferation, expanded cell survival or viability, resistance to cytostasis, 

and motility/invasion) and progression (evasion of genome maintenance, and appropriate 

cell energetics-metabolism). Cooperative genetic alterations in these pathways are common 

in cancer at different levels (DNA sequence, chemical modifications of DNA and gene 

expression), and their combinations can serve as elements of a molecular classification. 

However, as these combinations are not always pathognomonic and there is an additional 

complexity of gene expression (intercellular RNA transfer in heterotopic biology, RNA 

degradation), multitargeted simultaneous DNA analysis would be the most promising way 

to improve our current pathological neoplasm classification. 

Molecular markers and pathways should be selected based on biological criteria comprising key 

features of tumorigenesis: heterotypic biology including microenvironment interactions and their role in 

mutagenesis (as key aspects of activation/suppression of gene function) and metastatic potential, along 

with the gene expression deregulations and their role in differentiation. These elements then need to be 

integrated with a sensible molecular test requirement and score system for practical implementation. 
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3.1. Heterotypic Tumor Biology: Tumor Cells-Microenvironment Interactions 

Normal cells survive and grow within defined environmental niches and are subjected to 

microenvironmental control. Outside of their particular niche, the tissue environment is hostile to 

normal cells. Since they lack necessary cell autonomous survival signals, normal cells will not survive 

an inappropriate microenvironment [25]. Detachment-induced cell death (anoikis) has been proposed 

as the mechanism preventing normal cells from leaving their original environment and seeding at 

inappropriate locations [9]. In order to evade local tissue control and avoid anoikis during tumor 

development and progression, malignant cells start interacting with the surrounding ECM [26].  

A bidirectional relationship is initiated by tumor cells and its surrounding stroma as a first step to 

invasive growth on metastatic spreading. Stromal changes sustaining tumor progression include 

modifications of the ECM composition, activation of fibroblasts, myoepithelial cells, and the 

recruitment of pericytes or smooth muscle cells and immune and inflammatory cells [27]. 

Human tumors arise from single cells that have accumulated the necessary number and types of 

heritable alterations. Each such cell leads to dysregulated growth and eventually the formation of a 

tumor. Despite their monoclonal origin, at the time of diagnosis most tumors show a striking amount 

of intratumor heterogeneity in all measurable phenotypes; the evolutionary dynamics of heterogeneity 

arising from exponential expansion of a tumor cell population, in which heritable alterations confer 

random fitness changes to cells [28]. Classical multistage modeling of tumorigenesis evolves through 

the processes of local proliferative lesions (tumor initiation and promotion or selection), and acquisition 

of invasion-metastatic potential (tumor progression). Broadly speaking, tumor development consists of 

the selective (clonal) expansion of altered cells to form focal lesions [3,29]. Within this definition, the 

process of promotion is mainly a quantitative phenomenon (many cells arising from a single cell), 

while no qualitative changes are necessarily implied. However, these latter properties are lost during 

tumor progression, which is typically characterized by increasing levels of tumor cell heterogeneity 

resulting in dominant qualitative changes [5,30], generating distinct cellular subclones with different 

phenotypes. Such a background represents the landscape for the full deployment of tumor progression. 

These two distinctive processes, the mainly quantitative process of tumor promotion and the 

intrinsically qualitative process of tumor progression, are driven by two distinct microenvironments: 

the tissue and the tumor microenvironments [31–33]. The tissue microenvironment specifically refers 

to the local environment surrounding altered cells during their selective clonal expansion to form focal 

proliferative lesions. Conversely, the tumor microenvironment describes the unique biological milieu 

that emerges inside focal proliferative lesions as a consequence of their altered growth pattern [31–33]. 

Such new biological niche is characterized by a tissue architecture, which is not developmentally 

programmed and is bound to pose significant challenges for cell survival, due to altered/inadequate 

supply of oxygen and nutrients. This in turn can lead to biochemical and metabolic alterations that can 

profoundly impact on the fate of the cell populations inside focal lesions [34]. 

Given that altered cells can be selected in a tissue microenvironment which is otherwise  

growth-inhibitory to surrounding counterparts, a relevant question pertains to the biochemical and 

molecular basis of such phenotypic resistance. Blagosklonny has proposed the existence of two broad 

types of resistance [35]: (I) Non-oncogenic resistance relates to changes in drug metabolism and/or 

uptake, such that the rarely altered cell can withstand toxicity compared to the rest of the population in 
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that tissue. Such phenotypic resistance would still translate into the clonal growth of that rare cell, but 

no increased risk of neoplastic disease would be implied [35]; (II) The oncogenic resistance is linked 

to the inability of the cell to sense or repair DNA damage and/or to activate effector mechanisms 

leading to cell cycle arrest and/or cell death. As a result, the affected cell is susceptible to acquire a 

“mutator phenotype”, i.e., the tendency to undergo a cascade of further mutations [9,36–38]. 

The mutator phenotype has been linked with a defect in mismatch repair (MMR) genes so that  

a cascade of mutations occurs in cancer-related genes. To justify the onset of a mutator phenotype in 

“sporadic cancers” (which are in fact the vast majority) we have to revisit some theories of 

carcinogenesis and their evidence base [1,39]. In sporadic cancers, the origin of the mutator phenotype 

has been attributed to chance, or to mutagens that selectively affect specific genes similar to MMR 

genes, or to a combination of the two. However, MMR is apparently mutated only in a minority of 

cases: For example, colon cancers characterized by the presence of microsatellites (MIN) are a small 

minority compared to cancers characterized by chromosome instability (CIN), whose onset has not yet 

been attributed to the failure of any particular gene repair such as MMR [37,38]. To explain the most 

common type of lesions that are found in nonhereditary cancers, chromosome aberrations, and CIN, 

we have to explain how the mutator phenotype originates. In addition, a fundamental concept 

emerging recently is that mutations or instability are irrelevant if there is not a microenvironmental 

change that selects the cells carrying such mutations. 

Cell replication is the primary source of cellular stress. On one hand, continuous proliferation 

results in telomere attrition and reduced stability of chromosome ends, which activate the cycle of 

chromosomal fusion-bridge-breakage and a higher incidence of translocations such as expression of 

chromosomal instability (CIN). On the other hand, nucleotide mismatches are introduced by DNA 

polymerase and will accumulate in DNA regions with repetitive sequences, such as microsatellites; 

this is the primary reason for microsatellite instability (MSI), a finding more frequently detected in 

tissues with higher proliferation. CIN and MSI have been described as two alternative pathways to 

cancer [9,38]. CIN is defined as the ability of a cell to gain and lose chromosomes and is a feature of 

many types of cancer. Conversely, microsatellite instability is related to a defect in the DNA mismatch 

repair machinery (MSI cancers). 

The net result of CIN is the deregulation of chromosome number (aneuploidy) and an enhanced rate 

of loss of heterozygosity, which is an important mechanism of inactivation of tumor suppressor genes. 

Cytogenetic studies of bladder, lung and colon tumors have shown that karyotype complexity, cell 

ploidy, and the number of structural changes found were closely associated with tumor grade and 

stage. It has been suggested that different environmental carcinogens can induce distinct forms of 

genetic instability [40]. The available data demonstrate that exposure to particular carcinogens can 

indeed select for tumor cells with distinct types of genetic instability and vice versa. These data offer 

potential clues to one of the remaining unsolved problems in cancer research, the relationship between 

environmental factors and the genetic abnormalities that affect the tumorigenesis. 

Chronic inflammation promotes tumor onset and development through nonimmune and immune 

mechanisms. The nonimmune mechanisms include the following: (I) the production of reactive oxygen 

species (ROS) such as peroxynitrites, which cause DNA mutations that contribute to genetic instability 

and the proliferation of malignant cells [41]; (II) the production of proangiogenic factors such as 
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vascular endothelial growth factor (VEGF), which promote tumor neovascularization [42]; and (III) 

the production of matrix metalloproteases, which facilitate invasion and metastasis [43]. 

3.2. Microenvironment and Metastasis 

Cancer is a systemic disease: malignant tumors shed large numbers of cells into the blood and 

lymph vessels, some of them developing in distant sites into metastases. Moreover, distant metastasis 

is responsible for the majority of cancer-related deaths, and, therefore, understanding the underlying 

biological mechanisms of it is of primary importance. The invasion/metastasis capability is closely 

related with cell motility and requires the cytoskeleton as a critical component, which is also  

essential during mitoses. As malignancy criteria are mainly related to the phenotype of actively 

proliferating cells, it not surprising that metastatic deposits genetically match well-differentiated areas 

of primary neoplasms, and that invasive areas (periphery of solid organ neoplasms and deep 

compartment of luminal organ tumors) show lower cellular turnover and higher incidence of  

genetic abnormalities [38,39,44–46]. These factors need attention when planning the evaluation of 

intratumoral heterogeneity and would include: detailed specification of sampling (intratumoral 

location, number of samples), combined evaluation of kinetic and genetic features to assess selective 

process, analysis of pathways at several steps to avoid confounding factors (redundancy and 

pleiotropism) [5,9,47]. These biological foundations will enable a better therapeutic design, using the 

heterogeneity to improve patient’s management.  

According to a traditional model of tumor development, tissue constraints constitute a significant 

evolutionary bottleneck in cancer evolution; thus, the acquisition of metastatic ability is considered to 

be the final step in tumor development, contingent on the acquisition of all of the other hallmarks of 

cancer [9,22,23]. This model implies that metastatic tumors should be genetically similar to the bulk of 

primary tumor cells. 

Many studies that compared the genetic composition of primary tumors and secondary metastatic 

sites have found very close clonal relationships between the two in the majority of cases [48–50]. 

Similarly, analysis of gene expression profiles revealed very similar patterns between primary  

tumors and metastatic sites, a scenario highly unlikely for genetically divergent clones [51–53]. 

Another prediction from the linear model of tumor progression is that different metastases should 

display close clonal relationships among each other. Indeed, this prediction is supported by a recent 

study that compared the genetic composition of anatomically distinct metastatic lesions in 29 prostate 

cancer patients using SNP arrays and CGH [54]. In all cases, different metastatic lesions from the same 

patients demonstrated close clonal relationships, signifying monoclonal origin [54]. This demonstration 

of monoclonality of metastatic cancers is especially impressive given that primary prostate cancers are 

frequently multifocal [55], and show substantial intra-tumor genetic heterogeneity [55,56]. 

While the evidence of the close genetic relationship between primary and metastatic tumors is 

compelling, some cases display dramatic divergence, challenging the model where acquisition of 

metastasis is considered to be the last step of tumor progression. Radically different patterns of allelic 

losses, indicative of a high degree of genetic divergence, have been reported in primary tumors and 

lymph node metastases in prostate cancers [49], and between primary tumors and asynchronous 

metastases in breast cancers [50]. Highly divergent clonal evolution was also evident in a subset of 
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cases in CGH studies of primary tumors versus lymph node metastases in breast cancers and of 

primary tumors versus metastatic tumors in renal cell carcinomas [48]. A recent report, comparing 

sequences of primary tumors and metastases in lobular breast cancers, revealed multiple mutations 

present only in metastases and several other mutations with increased frequency in metastatic  

sites [57]. Some of these genetic changes result in a higher incidence of apoptosis of tumor cells of 

dormant metastases (more than threefold higher) [58]. These data show that metastases remain 

dormant when tumor cell proliferation is balanced by an equivalent rate of cell death and suggest that 

angiogenesis inhibitors control metastatic growth by indirectly increasing apoptosis in tumor cells. 

3.3. Gene Expression: Transfer of Genetic Material and Sequence-Independent Modifications 

Gene expression analysis is becoming a useful tool for a better definition of neoplasms at 

diagnostic, prognostic and predictive levels. The identification of predictive markers of these features 

will help classifying neoplasms and stratifying patients for better management. However, the nature 

and biological meaning of these gene expression markers is not always clear: origin of the tested RNA, 

mechanism of RNA transference, utility for subclassification of neoplastic lesions. Gene expression 

analysis is becoming a useful tool for a better definition of neoplasms at diagnostic, prognostic and 

predictive levels [59–63]. The gene expression signature also reflects the metastatic potential in both 

cell lines and tumor samples [64–68]. First, the expression profile of low metastatic subline is distinct 

from that of the high metastatic subline. Metastases of the low metastatic subline closely resembled the 

pattern of the low metastatic primary tumor and did not “switch over” to the high metastatic gene 

expression profile. Thus, heterogeneity exists in this cell line/tumor, but may not be apparent as the 

signature reflects the majority of the tumor cells. The low metastatic subline is capable of spawning 

metastases, albeit at a lower rate, and its gene expression profile is therefore of significant interest. 

Second, the gene expression profile of the sublines as in vitro cultures is very distinct from the same 

sublines as primary tumors. While the primary tumors are a mixture of tumor cells and heterogeneous 

host cells (stromal cells, endothelial cells, among others), the contribution of these cells to the 

observed gene expression profiles should be minimal. Thus, the differences are thought to reflect 

changes in the tumor cells in response to the in vivo microenvironment. Third, comparable numbers of 

genes were “turned on” and “turned off” in the more highly metastatic tissues. We think about 

metastasis as the acquisition of traits, but the data remind us to pay equal attention to the loss of 

growth and differentiation-controlling genes. Many of the differentially expressed genes fall into the 

category of “usual suspects” for metastasis. 

Cancer cells communicate with the environment through delivery of surface proteins, release of 

soluble factors (growth factors and cytokines), and sophisticated nano vesicles (exosomes) for the 

establishment of invasive tumor growth. A central question in molecular studies is to determine the 

cellular origin of the target mRNA. Two biological aspects are essential for this process: how the 

tumor mRNA gets there and the functionality of this mRNA. The answers to these questions are  

most relevant in locations where the tumor cells are scanty and the expression profile support higher 

tumor cell load [69]. Membrane vesicles derived from both tumor and host cells have recently been 

recognized as new candidates for critical roles in the promotion of tumor growth and metastasis [70]. 

The transfer of membrane components between donor and acceptor cells has been described 
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“trogocytosis” (from Greek “trogo”, meaning “gnaw” or “bite”). Two forms of membrane transfer 

(trogocytosis) have been described: via nanotubes or membrane vesicles [71]. The biogenesis of 

membrane vesicles fundamentally distinguishes exosomes from shedding microvesicles and apoptotic 

blebs. The biologic heterogeneity of intraepithelial and invasive malignancies is well known at the 

morphologic, kinetic and genetic levels, an issue that has not been addressed in this paratumoral gene 

expression analysis and should warrant future studies. The gene expression markers should be 

evaluated in the appropriate biological context. Gene expression profiles are determined by a gene 

regulatory network comprising regulatory core of genes represented most prominently by transcription 

factors and miRNAs, which influence the expression of other genes, and a periphery of effector genes 

that are regulated but not regulating [72,73]. Most studies do not differentiate between these two 

essential groups, which can also be useful in selecting surrogate markers for a given condition [9,72]. 

There is a general concept to keep in mind during the analysis of gene expression: the amount of 

information is overwhelming, and the number of variables included in the studies significantly 

outnumbers the cases. In this scenario, the significant variables can be the result of a statistical 

selection rather than the expression of a biologically important process for a particular neoplasm. 

Relevant variables frequently include genes of the general metabolic activation associated with the 

neoplastic transformation [9,23], rather than tissue- or differentiation-specific gene variables. 

Epigenetic dysregulation is central to cancer development and progression [74]. The best-known 

epigenetic marker is DNA methylation. This dysregulation includes hypomethylation leading to 

oncogene activation and chromosomal instability, hypermethylation and tumor suppressor gene 

silencing, and chromatin modification acting directly, and cooperatively with methylation changes, to 

modify gene expression [75]. The initial finding of global hypomethylation of DNA in human tumors 

was soon followed by the identification of hypermethylated tumor-suppressor genes, and then, more 

recently, the discovery of inactivation of microRNA (miRNA) genes by DNA methylation. 

3.4. Molecular Test Scoring System for Practical Implementation 

The application of these biologic concepts in oncologic pathology leads to consider the molecular 

testing requirements (Molecular Test Score System) for a reliable implementation, which cover 

biological effects (1–3), molecular pathway (4, 5), biological validation (6–8), and technical validation 

(9, 10) (Figure 2) [9]. 

Currently, the most efficient way to achieve this goal, is by genomic approach and multi-target 

analysis like that provided by next generation sequencing. This multi-target analysis also complies 

with the multistep process widely accepted during tumorigenesis and is further supported by the need 

for multiple cooperative mutations in neoplasms [3–5,9,10,46,76]. Although organ-specific examples 

have been published based on proteomics, transcriptomics and genomics evaluations, the most 

common approach uses gene expression analysis as a direct correlate of cellular differentiation, which 

represents the key feature of the histological classification. RNA is a labile molecule that varies 

significantly according with the preservation protocol, its transcription reflect the adaptation of the 

tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference 

of genetic information (exosomes), and it is exposed to epigenetic modifications. More robust 

classifications should be based on stable molecules, at the genetic level represented by DNA to 
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improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is 

at the origin of tumor progression and is the byproduct of the selection process during the clonal 

expansion and progression of neoplasms. 

 

Figure 2. Multitarget genomic analysis of malignancies must consider the heterotypic nature 

of neoplasms of both cancer cells (cancer stem cells CSC, proliferating cancer cells PCC, 

arrested cancer cells ACC, and invasive cancer cells ICC) and tumor-associated (TA) 

components (fibroblasts TAF, endothelial cells TAEC, and extracellular matrix TAECM). 

Any comprehensive study need to address biological aspects and mechanisms of tumor 

genetic alterations to explain the natural history of a given neoplasm, provide essential 

prognostic information and predict response to therapy. The genetic alterations should be 

characterized at the cellular level (extracellular, plasma membrane, cytoplasm, nucleus or 

downstream genes) and molecular level (gene expression, methylation, microRNA, copy 

number aberrations and mutations). Any tests developed for this evaluation must follow a 

careful assessment of biological effects, pathways involved, biological validation and 

technical validation. In practice, the most promising approach fulfilling these criteria is the 

next generation sequencing. 
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4. Analytical Genomic Classification of Tumors (AGCT) 

An analytical genomic classification of tumors (AGCT) must be based on multiple informative 

features covering general characteristics of hierarchical class and instances, epidemiologic features 

from the pathways highlighted by inherited cancer syndromes, and the etiopathogenic features from 

experimental pathology (Table 1). 

Table 1. Proposed requirements for independent classes in AGCT (Analytical Genomic 

Classification of Tumors). 

General Features Specific Features 

A classification is a 
hierarchical grouping 

Each group is defined by the greatest number of informative features that can 
apply to every instance of the class. 

Nomenclature should refer to differentiation/developmental terms 
internationally accepted. 

Every instance of the knowledge domain must fit the classification. 

Every instance and class must have exactly one slot in the classification. 

Instances of one class cannot migrate to a different class but must remain in the 
same class or a subclass of the same class. 

Instances and classes are separable from other instances and classes by 
informative features. 

All new findings of subpopulations of tumors can be considered candidate 
function to characterize a class and distinguish the class from other classes. 

Subclasses inherit the properties (shared informative features) of their  
ancestor classes. 

Familial syndromes and 
epidemiologic features 

Prevalence of the disease should be significantly higher in those carrying the 
genetic abnormalities (if familial model exists). 

Animal models of the 
genetic abnormality–

Etiopathogenic features 

Marker gene should be more commonly abnormally expressed in animals with the 
disease than in controls without the disease when all risk factors are held constant. 

Incidence of the disease should be significantly higher in those animals with the 
abnormal gene than in those not exposed. 

A spectrum of preinvasive changes should follow the expression of the abnormal 
gene along a logical biologic gradient from mild to severe in the grading during 
neoplastic transformation (in particular for epithelial malignancies). 

Elimination or modification of the putative gene or of the vector carrying it 
should decrease the incidence of the disease. 

A multi-target genome-wide approach warrants the simultaneous evaluation of several pathways 

controlling the acquired capabilities that characterize neoplasms and cancers. It needs a detailed 

computational bioinformatics to distinguish the driver from passenger genetic alterations, along with a 

quantitative analysis to assess the proportion of mutated tumor cells and copy number variation.  

The aim of the study should be the evaluation of affected genes and the genetic mechanisms involved 

in their activation/inactivation. Once candidate molecules (i.e., genes, proteins, and other 

macromolecules or patterns of these molecules) are found to associate with a particular tumor variant, 

the pathologist gets a second chance to determine if a morphologic pattern correlates with the 

molecular property. Examples of both point mutations and translocations have been reported.  



Int. J. Mol. Sci. 2015, 16 8667 

 

 

Most GISTs have a KIT mutation that results in Kit protein overexpression [11,77]. Some GIST tumors 

lacking KIT mutations have a mutation in the platelet-derived growth-factor receptor alpha gene [78]. 

Sakurai and coworkers have examined GIST tumors that stain negatively for CD117, a marker for Kit 

protein overexpression. Many of these tumors have mutations in platelet-derived growth-factor 

receptor alpha gene and a distinctive histo-morphology characterized by myxoid epithelioid tumor 

cells and tumor infiltration by mast cells [79]. This newly recognized subtype of GIST involved the 

morphologic re-examination of the tumors following a molecular discovery. Secretory carcinoma of 

the breast is an uncommon variant of breast cancer that occurs most frequently in young women.  

It is characterized by the ETV6-NTRK3 fusion gene [80,81]. The search and discovery of this 

molecular marker was accomplished through asynchronous contributions from three biomedical 

realms: (1) pathologists, who defined the morphologic subset of breast carcinoma known as secretory 

carcinoma of breast; (2) oncologists who validated the clinically distinct features of the tumor; and  

(3) molecular biologists who discovered the translocation that characterized the tumor. This fusion gene 

is not unique for secretory carcinomas of the breast it has also been identified in radiation-induced 

carcinomas [82–84]. 

However, the molecular component should resolve several seemingly intractable problems. As the 

number of molecular pathways controlling cell-specific functions altered during the neoplastic 

transformation is limited, pathways will be shared by different classes of neoplasms and are not  

type-specific. Mutations in genes of the chromatin remodeling pathway have been described in various 

types of neoplasms such as malignant rhabdoid tumors [85], atypical teratoid/rhabdoid tumors of the 

brain [86–88] and hypercalcemic type of ovarian small cell carcinomas [6–8]; these mutations target 

closely related genes SMARCA and SMARCB that regulate this pathway, which is not particular of 

these neoplasms: SMARCB1 homozygous deletions have been found in epithelioid sarcoma and a 

subset of myoepithelial carcinomas [87]. Cytogenetic abnormalities and gene alterations in tumors  

co-occur with other anomalies, and the complex state of molecular abnormalities in tumors make it 

very difficult to assign classes of tumor to a single type of genetic abnormality. In addition, these 

alterations could represent the cause or the by-product of the genetic instability associated with the 

neoplastic progression, both driver and carrier mutations coexisting in the heterogeneous built of 

neoplasms. In this context, it may be impossible to reach scientific consensus on complex sets of 

molecular signatures that define groups of tumors. As an example, balanced translocations play 

biologic roles in several tumors [12]. Although certain translocations are characteristic of individual 

tumors, it has proven difficult to generalize that translocations occur in any particular class of tumors. 

Certainly, characteristic tumor translocations occur more commonly in mesenchymal tumors [12], but 

such translocations have also been observed in thyroid carcinomas [89,90], prostate adenocarcinoma 

and precursors [91,92], secretory carcinoma of breast [81], and in midline (lung) carcinoma of children 

and young adults [93]. Some translocations are also shared by carcinomas and sarcomas, such as the 

balanced and unbalanced chromosome X; 17 translocations in both Xp11.2 renal cell carcinoma and 

alveolar soft part sarcoma, supporting a preference but not a necessity for the translocation to be 

balanced in the carcinoma and unbalanced in the sarcoma [94–96]. The notable exception, wherein a 

class of tumors is characterized by a set of translocations, is the Ewing’s tumor family of tumors [97–99]. 

Translocations are tissue non-specific, occurring at a frequency related to the overall number of 

cytogenetic abnormalities found in tumors [100]. It can be noted that despite numerous projects aimed 
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at classifying tumors with gene expression profiles, no comprehensive classification based on this 

technology has emerged. 

Much of what passes for neoplasm “classification” in the bioinformatics literature is actually the 

algorithmic ranking of expressed genes that can discriminate one tumor variant from another [101–105], 

but without precise pathogenetic or etiologic considerations for those changes [14]. Some classifications 

can be challenged more easily than others. A classification built on a set of continually changing 

parameters is constantly evolving and challenging to evaluate. This is certainly true of a molecular 

classification, because our knowledge of the field changes almost daily. A few years ago, it was  

safe to say that all recurrent balanced translocations were a phenomenon of mesenchymal tumors.  

New findings of recurrent balanced translocations in non-mesenchymal tumors have nullified this  

class assertion [100]. Morphologists once classified clear cell sarcoma as a type of malignant 

melanoma, based on finding melanosomes within tumor cells. Recent molecular classification of these 

tumors clearly distinguishes them from cutaneous melanoma. Clear cell sarcomas have characteristic  

EWS-AFT1 fusion transcript not found in cutaneous melanomas [106,107]. In addition, BRAF 

mutations, commonly found in cutaneous melanomas, are absent from clear cell sarcomas [108,109]. 

The rapid accumulation of new knowledge about the molecular characteristics of tumors can quickly 

change classifications built on morphology or molecular biology. Pathologists seem to be putting this 

tumor back into the mesenchymal class of neoplasms [110]. 

5. Conclusions 

A scientifically sound classification of neoplasms will serve as a guide to prognostic stratification  

of patients and to selecting a new generation of cancer medications targeted to molecular pathways 

specific for particular classes of tumors. Without a robust scientific foundation to the tumor 

classification, biological measurements on individual tumor samples cannot be generalized to other 

tumors, and constitutive properties common to a class of tumors cannot be distinguished from 

uninformative data collected from complex and chaotic biological systems (Figure 1). Morphology, even 

in the post-genomic era, has enormous value in the realm of discovery of informative features that 

eventually would be pathogenic and etiologic if possible. Careful morphologic examination has 

discovered previously unrecognized features that are diagnostic for new tumors or new clinical 

variants of known tumors that have characteristic molecular profiles. For tumor classification, lineage, 

morphologic, and multi-target molecular informative features must fulfill minimal criteria for the class 

assignment, generation of testable hypotheses and verification of etiopathogenic features (Table 1). 

These elements must also consider the molecular test requirements (Molecular Test Score System) for 

a reliable implementation, which cover biological effects, molecular pathways, biological validation, 

and technical validation (Figure 2). 
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