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Relative cerebral blood volume (rCBV) is a magnetic resonance imaging biomarker that is used to differenti-
ate progression from pseudoprogression in patients with glioblastoma multiforme, the most common primary
brain tumor. However, calculated rCBV depends considerably on the software used. Automating all steps
required for rCBV calculation is important, as user interaction can lead to increased variability and possible
inaccuracies in clinical decision-making. Here, we present an automated tool for computing rCBV from dy-
namic susceptibility contrast-magnetic resonance imaging that includes leakage correction. The entrance and
exit bolus time points are automatically calculated using wavelet-based detection. The proposed tool is com-
pared with 3 Food and Drug Administration-approved software packages, 1 automatic and 2 requiring user
interaction, on a data set of 43 patients. We also evaluate manual and automated white matter (WM) selec-
tion for normalization of the cerebral blood volume maps. Our system showed good agreement with 2 of the
3 software packages. The intraclass correlation coefficient for all comparisons between the same software
operated by different people was �0.880, except for FuncTool when operated by user 1 versus user 2. Little
variability in agreement between software tools was observed when using different WM selection tech-
niques. Our algorithm for automatic rCBV calculation with leakage correction and automated WM selection
agrees well with 2 out of the 3 FDA-approved software packages.

INTRODUCTION
Relative cerebral blood volume (rCBV) is a magnetic resonance
imaging (MRI) biomarker computed from dynamic susceptibility
contrast (DSC) images, and has been used extensively in brain
tumor imaging for differentiation of progression versus pseudo-
progression (1, 2), tumor grading (3), survival prediction (4), and
tumor differentiation (5).

Perfusion analysis software to compute rCBV from DSC-
MRI is widely available in clinical practice. However, it is com-
monly treated as a “black box,” and broad-scale integration has
been slowed by the need for defining optimal methodological
conditions to maximize rCBV accuracy.

The rCBV for each voxel is calculated by trapezoidal inte-
gration under the �R2*(t) area curve from the start to the end of
the first-pass contrast bolus on a voxel basis divided by the
value calculated for normal-appearing white matter (WM). The
following pitfalls are included in processing DSC-MRI data: an
inappropriate kinetic model, incorrect arterial input function

(AIF) detection or deconvolution, inaccurate geometric mapping
of selected anatomic regions of interest (ROIs) to the perfusion
maps, incorrect calibration or normalization techniques, and
incorrect identification of the bolus entrance and exit time
points (6). Determining the start, end, and peak of the bolus is
the most critical step of the algorithm, and it will affect calcu-
lation of percent signal recovery and mean transit time, in
addition to rCBV.

DSC imaging relies on the assumptions that the gadolinium
(Gd)-based contrast agent passes through tissue as a bolus and it
remains within vessels without leaking into the surrounding
tissue (7). Disruption of the blood–brain barrier in glioblastoma
multiforme tissue violates the second assumption, and thus
“leakage correction” is needed (8). Leakage correction can be
addressed using one of the following methods: “preloading,”
where some Gd is administered before DSC imaging (9, 10),
leakage modeling during postprocessing (7, 11), by shortening
the flip angle (FA) (12, 13), or with dual-echo acquisitions (14).
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Although most clinical sites preload, this does not eliminate
leakage. Reducing the FA decreases signal, and the use of dual-
echo sequences is clinically challenging, and is currently rarely
used. Thus, modeling of leakage is essential for accurate rCBV
calculation. The rCBV that is calculated depends considerably
on the software used (6), with modeling correction necessary for
correction of residual T1 errors and T2/T2*-weighted recircula-
tion. Currently, the method published by Boxerman et al. (11) is
considered the standard for DSC-MRI leakage correction.

Recently, it was reported (15, 16) that normalization of the
derived perfusion metrics to the (presumably healthy) contralat-
eral WM resulted in increased repeatability of measurements,
whereas deconvolution of the AIF may reduce repeatability. In
clinical practice, a cerebral blood volume (CBV) normalized to
contralateral WM without AIF deconvolution is considered to
result in more repeatable values (15, 16). Currently, only 1
automated method exists for performing normalization, but it
requires both WM and gray matter identification (17).

Here, we present an automated DSC-MRI quantification tool
that performs leakage correction and compare it with 3 Food
and Drug Administration (FDA)-approved software packages, 1
automatic and 2 requiring user interaction, on a data set of 43
patients. We also evaluate manual and automated WM selection
for normalization of the CBV maps.

MATERIALS AND METHODS
Data Set
This study was reviewed and approved by our institutional
review board, with waiver of informed consent. Inclusion crite-
ria included biopsy diagnosis of glioblastoma multiforme and
treatment with radiation therapy and temozolomide administration
according to Stupp protocol during the period from 2007 to 2013.
In total, 43 patients where post-processing with all the 3 FDA-
approved software packages was available were considered.

MRI Protocol
Each imaging examination was acquired using a General Elec-
tric MR scanner (GE Healthcare, Milwaukee, Wisconsin), oper-
ating at 1.5 T (N � 27) or 3 T (N � 16). The T1-weighted (T1w)
postcontrast images, except for 2 cases, were acquired at an
oblique axial angle using either spin echo or fast-spin echo
sequences �10 minutes after Gd injection. The T1w parameters
for the 1.5 T spin echo sequence were as follows: relaxation time
(TR) � 433–683 milliseconds, echo time (TE) � 20–21 millisec-
onds, FA � 90°, matrix � 256 � 192, field of view (FOV) � 220 �
220–250 � 250 mm, and section thickness � 4 mm, with no
section gap. T1w parameters for 2-dimensional 3 T acquisitions
were as follows: TR � 467–700 milliseconds, TE� 20 millisec-
onds, FA� 90°, matrix � 320 � 192, FOV � 220 � 220 mm,
and section thickness � 4 mm, with no section gap. For both the
1.5 and 3 T scans, the DSC images were obtained using a spin
echo echo-planar sequence with axial orientation and TR �
2217–2225 milliseconds, TE � 60 milliseconds, FA � 90°, ma-
trix � 128 � 96, FOV � 240 � 240 mm, section thickness � 5
mm, and section gap � 5 mm. In total, 40 successive time points
were imaged with �2 seconds between acquisitions. For DSC
imaging, a total dose of 0.1 mmol/kg gadolinium contrast was
used, with 2 cc of the dose injected about 5 minutes before

preloading. The bolus injection commenced 10 seconds after
acquisition started, and with transit time through the venous
system, lungs, and great vessels, appearance in the brain was
typically 25 seconds from start of acquisition.

Tumor Segmentation
Enhancing tumor volumes were segmented from postsurgical,
postcontrast, T1w images by a semiautomated thresholding tech-
nique. A user drew a generous boundary around the tumor, and
subsequently, a thresholding technique based on Otsu thresholding
was applied to finalize tumor segmentation (18).

WM Selection
We studied both manual and automatic WM segmentation tech-
niques. The automatic technique (automated WM selection) was
designed to automatically select WM areas that were not af-
fected by tumor, based on the DSC MRI data. To select WM areas,
the DSC signal data were transformed to concentration images
(19). All the data before the time point of bolus entrance were
discarded. An unsupervised segmentation algorithm based on
mean shift (20, 21) was used to segment the different classes of
tissue based on the concentration–time curves. Because the
resulting clusters did not always correspond to WM, a WM atlas
was used to select the appropriate WM cluster. For this, we used
the ICBM 152 Nonlinear Atlas Version 2009 (22). To register the
T2-based atlas to the DSC perfusion scan, a symmetric diffeo-
morphic deformation model (that preserves anatomical topol-
ogy even in cases requiring large deformations) was used, with
mutual information as the similarity metric. The implementation
was based on the ANTs registration package (23). Pixels with at
least 95% WM probability were selected as the WM ROI.

For the manual WM ROI selection, two users used itk-SNAP
(24) to select areas of WM contralateral to the tumor region
(referred to as WM user 1 and WM user 2).

CBV Calculation Algorithm
The following steps were used to calculate the bolus entrance
and exit time points.

(1) The first 3 time points of each perfusion series are re-
moved because of saturation effects.

(2) The average signal–time curve for the brain region is
calculated.

(3) A continuous wavelet transform on the signal–time curve
is performed.

(4) The maxima and minima at each scale and link across
each scale are identified. The links are used to identify the
maxima and minima of the curve.

(5) The signal minima and the two local maxima closest to it
are located.

Subsequently, the baseline signal intensity (SI) is calculated.
Next, the signal–time curves are converted to concentration–
time curves based on equation 1 as follows:

�2��t��� �ln �S�t� ⁄Sbase� ⁄ TE (1)

where �2*��t�� is the reflexivity–time curve and is a parameter
related to the concentration of the Gd in a voxel, S is the
dynamic SI, Sbase is the baseline, TE is the echo time, and S(t) is
the dynamic SI.
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CBV maps are then calculated on a voxel-wise basis using
trapezoidal integration of the leakage-corrected (11) concentra-
tion–time curves between entrance and exit bolus time points
recalculated for each individual pixel’s corresponding concen-

tration curve. The CBV parametric map calculation is highly
affected by the selection of these points, as different choices can
lead to under- or overestimation of the integration area. The
rCBV map is then calculated by dividing all intensities by the

Figure 2. Bland–Altman plots for the mean relative cerebral blood volume (rCBV) values between the Food and Drug
Administration (FDA)-approved and the proposed software systems for the mean rCBV measurement. The solid line repre-
sents the mean value for the data points and the slashed line represents the 2*SD.

Figure 1. Proposed system pro-
cessing pipeline.
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mean intensity of the normal-appearing white matter CBV
value.

FDA-Approved Software Utilization
One operator created rCBV images from the DSC-MRIs using IB
Neuro ver. 1.1 (Imaging Biometrics, Elm Grove, Wisconsin), as
no interaction is required beyond loading the magnetic reso-
nance images. Three operators used FuncTool ver. 4.5.3 (GE
Healthcare) and nordicICE ver. 2.3.13 (NordicNeuroLab, Bergen,
Norway). An effort was made to operate FuncTool and nordicICE
in a similar way. FuncTool required manual selection of the
prebolus baseline and integration starting and stopping time
points, whereas nordicICE required manual specification of the
prebolus baseline only when its automatic selection algorithm
failed (7/43 cases). We used default settings for nordicICE and IB
Neuro, except that leakage correction was enabled. For Func-
Tool, the baseline was interpolated between the integration time
points. No leakage correction option was available in this ver-
sion of the FuncTool.

Statistical Methods
We compared our rCBV calculations against the 3 FDA-ap-
proved software tools’ calculations using Bland–Altman analy-
sis and the intraclass correlation coefficient (ICC). The 1-way
random-effects model was used (25). The ICC reveals how
strongly units in the same group resemble each other. In com-
parison with other correlation measures, it treats the data as
groups rather than as paired observations. The analysis was
performed for the tumor and the WM rCBV values.

RESULTS
The proposed and the FDA-approved software were used to
create the CBV maps. Subsequently, the 3 ROIs available (1
automatic and 2 user-defined ROIs) were used to normalize the
CBV maps. Subsequently, 2 first-order statistics, the mean value,
and the 95th percentile, were calculated for each patient of the
data set. Figure 1 illustrates the processing pipeline of the pro-
posed system.

Figure 3. Bland–Altman plots for the 95th percentile rCBV values between the FDA-approved and the proposed soft-
ware systems for the 95th percentile rCBV measurement. The solid line represents the mean value for the data points
and the dashed line represents the 2*SD.
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The proposed system shows excellent agreement with 2 of the
3 FDA-approved software considered in this study. Figures 2 and 3
are the Bland–Altman plots for the difference in measured values
between the FDA-approved and the proposed system for the mean
and 95th percentile of rCBV, respectively. Based on the plots, the
proposed system falls within 2 standard deviations (SDs) of the
FDA-approved software systems, which is similar to the agreement
between the 2 FDA cleared systems. A larger bias was observed in
case of NordicICE compared with our system (0.20 and 1.34 for
mean rCBV and 95th percentile rCBV, respectively).

Figures 2 and 3 reveal the difference between the mean and
the 95th percentile rCBV in the sensitivity of the imaging bio-
markers, as 95th percentile reflects only a very small number of
pixels, and thus is more sensitive to local artifacts. Smoothing or
low-pass filtering will also affect this measure.

Figures 4 and 5 correspond to Bland–Altman plots for the
difference of measured values between the two packages requir-
ing user interaction (mean and 95th rCBV, respectively). In all

cases for the mean rCBV, the bias was �0.03. The largest 2*SD
observed was 0.41 in the case of FuncTool for users 1 and 2. This
range is comparable with the range observed between the pro-
posed system and the 3 FDA-approved software. The 95th rCBV
and the 2*SD are lower than those observed for the software
comparison in all cases.

Figure 6 displays the Bland–Altman plots for rCBV values
corresponding to the area of a tumor selected from our data set
for all software tools considered in this study. Proportional bias
is observed between FuncTool and the proposed method. The
existence of proportional bias indicates that the methods do not
agree equally through the range of measurements. This can be
attributed to the smoothing observed in the CBV maps created
by FuncTool (Figure 7). Figures 7 and 8 depict the CBV maps
created by the 4 software tools considered in this study for 2
different subjects.

Table 1 summarizes the ICC for both mean and 95th per-
centile rCBV for all the comparisons considered in this study and

Figure 4. Bland–Altman plots for the mean rCBV values between FDA-approved software requiring user input for the mean
rCBV measurement. The solid line represents the mean value for the data points and the dashed line represents the 2*SD.
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Figure 5. Bland–Altman plots for the 95th percentile rCBV values between FDA-approved software requiring user input
for the 95th percentile rCBV measurement. The solid line represents the mean value for the data points and the dashed
line represents the 2*SD.

Figure 6. Bland–Altman plots for rCBV values corresponding to a specific tumor between all FDA-approved software
systems with different user setup and the proposed system. The solid line represents the mean value for the data points
and the dashed line represents the 2*SD.
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all the methods for normalization used in this study. The results
from the proposed system correlate better with IBNeuro and
FuncTool. FuncTool results are less correlated with IBNeuro,
whereas ICC is good between FuncTool and IBNeuro. The ICC for
all the comparisons considered between the same software op-
erated by different people was �0.880 with the exception of
FuncTool when operated by user 1 versus user 2.

Little variability in agreement between software tools was
observed when using different WM selection techniques. All soft-
ware tools yielded high ICC for both the 95th and mean rCBV
metrics for both automated and manual WM selection techniques.

DISCUSSION
Here, we present a method for estimating rCBV metrics from
DSC-MRI with an automated WM selection step using a proba-
bilistic atlas to further standardize rCBV calculation. This auto-
mated technique was found to be in close agreement with
manual WM selection.

Our software is in good agreement with IBNeuro and FuncTool
for tumor rCBV measurements of both mean and the 95th percentile
values based on ICC. Mean rCBV ICC values are higher than the 95th
percentile measures, most likely because the 95th percentile value is
more sensitive to outliers, as it reflects a much smaller sample size.

Figure 7. Cerebral blood volume
(CBV) maps created with the soft-
ware tools used in this study and
the corresponding post-contrast T1
image.

Figure 8. CBV maps created
with NordicICE (row 1) and Func-
Tool (row 2) produced by the 3
operators participating in this
study.
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User interaction can lead to increased variation in the rCBV
measurements (Figures 4 and 5), which is more pronounced in
the case of NordicICE.

We compared both the rCBV metrics originating from tumor
regions and from WM ROIs, both manually and by automatic selec-
tion. The ICC for measures extracted from the tumor ROI for each
software comparison for the different WM selection methods was
similar, revealing good agreement in the majority of the comparisons.
This was not observed when using the ROI selections made by user 2.

Calculation of rCBV for the tumor region is expected to be
more complicated because of leakage effects. However, based on
our analysis, it seems that WM rCBV values vary by software
package. Selection of the normalizing WM ROI is crucial, as it can
lead to further increases in the variation of rCBV measurements.

Further investigation is needed with respect to the variation
introduced because of the software used for rCBV calculation and

the clinical impact. Recently, Kelm et al. (6) showed that the soft-
ware used for rCBV calculation can result in very different values,
and that across a range of clinically relevant thresholds, clinical
decisions will be different in a large fraction of patients. Hu et al.
(7), recently, compared IBNeuro and NordicICE modeling methods
in a cohort of 52 patients with glioma. They found that IBNeuro
showed significantly better T1w leakage correction compared with
NordicICE. Similarly, rCBV, as measured on IBNeuro, showed
stronger correlation with image-guided microvessel quantification
and higher accuracy in predicting tumor recurrence from pseu-
doprogression/radiation necrosis, based on validation by surgi-
cal histologic tumor quantification. Orsingher et al. (26) also
found significant differences in rCBV values when comparing
General Electric and NordicICE software packages. The findings
of both these studies coincide with the findings of the current
study.

Table 1. ICC for the 3 Software and Our Tool

ROI Comparisons

Tumor–ICC
(95th percentile

rCBV)
Tumor–ICC

(mean rCBV)

WM–ICC
(95th percentile

rCBV)
WM–ICC

(mean rCBV)

Automated WM
selection

NordicICE vs proposed 0.664 0.770 0.754 0.800

IBneuro vs proposed 0.868 0.780 0.881 0.823

FuncTool vs proposed 0.803 0.810 0.795 0.845

NordicICE vs IBneuro 0.572 0.680 0.657 0.699

FuncTool vs IBneuro 0.700 0.670 0.745 0.779

NordicICE (user 1) vs NordicICE (user 2) 0.977 0.900 0.77 0.824

NordicICE (user 1) vs NordicICE (user 3) 0.949 0.880 0.784 0.794

FuncTool (user 1) vs FuncTool (user 2) 0.922 0.920 0.754 0.806

FuncTool (user 1) vs FuncTool (user 3) 0.893 0.830 0.815 0.927

NordicICE vs FuncTool 0.156 0.160 0.767 0.864

WM user 1 NordicICE vs proposed 0.57 0.515 0.952 0.908

IBneuro vs PROPOSED 0.745 0.821 0.732 0.632

FuncTool vs proposed 0.759 0.804 0.933 0.921

NordicICE vs IBneuro 0.353 0.539 0.743 0.771

FuncTool vs IBneuro 0.744 0.757 0.738 0.708

NordicICE (user 1) vs NordicICE (user 2) 0.951 0.939 0.745 0.769

NordicICE (user 1) vs NordicICE (user 3) 0.958 0.917 0.71 0.83

FuncTool (user 1) vs FuncTool (user 2) 0.932 0.834 0.79 0.807

FuncTool (user 1) vs FuncTool (user 3) 0.895 0.894 0.985 0.988

NordicICE vs FuncTool 0.17 0.305 0.936 0.928

WM user 2 NordicICE vs proposed 0.569 0.606 0.823 0.742

IBneuro vs proposed 0.754 0.814 0.773 0.605

FuncTool vs proposed 0.782 0.822 0.787 0.747

NordicICE vs IBneuro 0.401 0.674 0.767 0.645

FuncTool vs IBneuro 0.743 0.804 0.685 0.624

NordicICE (user 1) vs NordicICE (user 2) 0.949 0.941 0.846 0.852

NordicICE (user 1) vs NordicICE (user 3) 0.944 0.912 0.716 0.836

FuncTool (user 1) vs FuncTool (user 2) 0.724 0.639 0.877 0.854

FuncTool (user 1) vs FuncTool (user 3) 0.717 0.697 0.99 0.972

NordicICE vs FuncTool 0.018 0.161 0.863 0.787

Abbreviations: ROI, regions of interest; ICC, intraclass correlation coefficient; WM, white matter; rCBV, relative cerebral blood volume.
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One of the limiting factors of this study is the fact that
proprietary commercial packages were used and thus many
details of the algorithmic implementation were unavailable for
explaining the differences observed. The variation in measure-
ments seen is likely due to differences in how the DSC-MRI
intensities are modeled. Other limitations of this study include
the use of spin echo technique with less than a single-dose bolus
injection and low amounts of preload dose. Gradient-echo T2*-
weighted DSC represents the more commonly used and widely
published method for DSC. Although spin echo T2-weighted
DSC offers a higher signal-to-noise ratio and fewer susceptibil-
ity artifacts, double or triple doses of contrast bolus may be
required to achieve sufficient bolus response in every case (7).

In addition, the images used for this work were obtained on
just one vendor platform (a limitation imposed by one of the

software packages we compared). However, we expect that in-
cluding more scanner vendor platforms would likely increase
the variance between software.

The proposed algorithm and the analysis was performed
using Python (Python, Python Software Foundation: v.2.7.4,
numpy: v.1.8.1, scipy: v.0.13.3, matplotlib: v1.5.0).

CONCLUSION
We describe an automatic algorithm for rCBV calculation that
includes leakage correction and an automated step for WM
selection. The algorithm was evaluated against 3 FDA-approved
software packages with respect to tumor and WM ROIs. The
proposed system has good agreement with 2 out of 3 software
tools considered.

ACKNOWLEDGMENTS
PK and BJE are supported by the National Cancer Institute (NCI) under Grant/Award
Number CA160045. TLK is supported by the National Institute of Diabetes and Digestive

and Kidney Diseases (NIDDK) under Grant/Award Number P30 DK090728 and the
PKD Foundation under Grant Number 206g16a.

REFERENCES
1. Boxerman JL, Ellingson BM, Jeyapalan S, Elinzano H, Harris RJ, Rogg JM, Pope

WB, Safran H. Longitudinal DSC-MRI for distinguishing tumor recurrence from
pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol. 2014.
[Epub ahead of print]. doi: 10.1097/COC.0000000000000156

2. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, Shi W, Beal K,
Omuro AM. MRI perfusion in determining pseudoprogression in patients with glio-
blastoma. Clin Imaging. 2013;37(1):41–49.

3. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G. Com-
parison of cerebral blood volume and vascular permeability from dynamic sus-
ceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am
J Neuroradiol. 2004;25(5):746–755.

4. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfi-
nos JG, Zagzag D, Johnson G. Gliomas: predicting time to progression or survival
with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-
enhanced perfusion MR imaging. Radiology. 2008;247(2):490–498.

5. Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K, Ittrich C,
Lichy MP, Kroll A, Debus J, Giesel FL, Hartmann M, Essig M. Diagnostic perfor-
mance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurol-
ogy. 2006;66(12):1899–1906.

6. Kelm ZS, Korfiatis PD, Lingineni RK, Daniels JR, Buckner JC, Lachance DH, Parney
IF, Carter RE, Erickson BJ. Variability and accuracy of different software packages
for dynamic susceptibility contrast magnetic resonance imaging for distinguishing
glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham).
2015;2(2):026001.

7. Hu LS, Kelm Z, Korfiatis P, Dueck AC, Elrod C, Ellingson BM, Kaufmann TJ, Esch-
bacher JM, Karis JP, Smith K, Nakaji P, Brinkman D, Pafundi D, Baxter LC, Erick-
son BJ. Impact of software modeling on the accuracy of perfusion MRI in glioma.
AJNR Am J Neuroradiol. 2015;36(12):2242–2249.

8. Prah MA, Stufflebeam SM, Paulson ES, Kalpathy-Cramer J, Gerstner ER, Batchelor
TT, Barboriak DP, Rosen BR, Schmainda KM. Repeatability of standardized and
normalized relative CBV in patients with newly diagnosed glioblastoma. AJNR
Am J Neuroradiol. 2015;36(9):1654–1661.

9. Hu LS, Baxter LC, Pinnaduwage DS, Paine TL, Karis JP, Feuerstein BG, Schmainda
KM, Dueck AC, Debbins J, Smith KA, Nakaji P, Eschbacher JM, Coons SW,
Heiserman JE. Optimized preload leakage-correction methods to improve the diag-
nostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR
imaging in posttreatment gliomas. AJNR Am J Neuroradiol. 2010;31(1):40–48.

10. Boxerman JL, Prah DE, Paulson ES, Machan JT, Bedekar D, Schmainda KM. The
Role of preload and leakage correction in Gd-based cerebral blood volume esti-
mation determined by comparison with MION as a criterion standard. AJNR Am
J Neuroradiol. 2012;33(6):1081–1087.

11. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume
maps corrected for contrast agent extravasation significantly correlate with
glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol.
2006;27(4):859–867.

12. Essock-Burns E, Phillips JJ, Molinaro AM, Lupo JM, Cha S, Chang SM, Nelson SJ.
Comparison of DSC-MRI post-processing techniques in predicting microvascular
histopathology in patients newly diagnosed with GBM. J Magn Reson Imaging.
2013;38(2):388–400.

13. Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and
vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI.
Magn Reson Med. 2004;51(5):961–968.

14. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted con-
trast-enhanced MR methods: recommendations for measuring relative cerebral
blood volume in brain tumors. Radiology. 2008;249(2):601–613.

15. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG,
Gerstner ER, Schmainda KM, Paynabar K, Wu O, Wen PY, Batchelor T, Rosen
B, Stufflebeam SM. Repeatability of cerebral perfusion using dynamic susceptibil-
ity contrast MRI in glioblastoma patients. Transl Oncol. 2015;8(3):137–146.

16. Meijs M, Christensen S, Lansberg MG, Albers GW, Calamante F. Analysis of
perfusion MRI in stroke: to deconvolve, or not to deconvolve. Magn Reson Med.
2016;76(4):1282–1290.

17. Emblem KE, Bjornerud A. An automatic procedure for normalization of cerebral
blood volume maps in dynamic susceptibility contrast-based glioma imaging.
AJNR Am J Neuroradiol. 2009;30(10):1929–1932.

18. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst
Man Cybern Syst. 1979;9(1):62–66.

19. Willats L, Calamante F. The 39 steps: evading error and deciphering the secrets
for accurate dynamic susceptibility contrast MRI. NMR Biomed. 2013;26(8):
913–931.

20. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space anal-
ysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–619.

21. Mayer A, Greenspan H. An adaptive mean-shift framework for MRI brain seg-
mentation. IEEE Trans Med Imaging. 2009;28(8):1238–1250.

22. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL; Brain Devel-
opment Cooperative Group. Unbiased average age-appropriate atlases for pedi-
atric studies. Neuroimage. 2011;54(1):313–327.

23. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible eval-
uation of ANTs similarity metric performance in brain image registration. Neuro-
image. 2011;54(3):2033–2044.

24. Yushkevich PA, Piven J, Hazlett HC, Gimpel Smith R, Ho S, Gee JC, Gerig G.
User-guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability. Neuroimage. 2006;31(3):1116–1128.

25. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psy-
chol Bull. 1979;86(2):420–428.

26. Orsingher L, Piccinini S, Crisi G. Differences in dynamic susceptibility contrast
MR perfusion maps generated by different methods implemented in commercial
software. J Comput Assist Tomogr. 2014;38(5):647–654.

DSC-MRI Quantification Software Tool

456 TOMOGRAPHY.ORG | VOLUME 2 NUMBER 4 | DECEMBER 2016


