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A 17-Gene Signature Predicted Prognosis in Renal Cell Carcinoma
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Renal cell carcinoma (RCC), which was one of the most common malignant tumors in urinary system, had gradually increased
incidence and mortality in recent years. Although significant advances had been made in molecular and biology research on the
pathogenesis of RCC, effective treatments and prognostic indicators were still lacking. In order to predict the prognosis of RCC
better, we identified 17 genes that were associated with the overall survival (OS) of RCC patients from The Cancer Genome
Atlas (TCGA) dataset and a 17-gene signature was developed. Through SurvExpress, we analyzed the expression differences of
the 17 genes and their correlation with the survival of RCC patients in five datasets (ZHAO, TCGA, KIPAN, KIRC, and KIRP),
and then evaluated the survival prognostic significance of the 17-gene signature for RCC. Our results showed that the 17-gene
signature had a predictive prognostic value not only in single pathologic RCC, but also in multiple pathologic types of RCC. In
conclusion, the 17-gene signature model was related to the survival of RCC patients and could help predict the prognosis with
significant clinical implications.

1. Introduction

Renal cell carcinoma (RCC), the main form of kidney cancer,
was the second most common cancer in the urological sys-
tem and accounted for approximately 3% of malignant neo-
plasms worldwide [1]. It included a variety of malignant
tumors that originated from renal tubular epithelial cells
and up to 85% of kidney cancer belonged to RCC [2]. The
incidence and mortality had gradually increased in recent
years [3]. RCC was usually sporadic (about 96%), but occa-
sionally familial (about 4%), and it was often associated with
specific gene mutations [4]. It occurred more frequently in
men than in women (ratio of 1.7 : 1), and most people were
older, with an average age of 64 years [5, 6]. Clear cell renal
cell carcinoma (ccRCC) accounted for 80-90% of RCC [7,
8] and was the predominant histological subtype character-
ized by its resistance to conventional chemotherapy and
radiotherapy [9].

Although surgical tumor resection was an effective
treatment for RCC at present [10–12], radical surgery can-
not completely cure RCC [13, 14]. Recent studies had
focused on the possibility of combining strategy for improv-

ing the therapeutic value of existing standard therapies,
including chemotherapy and radiotherapy [15, 16]; how-
ever, RCC was not sensitive to radiotherapy and chemo-
therapy [17, 18]. Patients in early stage of RCC (>50% of
cases) had a favorable prognosis after nephrectomy, with
the 5-year survival rate of about 81%. However, 10-30% of
patients with early RCC would undergo tumor recurrence
after nephrectomy [19], and about 20% of patients had pre-
sented metastatic diseases when they came for treatment
[20]. The common metastatic sites of RCC included the
brain, lung, and bones. In patients with metastatic diseases,
the median survival time ranged from 6 to 12 months [21].
For advanced stage of RCC, systemic therapy was the foun-
dational treatment. On account of the extremely high rate
of local invasion and metastasis, as well as the resistance
to chemotherapy and radiotherapy, over 30% of RCC
patients with metastasis had a 5-year survival rate below
20% [22, 23], which indicated a poor long-term prognosis.
Therefore, it was essential to research on the development
mechanism of RCC at molecular level. This may help
determine the invasion and metastasis ability of RCC and
its malignancy, predict the prognosis of RCC, develop a
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reasonable treatment program, and provide new ideas for
molecular targeted therapy.

In order to solve this unmet need, a prognostic 17-gene
signature model was developed. We hypothesized that this
17-gene signature may reflect the risk level of adverse clinical
outcomes in RCC, which may be useful to correctly predict
the overall survival (OS) of RCC and aid the clinicians in
treatment planning.

2. Materials and Methods

2.1. Selection and Analysis of Databases. All the data were
analyzed using SurvExpress (http://bioinformatica.mty
.itesm.mx:8080/Biomatec/SurvivaX.jsp). SurvExpress was a
comprehensive gene expression analysis tool that was based
on a number of databases. It can provide risk assessment
and survival analysis in many cancer datasets [24, 25]. In this
analysis, SurvExpress was used to provide Kaplan-Meier log
rank analysis, risk evaluation, etc. For RCC, SurvExpress
incorporated 11 independent public databases. In our study,
we only included databases with a sample number greater
than 100, and five databases (ZHAO, TCGA, KIPAN, KIRC
and KIRP) were screened out, containing a total of 19698
coding genes. Then, 3761 genes associated with the prognosis
of RCC were selected out in the TCGA database from the
19698 genes (p < 0:001). After that, the 3761 genes were
sorted by p value and the top 99 genes were combined. In this
combination, genes with a significant difference in expression
levels were picked out to form a 17-gene signature (Figure 1).
Their gene ID, full name, and function were shown in
Table 1.

2.2. Study Design. Using SurvExpress, we analyzed the
expression differences of the 17 genes and their correlation
with the survival of RCC patients in the five datasets (ZHAO,
TCGA, KIPAN, KIRC and KIRP), and then evaluated the
survival prognostic significance of the 17-gene signature for
RCC (Table 1). The prognostic index (PI), which was also
known as the risk score, was often used to perform risk
assessment and generate risk groups. The PI was the linear
component of the Cox model, PI = b1x1 + b2x2+⋯+bixi,
where the bi can be obtained from the Cox fitting and xi

was the expression value. Each bi can be construed as a risk
parameter [26]. According to the PI formula, each patient
had a corresponding PI. Sort PI from low to high and select
the optimal cut-off value. Then, the patients were divided
into high-risk and low-risk groups according to the optimal
cut-off value (Figure 2).

2.3. Statistical Analysis. To evaluate the prognostic value
of the 17-gene signature, Kaplan-Meier estimator was used
to plot survival curves and the log-rank test was per-
formed to compare the differences between the two groups
[26, 27]. Kaplan-Meier can also be used to provide the
receiver operating characteristic (ROC) curve to determine
the accuracy of the 17-gene signature in predicting the
prognosis of RCC. The ROC analysis was a tool used to
describe the discrimination accuracy of a diagnostic test
or prediction model [28]. One of the most commonly
used ROC summary indices was the area under the
ROC curve (AUC). The AUC values were calculated from
the ROC curve [28, 29]. p < 0:05 was considered to be sta-
tistically significant.

3. Results

3.1. Survival Analysis of the 17 Genes in TCGA Dataset. We
analyzed the expression differences of the 17 genes in TCGA
dataset with SurvExpress. The gene ID, full name, and func-
tion were obtained from the NCBI FTP site and GeneCards.
Our analysis showed that the 17 genes all had significant
prognostic differences in the TCGA database (p < 0:001)
(Table 1).

3.2. Sort PI from Low to High and Select the Optimal Cut-off
Value. Sort PI from low to high and select the optimal cut-
off value. The optimal cut-off values of PI in the five data-
bases (TCGA, KIRC, KIRP, KIPAN, and ZHAO) were
11.13, 14.67, 16.5, 16.81, and 0.355 (Figure 1). Then, the
patients were divided into high-risk and low-risk groups
according to the optimal cut-off value (Figure 2).

3.3. The 17-Gene Signature Showed a Predictive Prognostic
Significance in RCC. Survival differences between predicted
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Figure 1: The procedure flow chart of SurvExpress. Schematic overview of the procedure used in our study to construct the 17-gene signature.
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Table 1: The expression differences of the 17 genes in TCGA dataset with SurvExpress.

Gene
Gene
ID

Full name Function HR (95% CI) p value

P3H1 64175 Prolyl 3-hydroxylase 1
Has prolyl 3-hydroxylase activity and growth

suppressive activity in fibroblasts and involve in the
secretory pathway of cells

2.96 (2.09-4.18) 9.25E-10

JAK3 3718 Janus kinase 3

Nonreceptor tyrosine kinase involved in various
processes such as cell growth, development, or

differentiation. Mediate essential signaling in both
innate and adaptive immunity and hematopoiesis

during T cell development.

3.04 (2.13-4.33) 8.521E-10

PTTG1 9232
Pituitary tumor-transforming

1

Regulatory protein which plays a central role in
chromosome stability, the p53/TP53 pathway, and

DNA repair
3.07 (2.15-4.4) 7.852E-10

B3GNTL1 146712
BetaGal beta-1,3-N-

acetylglucosaminyltransferase
like 1

Putative glycosyltransferase. 3.02 (2.12-4.29) 7.533E-10

ARPC3 10094
Actin-related protein 2/3

complex subunit 3

Localize to the lamellipodia of stationary and locomote
fibroblasts, inducing actin polymerization and potentially

participating in lamellipodial protrusion
3.08 (2.15-4.41) 7E-10

SLC27A2 26458
Solute carrier family 27 (fatty
acid transporter), member 2

Acyl-CoA synthetase probably involves in bile acid
metabolism. May have additional roles in fatty acid
metabolism and be involved in translocation of

long-chain fatty acids across membranes

3.01 (2.12-4.28) 6.999E-10

PHOSPHO2 73373 Phosphatase, orphan 2

High activity toward pyridoxal 5′-phosphate. Also
active at a much lower level toward

phosphoethanolamine, pyrophosphate,
phosphocholine, phospho-l-tyrosine,

fructose-6-phosphate, p-nitrophenyl phosphate,
and h-glycerophosphate.

3.01 (2.12-4.27) 6.661E-10

SKA1 220134
Spindle- and kinetochore-

associated complex subunit 1

Component of the SKA1 complex that is essential for
proper chromosome segregation. High expression levels
of SKA1 were significantly associated with low DFS.

3.09 (2.16-4.41) 5.455E-10

TMEM232 642987 Transmembrane protein 232 Unclear. 3.00 (2.12-4.23) 4.299E-10

SOWAHB 345079
Sosondowah ankyrin repeat
domain family member B

Unclear. 3.10 (2.17-4.42) 4.173E-10

CCDC121 403180
Coiled-coil domain-

containing 121
Unclear. 3.14 (2-4.47) 2.512E-10

MARS 4141 Methionyl-tRNA synthetase
A protein-coding gene plays a role in the synthesis of

ribosomal RNA in the nucleolus.
3.09 (2.18-4.37) 1.969E-10

ADH5 128
Alcohol dehydrogenase 5
(class III), chi polypeptide

Catalyze the oxidation of long-chain primary alcohols
and the oxidation of S-(hydroxymethyl) glutathione.
Also oxidize long-chain omega-hydroxy fatty acids.

3.19 (2.24-4.56) 1.649E-10

DVL3 1857
Dishevelled segment polarity

protein 3
Involve in the signal transduction pathway mediated by

multiple Wnt genes.
3.17 (2.23-4.49) 9.754E-11

CDC14B 8555 Cell division cycle 14B

Dual-specificity phosphatase involved in DNA damage
response. Essential regulator of the G2 DNA damage
checkpoint, a key activator of the anaphase-promoting

complex/cyclosome (APC/C).

3.32 (2.32-4.74) 5.069E-11

FBXO3 26273 F-box protein 3

Substrate recognition component of the SCF
(SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase
complex. Mediate the ubiquitination of HIPK2 and

probably that of EP300, leading to rapid degradation by
the proteasome.

3.32 (2.32-4.74) 4.352E-11

CARS 833 Cysteinyl-tRNA synthetase

An important tumor-suppressor gene. Alterations in
this region is associated with Beckwith-Wiedemann
syndrome; Wilms tumor; adrenocortical carcinoma;

and lung, ovarian, and breast cancers,
rhabdomyosarcoma.

3.69 (2.56-5.33) 2.533E-12
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Figure 2: Continued.
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low-risk and high-risk groups were evaluated with Kaplan-
Meier survival curves (Figure 3). TCGA data showed that
the prognosis of patients with low risk (n = 272) was sig-
nificantly better than high-risk group patients (n = 196)
(HR ð95%CIÞ = 4:05 (2.85-5.74), p < 0:001) (Figure 3(a)).
KIRC database was a corresponding database for kidney
renal clear cell carcinoma, which also showed a prognostic
value of the 17-gene signature (p < 0:001) (Figure 3(b)).
The research object of KIRP database was kidney renal pap-
illary cell carcinoma. Likewise, our analysis found a signifi-
cant prognostic difference between the two groups (n = 240
in the low-risk group and n = 38 in the high-risk group)
(HR ð95%CIÞ = 9:58 (4.97-18.45), p < 0:001) (Figure 3(c)).
KIPAN incorporated three types of kidney cancer, including
kidney chromophobe, kidney renal clear cell carcinoma, and
kidney renal papillary cell carcinoma. For the comprehensive
KIPAN database, our 17-gene signature had a significant
predictive significance as well (p < 0:001) (Figure 3(d)).
ZHAO database (GSE3538) revealed a significant prognos-
tic difference between the low-risk group (n = 115) and
the high-risk group (n = 62) (HR ð95%CIÞ = 2:27 (1.49-
3.47), p < 0:001), indicating that the 17-gene signature can

also be used as a prognostic indicator in the ZHAO data-
base (Figure 3(e)). In conclusion, our results demonstrated
that the 17-gene signature had a predictive prognostic value
not only in single pathologic RCC but also in multiple path-
ologic types of RCC.

3.4. The Accuracy Analysis of the 17-Gene Signature in
Predicting the Prognosis of RCC. In order to determine the
accuracy of the 17-gene signature in predicting the prognosis
of RCC, we conducted the true positives and false positives
analysis by SurvExpress (Figure 4). The receiver operating
characteristic curve (ROC) for predicting 5-year survival
was obtained according to PI. The time points provided in
Figures 4(a) and 4(b) were months, while the time points in
Figures 4(c)–4(e) were days. Our analysis revealed that in dif-
ferent time points, different pathological types of RCC, and
different databases, the ROC curves all had an area under
the ROC curve (AUC) of greater than 0.6 (TCGA: 0.833,
KIRC: 0.813, KIRP: 0.812, KIPAN: 0.778, and ZHAO:
0.697), suggesting that the 17-gene signature had certain
accuracy in predicting RCC prognosis.
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Figure 2: Sort PI from low to high and select the optimal cut-off value. Then, the patients were divided into high-risk and low-risk groups
according to the optimal cut-off value. Red represented high-risk group and green represented low-risk group. Each figure was composed
of the upper gene expression heat map and the nether prognostic index graph. (a) TCGA database contained 468 patients (n = 154 in the
high-risk group, n = 314 in the low-risk group) and the optimal cut-off value of PI was 11.13. (b) KIRC database contained 415 patients
(n = 145 in the high-risk group, n = 270 in the low-risk group) and the optimal cut-off value of PI was 14.67. (c) KIRP database contained
278 patients (n = 41 in the high-risk group, n = 237 in the low-risk group) and the optimal cut-off value of PI was 16.5. (d) KIPAN
database contained 792 patients (n = 201 in the high-risk group, n = 591 in the low-risk group) and the optimal cut-off value of PI was
16.81. (e) ZHAO database contained 177 patients (n = 87 in the high-risk group, n = 90 in the low-risk group) and the optimal cut-off
value of PI was 0.355. (f) The optimal cut-off value of the five databases (TCGA: 11.13; KIPAN: 16.81; KIRC: 14.67; KIRP: 16.5; ZHAO: 0.355).
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4. Discussion

RCC was the third most common malignancy in the urogen-
ital system, which represented about 2% to 3% of cancers in
adults [30]. The genesis and progression of RCC involved
various factors, including carcinogenic substances and envi-
ronmental factors [31, 32]. Smoking and obesity were consid-

ered to be risk factors for the development of RCC [33]. RCC
was divided into four histological main subtypes [34]. In
general, WHO distinguished RCC into clear cell RCC
(ccRCC) and nonccRCC. Thereinto, ccRCC was the predom-
inant subtype of RCC [35].

RCC was classified as an “immunogenic” tumor based on
the following characteristics: spontaneous regression of the
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Figure 3: Survival differences between the predicted low-risk and high-risk groups were evaluated through Kaplan-Meier survival curves. The
results indicated that the prognosis of patients with low risk was all significantly better than that in the high-risk group in the TCGA (a), KIRC
(b), KIRP (c), KIPAN (d), and ZHAO (e) databases (p < 0:001).
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tumor, high levels of T cell infiltration in the tumor, and reac-
tivity to immunotherapy such as interleukin-2 (IL-2) and
interferon alpha (IFN-α) [36]. However, due to low efficacy
and high adverse reactions, these therapeutic measures were

not ideal. 30% of patients had already presented advanced
disease or other metastatic diseases when they came for treat-
ment [37]. Eventually, about 40% of patients died of metasta-
ses [38]. Therefore, it was urgently needed to find potential
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Figure 4: The accuracy analysis of the 17-gene signature in predicting the prognosis of RCC. Kaplan-Meier was used to obtain ROC curves.
The results showed that the ROC curves all had an area under the ROC curve (AUC) of greater than 0.6 in the five databases (TCGA, KIRC,
KIRP, KIPAN, and ZHAO) (p < 0:001).
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prognostic biomarkers to predict the prognosis of RCC and
draw up rational treatment programs.

In the present study, we first identified 17 genes associ-
ated with OS of RCC patients from the TCGA dataset.
Through SurvExpress, we analyzed the expression differences
of the 17 genes in RCC patients in the TCGA dataset. Our
analysis showed that the 17 genes had significant prognostic
differences in the TCGA database (p < 0:001). Then, a 17-
gene signature model was developed and its correlation with
the survival of RCC patients in the five datasets was analyzed,
respectively. The patients were divided into low-risk and
high-risk groups according to the optimal cut-off value.
Survival differences between the predicted low-risk and
high-risk groups were evaluated with Kaplan-Meier survival
curves. The results presented that the prognosis of patients
with low risk was all significantly better than that of high-
risk group patients in the five databases (p < 0:001), suggest-
ing that the 17-gene signature had a predictive prognostic
value not only in single pathologic RCC but also in multiple
pathologic types of RCC.

Finally, in order to determine the accuracy of the 17-gene
signature in predicting the prognosis of RCC, the receiver
operating characteristic curve (ROC) for predicting 5-year
survival was obtained according to PI. The value of AUC
was the size of the area under the ROC curve. Typically,
the AUC value was between 0.5 and 1.0, and larger AUC
represented better performance [30, 31]. Our analysis
revealed that the ROC curves all had an AUC of greater
than 0.6 in the five databases (p < 0:001), suggesting that
the 17-gene signature had certain accuracy in predicting
the prognosis of RCC.

5. Conclusions

In summary, our study demonstrated a survival prognostic
significance of a 17-gene signature for RCC. This may be a
potential prognostic tool to improve the adverse clinical out-
comes of RCC patients currently. Further prospective studies
were needed to determine whether the 17-gene signature can
be used clinically to benefit RCC patients.
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