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ABSTRACT: The Community Structure−Activity Resource (CSAR) recently held its first
blinded exercise based on data provided by Abbott, Vertex, and colleagues at the University of
Michigan, Ann Arbor. A total of 20 research groups submitted results for the benchmark
exercise where the goal was to compare different improvements for pose prediction,
enrichment, and relative ranking of congeneric series of compounds. The exercise was built
around blinded high-quality experimental data from four protein targets: LpxC, Urokinase,
Chk1, and Erk2. Pose prediction proved to be the most straightforward task, and most
methods were able to successfully reproduce binding poses when the crystal structure
employed was co-crystallized with a ligand from the same chemical series. Multiple evaluation
metrics were examined, and we found that RMSD and native contact metrics together provide
a robust evaluation of the predicted poses. It was notable that most scoring functions underpredicted contacts between the hetero
atoms (i.e., N, O, S, etc.) of the protein and ligand. Relative ranking was found to be the most difficult area for the methods, but
many of the scoring functions were able to properly identify Urokinase actives from the inactives in the series. Lastly, we found
that minimizing the protein and correcting histidine tautomeric states positively trended with low RMSD for pose prediction but
minimizing the ligand negatively trended. Pregenerated ligand conformations performed better than those that were generated
on the fly. Optimizing docking parameters and pretraining with the native ligand had a positive effect on the docking
performance as did using restraints, substructure fitting, and shape fitting. Lastly, for both sampling and ranking scoring functions,
the use of the empirical scoring function appeared to trend positively with the RMSD. Here, by combining the results of many
methods, we hope to provide a statistically relevant evaluation and elucidate specific shortcomings of docking methodology for
the community.

■ INTRODUCTION

Structure-based drug design (SBDD) is a valuable technology
that is seeing increased utilization to advance the process of
drug discovery research.1−6 A typical docking protocol is
comprised of two components: the search algorithm and
scoring function. An exhaustive search algorithm would account
for all possible binding poses by allowing both the protein and
ligand to be fully flexible; however, although ligand flexibility
can be accurately reproduced, replicating the innumerable
degrees of freedom of a protein is impractical due to the
enormity of the conformational space that must be searched.
Developing methods that incorporate protein flexibility in a
computationally tractable manner has been recognized as a
means to improve SBDD techniques.2,7−13 The scoring
function is used to evaluate and rank each pose by predicting
the binding affinity between the ligand and protein. Many
simplifications and assumptions are made to the scoring
function to increase its speed, such as neglecting entropy and
solvation, but these result in a loss of accuracy. Scoring function
development is also an active area of SBDD research.14−18

Benchmark Docking Exercises. In order to facilitate the
development of docking software, the Community Structure−

Activity Resource (CSAR) center was funded by the National
Institutes of Health (NIH) in 2008 to increase the amount of
high quality experimental data publicly available for develop-
ment, validation, and benchmarking of docking methodologies.
CSAR conducted its first benchmark exercise in 2010 with the
goal of (1) evaluating the current ability of the field to predict
the free energy of binding for protein−ligand complexes and
(2) investigating the properties of the complexes and methods
that appear to hinder scoring.19,20 This exercise illuminated that
scoring functions are still not able to successfully predict
binding affinity and, hence, are not capable of correctly rank
ordering ligands.20 Additionally, the size of the ligand did not
appear to affect the scoring quality, but hydrogen bonding and
torsional strain were found to be significantly different between
well-scored and poorly scored complexes. Detailed results from
most participants can be found in a special issue of the Journal
of Chemical Information and Modeling [J. Chem. Inf. Model.
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2011, 51, (9), 2025]. Previously in 2007, Nicholls and Jain
organized a Docking and Scoring Challenge with an emphasis
on developing standards for evaluation of methods, data set
preparation, and data set sharing.21 A second Challenge was
conducted in 2011, where it was found that GLIDE22,23 and
Surflex-Dock24,25 outperformed other methods tested in both
pose prediction and virtual screening (enrichment).26 A
prevalent theme that emerged from the various participants
was that optimizing the protein structures prior to docking
improved performance.27−29 Special issues of the Journal of
Computer-Aided Molecular Design were dedicated to both the
2007 competiton [J. Comput.-Aided Mol. Des. 2008, 22, (3−4),
131] and 2011 competition [J. Comput.-Aided Mol. Des. 2012,
26, (6), 675]; detailed evaluations from participating groups
can be found there. Moreover, OpenEye periodically runs the
SAMPL Experiment to assess additional aspects of computa-
tional modeling relevant to SBDD such as prediction of
vacuum−water transfer energies, binding affinities of aqueous
host−guest systems, prediction of solvation energies, tautomer
ratios, etc.30−32

Various groups have conducted independent evaluations of
docking programs and have found that many search routines
are capable of predicting the native binding pose of the ligand
within a RMSD of 2 Å for a range of protein targets.6,33

Furthermore, while not able to predict binding affinity well,
current methods have proven to be successful at enriching hit
rates (i.e., identifying active molecules from decoys).6,33,34

However, consistently ranking inhibitors with nM-level affinity
over those with μM-level affinity has proven to be a challenge,
as is identifying “activity cliffs” where small changes result in
significant increases or decreases in affinity. Most methods
appear to do well at either pose prediction or enrichment; only
a few are capable of successfully performing both.33 A further
caveat is that expert knowledge is necessary as small
modifications to the software’s parameters can have large
effects on the docking results.33,35

A review by Cole et al. discusses how assessing and
comparing the performance of docking software is a difficult
task and can be misleading as one is not always comparing
apples to apples.35 An additional study found that the quality of
the crystal structures in publicly available data sets can affect
docking results; poor resolution structures led to unsuccessful
docking and vice versa.36 To that end, it has become
increasingly clear that one major limitation to the field was a
large, standardized, high quality data set of experimentally
determined protein−ligand complexes.27,37−39 Furthermore,
computational chemists need reliable experimental data with
the complexes such as binding affinity, solubility, pKa, and
logP/logD of the ligand. The CSAR center was created to fulfill
this need, and details of our high quality data sets can be found
in our data set paper in the same CSAR special issue of the
Journal of Chemical Information and Modeling, along with a
review of other publically available data sets.40

Assessment. In addition to high quality data, proper
evaluation protocols are imperative to assess the performance
of the docking methodology.20,21,41 Pose prediction of the
native or cognate ligand is a common approach for evaluating
the search algorithm. Recently, this practice has been called into
question; however, we must take a step back and recognize that
while this task may not be performed regularly for drug
discovery purposes, it is an essential positive control in the
research lab. Cross-docking exercises are more relevant as they
are the actual application of the docking software and should be

conducted once it is confirmed that the method is capable of
reproducing native binding poses. A variety of measures exist
for evaluating pose predictions: RMSD (root-mean-square
deviation), DPI (data precision index)/RDE (relative displace-
ment error),41−43 number of native contacts predicted,44−46

RSR (real space R) and RSCC (real space correlation
coefficient),47 and coordinate error.39

RMSD is the standard for evaluating poses, but it can be
misleading. Crystal structures are simply a static snapshot of the
protein−ligand complex, but more importantly, the coordinates
are only a model of the true experimental data. Furthermore,
RMSD can be biased by the frame of reference; for example,
binding-site residues and a ligand can shift just 1 Å in flexible
docking and result in an artificially large RMSD despite
maintaining all relevant contacts. Lastly, a random placement of
a small ligand can have low RMSDs while symmetric molecules
that are not handled properly can produce artificially high
RMSD values.45 Native contacts appear to be a robust
measurement that can capture the complex interactions and,
used in combination with the RMSD, provide a thorough
evaluation of the predicted poses. Although noted in the
literature that a drawback of native contacts is its inability to be
automated,45 we have created an automated tool in python to
calculate both the percentage of native contacts correct
between the protein and predicted ligand pose and a raw
count of contacts (all contacts made between the protein and
predicted ligand pose).
To assess the performance of the scoring function in a virtual

screening-type application, enrichment and relative-ranking
studies are commonly employed. The area under the curve
(AUC) of receiver operator characteristic (ROC) curves48,49

based on the rank score are typically reported for enrichment;
this metric is able to assess how well a ranking function
identifies known inhibitors as high ranking and discriminates
them from inactive ligands. Standard correlation measures are
used to evaluate the ability of scoring functions to rank-order
active compounds, and sound statistical methods are necessary
to identify true trends in the data.20,35,39,41 Pearson’s correlation
(r) is typically employed to provide a linear relationship,
whereas Spearman’s rho (ρ) and Kendall’s tau (τ) measures the
strength of the nonparametric relationship between the ranks of
the data. Hence, r is a better measure for assessing absolute
predictions, while ρ and τ are more appropriate metrics for
relative ranking.
Here, we present an evaluation of the results from the CSAR

center’s first blinded benchmark exercise. In order to avoid a
winner-vs-loser mentality, participants were asked to submit
two sets of results and focus on testing a hypothesis of their
choice, rather than comparing their results to others. The
exercise concluded with a symposium at the Fall 2012 National
Meeting of the American Chemical Society (ACS) in
Philadelphia, with eight speakers and an open discussion
session.

Contributors. Most of the pose predictions and ranking
values evaluated were calculated by authors featured in the
same CSAR special issue of the Journal of Chemical
Information and Modeling, some by the CSAR team, and a
few by participants who spoke at the ACS symposium but were
unable to submit papers to the special issue due to various time
constraints. A variety of methods/codes were utilized in the
exercise and include Gold, MOE, AutoDock, AutoDock Vina,
MedusaDock, RosettaLigand, Schrödinger Induced Fit Dock,
Q-Mol, OEDocking, CDOCKER, ICM-VLS, BlurDock, Glide,
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MDock, Sol, and WILMA. Most are custom versions or in-
house software and were expert-guided docking protocols. To
provide anonymity to each group, they are denoted below as
A−U, and each method submitted as 1−6. If a group submitted
results using more than one docking program, they were
separated into multiple groups (i.e., A, B, and C). We have
done this to avoid a win−lose mentality as this benchmark
exercise is not meant to be a contest but rather a means to
elucidate important and common deficiencies across the
methods in predicting and scoring binding poses. Additionally,
a breakdown of the various sampling and ranking scoring
functions and docking program used by each group is provided
in Table 1. The docking programs are denoted a−r to once

again provide anonymity, but this allows the reader to
determine which groups used the same programs. Our hope
is that this study will help direct the computational community
to where the most significant effort is needed for future
methodology development.

■ METHODS
Data Set and Participation. The goal of the 2011−2012

blinded exercise was to compare different improvements for
docking and relative ranking of congeneric series of
compounds, testing three areas: (1) pose prediction, (2)
enrichment/discriminating active from inactives, and (3)
relative ranking. The exercise was built around blinded, high-
quality, experimental data from four protein targets: LpxC
(University of Michigan data), Urokinase (Abbott data), Chk1
(Abbott data), and Erk2 (Vertex data). Participants were
provided with a set of SMILES strings of the active and inactive
ligands, the pH of the assay used to determine the binding data,
and a PDB code to use for docking. Cross-docking studies, in
addition to an analysis of the active site, were conducted in-
house to determine the most appropriate PDB structure for use
with each target (3P3E50 for LpxC, 1OWE51 for Urokinase,
2E9N52 for Chk1, and 3I5Z53 for Erk2, as shown in Table 2).
Participants were asked to submit two sets of results and test a
hypothesis of their choice. Twenty groups worldwide
participated in the exercise where 17 sent pose predictions
(the majority sent in the top three poses using multiple
methods, resulting in 3250 total poses) and 18 sent in rankings
(the majority sent in one set of rankings using multiple
methods, resulting in 174 total rankings).
Obviously, participants were not told which ligands were

active or inactive (inactive ligands will not have corresponding
structures). As such, participating groups submitted poses of all
ligands, but only those with corresponding high-quality CSAR
structures were used in our pose prediction analysis. Active
molecules that do not have corresponding crystal structures
were also included in the enrichment/relative ranking portion
of the exercise. A summary of the number of CSAR protein−
ligand complexes and active/inactive molecules employed for
each target is provided in Table 2 along with the number of
predictions received for pose prediction and enrichment/
relative ranking broken down by protein. A complete
description of how the four data sets were curated and
prepared for this exercise can be found in ref 40.
An online questionnaire was sent to all participating groups

to gather additional data on the details of their methodology.
We had a 100% response rate and gathered the following
information: details on ligand setup, protein setup, and the
molecular docking protocol, in addition to thoughts on the
analysis conducted by the CSAR team. Having the method-
ology details used by each group allowed us to identify how
particular aspects of docking programs across multiple groups’
results affected the pose/ranking predictions.

Pose Prediction. RMSD and native contacts were used to
evaluate the predicted poses. All poses, the best pose, and the
top-scoring pose were evaluated for the predictions. We
superimposed the submitted protein−ligand complexes using
the wRMSD method54 to the unpublished CSAR crystal
structure to provide the same frame of reference. Groups were

Table 1. Breakdown of Employed Sampling and Ranking
Scoring Function and Docking Software for Each Group

group sampling scoring function ranking scoring function
docking
softwarea

A force field-based force field-based a
B force field-based force field-based b
C knowledge- and force

field-based combined
knowledg- and force field-

based combined
c

D knowledge-based knowledge-based d
E knowledge-based knowledge-based e
F empirical-based empirical-based f
G empirical-based empirical-based g
H force field-based force field-based h
I empirical-based empirical-based f
J empirical-based empirical-based i
K empirical-based force field-based j
L empirical-based empirical-based k
M force field-based knowledge-based l
N knowledge- and empirical-

based combined
knowledge- and empirical-

based combined
m

O force field-based empirical-based n
P crude shape

complementarity
knowledge-based o

Q knowledge-based knowledge- and empirical-
based combined

p

R force field- and empirical-
based combined

force field- and empirical-
based combined

l

S empirical-based empirical-based n
T force field-based and

shape/functionality-
based complementarity

force field-based and
shape/functionality-

based complementarity

q

U force field-based force field-based r
aDocking codes used by more than one group are shown in bold.

Table 2. Summary of Data Sets Employed in Benchmark Exercise and Predictions Received

protein
target data source

PDB structure
employed

# of
structures

pose predictions
received

# of active
ligands

# of inactive
ligands

ranking predictions
received

LpxC University of
Michigan

3P3E 4 458 3 8 39

Urokinase Abbott 1OWE 4 390 16 4 45
Chk1 Abbott 2E9N 14 1279 38 9 47
Erk2 Vertex 3I5Z 12 1123 39 − 43
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asked to dock into a protein conformation found in the PDB,
but the poses were compared back to the crystal structure
solved by the CSAR group. If only the ligand pose was sent, we
first placed it in the context of the suggested PDB structure for
the exercise (i.e., 3P3E for LpxC) and then performed the
superposition. Once the complex was superimposed, we
calculated the RMSD between the predicted ligand pose and
the crystallographic coordinates. Only heavy atoms were used,
and symmetry was accounted for in the calculation. The script
used was graciously donated by the Chemical Computing
Group and run in MOE 2010.11.55 A “correct” docking pose
was defined as having a RMSD of less than 2 Å.56,57 The RMSD
script was utilized to pull out the atom correspondence for each
ligand pose.
Additionally, a python script was written in-house to analyze

for hetero−hetero, carbon−carbon, and packing contacts
between the protein and predicted ligand pose. For the packing
contact, atom types are ignored and all contacts are counted.
Waters were not included in the analysis, but in the LpxC test
case, the catalytic zinc was included as part of the protein. If a
zinc atom was not present in any submission, the location of
the 3P3E catalytic zinc was used. The cutoff values used for the
interactions are as follows:

− O−O, O−N, O−F, N−N, and N−F ≤ 3.5 Å
(approximate hydrogen bonding and electrostatic inter-
actions)

− S-x, Br-x, Cl-x ≤ 3.8 Å, where x is O or N (approximate
longer and weaker electrostatic interactions)

− Zn-x ≤ 2.8 Å, where x is O or N (ion coordination)
− C−C ≤ 4.0 Å (capture tight and loose van der Waals

interactions)
− Packing ≤ 4.0 Å (capture all interactions)

Two types of analysis were conducted with the contacts: (1)
the number of native contacts correctly predicted (i.e., same
contacts as those in the co-crystal structure) and (2) a raw
count of contacts (i.e., all contacts made between the protein
and ligand). The number of native contacts correctly predicted
can be thought of as an assessment metric: Is the predicted
pose making the same contacts to the protein as in the native
co-crystal structure? Is this pose right or wrong? The raw count
is not an assessment of the pose per se but provides
information on the actual contacts being made between the
predicted pose and protein. Here, we are probing the reason

why the pose is different to elucidate the cause of the problem;
for example, which types of contacts are being sacrificed or
overpredicted by the various scoring functions.
For the number of native contacts correctly predicted, only

those contacts made between the predicted ligand pose and
protein structure that are also present in the CSAR co-crystal
structure (i.e., the native contacts) are summed and then
broken down by hetero−hetero contacts (%Het−Het) and
carbon−carbon contacts (%C−C) or as a total count (%Total).
The contact script accounts for the symmetry of the ligand and
histidine tautomers and residue equivalence. For example, a
contact to either aspartic acid acidic oxygen would count
equally. On the same note, we count all carbons in a residue
equally, and hence, a contact to any carbon would count.
For the raw count of pose contacts, all of the hetero−hetero

contacts made between the predicted ligand pose and protein
structure are summed up (Het−Het), then carbon−carbon
contacts (C−C), and finally packing contacts. We then
determined whether the pose overpredicted, underpredicted,
or had the same number of contacts in the co-crystal structure
within 10%. To obtain a 95% confidence interval, 10,000
random bootstrap samples of the raw count contact data were
taken with replacement. From each sample, the 95% confidence
interval was determined by the 2.5 percentile and 97.5
percentile of the distribution of overpredicted, underpredicted,
and same contacts from the bootstrap samples.
Furthermore, we have attempted to use RSRs and RSCCs for

the assessment of the predicted ligand poses. RSR and RSCC
provide a fit of the predicted ligand pose to the electron density
and, as such, are an evaluation based on the raw experimental
data. A crystal structure is a model. Hence, comparing back to
the experiment data will remove a layer of bias from the
evaluationthe error of the model is not propagated into the
analysis. Unfortunately, neither the RSR or RSCC values were
reproducible between the different versions of CCP458 used
(4.1.2 and 4.2.0). We were also unable to reproduce the values
reported by the Uppsala Electron Density Server (EDS)59 for
the original crystal structure. Because of this inconsistency, we
feel it is difficult to trust these values, and as such, they are not
used in our pose prediction analysis.

Ranking Evaluation and Statistical Analysis. We have
evaluated the ability of scoring functions to properly identify
the inactives in the series and their ability to rank-order the

Figure 1. RMSD box plot of the best pose for each protein−ligand complex broken down by group−method. The rectangular box indicates the
interquartile range (25−75%), and the bars the 1.5× interquartile range. The median is shown by the line in the box, and the diamond denotes the
mean and 95% confidence interval around the mean. The red bracket signifies the shortest interval that contains 50% of the data, and outliers are
indicated by squares above the bars. Group−method, which submitted scores for all ligands of LpxC, Urokinase, Chk1, and Erk2, are bolded.
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active compounds. ROC plots were generated to determine the
AUC;49 the greater the AUC, the better the ability of the
method to identify active over inactive compounds. To obtain
95% confidence intervals around the AUC, bootstrap sampling
was performed by randomly selecting samples with replacement
10,000 times. The size of each sample was the same as the size
of the set used to generate the ROC plot. The AUC was
calculated for each sample and the 2.5 percentile and 97.5
percentile of the resulting distribution of 10,000 AUC values
were computed to give the 95% confidence interval.25,60

Software was kindly provided by Ajay Jain to compute the
confidence intervals.
Pearson’s (r) parametric correlation coefficient and Spear-

man (ρ) and Kendall (τ) nonparametric correlation coefficients
were calculated to determine the correlation between the
predicted and known affinities. The software JMP61 was used to
calculate all statistics, unless otherwise noted. Fisher trans-
formations combined with standard deviations were used to
determine 95% confidence intervals around the Pearson
correlation and Spearman correlation.62 For the Kendall

statistic, the Fisher transformation cannot be used; therefore,
the approximation of 1.96 × (1 − τ2)((2(2n + 5))/(9n(n −
1)))1/2 was used to determine the 95% confidence interval.63 In
our previous evaluation paper, we discussed the use of heavy
atoms and SlogP as a “yardstick” to determine a baseline or null
correlation.20 Here, we have calculated the molecular weight of
the ligand and SlogP using MOE 2010.1155 as null control
cases and identified groups that are statistically significant from
these values. In order to compare the R2 values across
individual groups to the yardsticks, the variance in the residuals
from the linear regression were compared using Levene’s F-test
using R.64 A probability of a F-statistic less than 0.05 indicates
that the error between the two fits is statistically different.

■ RESULTS AND DISCUSSION

How well did methods perform overall on predicting
poses? Figure 1 shows a RMSD box plot of the best pose for
each protein−ligand complex broken up by group−method,
each method from each group. RMSD box plots provide the
distribution of the RMSD values and the associated statistics

Table 3. % Predictions <2 Å for Each Group−Method by Protein Target (Best Pose)a

LpxC % predictions <2 Å Urokinase % predictions <2 Å Chk1 % predictions <2 Å Erk2 % predictions <2 Å

group A-1 0.0 0.0 0.0 0.0
group B-1 100.0 100.0 71.4 50.0
group D-1 100.0 100.0 71.4 25.0
group D-2 100.0 100.0 71.4 25.0
group E-1 N/A N/A 0.0 100.0
group E-2 N/A 100.0 33.3 100.0
group G-1 100.0 50.0 42.9 41.7
group G-2 75.0 50.0 28.6 41.7
group H-1 75.0 50.0 28.6 50.0
group H-2 50.0 50.0 35.7 50.0
group I-1 100.0 0.0 28.6 0.0
group I-2 100.0 100.0 35.7 8.3
group I-3 100.0 75.0 28.6 0.0
group J-1 100.0 75.0 42.9 25.0
group J-2 100.0 75.0 42.9 25.0
group K-1 100.0 100.0 57.1 25.0
group K-2 N/A 100.0 78.6 41.7
group L-1 100.0 100.0 50.0 33.3
group L-2 100.0 100.0 28.6 41.7
group L-3 100.0 100.0 50.0 50.0
group M-1 100.0 75.0 28.6 8.3
group M-2 100.0 50.0 21.4 25.0
group M-3 100.0 100.0 14.3 0.0
group M-4 100.0 50.0 28.6 16.7
group N-1 0.0 100.0 23.1 0.0
group O-1 100.0 N/A 50.0 33.3
group P-1 100.0 100.0 28.6 0.0
group P-2 100.0 75.0 30.8 16.7
group P-3 75.0 100.0 21.4 9.1
group P-4 75.0 75.0 21.4 9.1
group Q-1 100.0 100.0 14.3 25.0
group R-1 0.0 25.0 21.4 0.0
group R-2 25.0 50.0 21.4 8.3
group S-1 100.0 75.0 7.1 16.7
group S-2 100.0 100.0 57.1 50.0
group T-1 25.0 25.0 21.4 0.0
group T-2 75.0 25.0 0.0 0.0
group U-1 50.0 66.7 100.0 0.0

aGroup−methods able to predict greater than or equal to 50% are bolded.
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(mean, median, 95% confidence interval around the mean,
interquartile range, outliers, etc.). For all protein targets
combined, the median RMSD across all group−methods was
3.0 Å. Additionally, 37% of the group−methods have a median
RMSD of less than 2.0 Å. The results were also broken down
by protein target; the RMSD box plots are provided in the
Supporting Information. The median RMSD was 1.14 Å for
LpxC, 1.25 Å for Urokinase, 3.50 Å for Chk1, and 5.03 Å for
Erk2. Table 3 provides a breakdown by protein on the percent
of predictions less than 2.0 Å for each group−method. Only
three groups (<10%) were able to predict well across all protein
systems (of these groups, two used empirical-based scoring
functions for sampling and ranking and one used force field-
based). This is not surprising as it is known that most scoring
functions are not robust enough to perform well across binding
sites of various sizes, accessibility, and chemical properties.
The best pose is presented because it attempts to remove the

bias of the scoring function on the results and asks if the
method was able to find the correct pose in the top three
predicted poses submitted by each group. We found that the
best pose was also the top scoring pose 50.6% of the time for all
protein targets combined, 58.6% for just LpxC, 46.7% for just
Urokinase, 50.3% for just Chk1, and 48.9% for just Erk2.
Essentially, scoring functions are predicting the best pose as the
top pose better than random but still not at the rate that is
necessary for drug discovery purposes. However, it is important
to note that in most cases for this analysis the trends are
essentially the same whether all poses, best poses, or top poses
are utilized.
Which test sets were most challenging for predicting

poses? Figure 2 shows a RMSD box plot of the best pose for

each protein−ligand complex broken down by protein. LpxC
and Urokinase had the smallest median RMSD (1.14 Å and
1.25 Å, respectfully) with Chk1 a bit higher (3.50 Å) and then
Erk2 (5.03 Å). As demonstrated in Table 3, the majority of
groups were able to predict 75−100% of LpxC and Urokinase
poses with a RMSD of less than 2.0 Å. Table 4 provides the
distribution of RMSD for all, best, and top poses. Various
benchmark studies have been conducted using the same test

cases as discussed above.6,25,26 However, a direct comparison
cannot be made between our analysis and the published studies
as different data sets of ligands were used. This also illustrates
the need for standardized data sets such as those developed by
CSAR; if groups were consistent with the benchmark data sets
employed when evaluating their methodology developments,
then the field would be able to assess whether positive
improvements have actually been made.
LpxC and Urokinase only have one chemical series, while

both Chk1 and Erk2 have three series within the ligand set
provided to the participants. It appears that the most prominent
reason that groups did not perform as well on Chk1 and Erk2 is
because of the multiple chemical series. If the chemical series
are broken out, performance across the different protein targets
was very comparable when comparing the series that contained
a chemically similar ligand to the co-crystal structure utilized for
docking. Methods performed much better on series 1 than
series 2 or 3 for both Chk1 and Erk2. The crystal structure
suggested by the CSAR team for both Chk1 and Erk2 are co-
crystallized with a ligand from their respective series 1.
Accounting for the conformational changes that can occur
within the binding pocket of the protein is a very difficult
task.2,8−13 In co-crystal structures, the prearrangement of the
ligand binding site can lead to the cross-docking problem where
the protein structure has adapted to bind a particular ligand or
class of ligands but is unable to accommodate structurally
diverse inhibitors as we found here. Incorporating protein
flexibility is recognized as a means to overcome the cross-
docking problem; however, not enough groups used protein
flexibility to allow us to perform a statistically significant
analysis on whether or not it affected the docking results.

How did RMSD correlate with native contacts?We first
asked if the native contact metric agrees with RMSD and if it
provides any additional useful information. Figure 3 shows
native contact box plots of the best pose for each protein−
ligand complex broken up by group−method for %Total, %
Het−Het, and %C−C contacts correct. When comparing all
series together, native contacts show the same trend as RMSD.
Groups performed the best on LpxC and Urokinase; the
median %Total was equal to 51% and 52%, respectively. Chk1
and Erk2 appeared to be more difficult; median %Total was
equal to 25% and 13%, respectively. However, unlike a RMSD,
native contacts can provide additional information on the
specific type of contacts that are being made, as demonstrated
in Figure 3B and C. When comparing the %Het−Het contacts
correct versus %C−C contacts correct, it appears that groups
were more successful at predicting the Het−Het contacts in
Urokinase (%Het−Het = 77%). However, the C−C contacts
groups were more successful at LpxC (%C−C = 54%). Another
interesting trend that emerged is that methods had a more
difficult time predicting the C−C contacts than the Het−Het
contacts between the protein and ligand. In fact, 7.3% of the
group−methods were able to predict 100% of the Het−Het
contacts, while no group−methods were able to predict 100%
of the C−C contacts. Additionally, 13.2% of the group−
methods could predict greater than 80% of the Het−Het
contacts, but only 1.6% of the group−methods could do the
same for C−C.
Figure 4 shows the correlation between the calculated native

contact and RMSD values. The data suggests that the values are
exponentially correlated (r2 = 0.75); as the ligand moves further
away from the protein, contacts are lost at an exponential rate.
Kroemer et al. also found that overall RMSD correlates with

Figure 2. RMSD box plot of the best pose for each protein−ligand
complex broken down by protein target. The rectangular box indicates
the interquartile range (25−75%) and the bars the 1.5× interquartile
range. The median is shown by the line in the box, and the diamond
denotes the mean and 95% confidence interval around the mean. The
red bracket signifies the shortest interval that contains 50% of the data,
and outliers are indicated by squares above the bars.
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their interactions-based accuracy classification (with the
exception of a few test cases).45 As demonstrated in Figure
4A, for this data set, it is not possible to have a RMSD better
than 3.45 Å when no contacts are being made. Furthermore, at
50% total contacts correct, the RMSD is 1.55 Å (on average)
with a range up to ∼3 Å.
To date, the field uses 2 Å as the cutoff for a successful

docking pose. This value was not determined quantitatively but
rather through qualitative inspection over many years of
evaluating docking programs and the desire to use a round
number. Utilizing both native contacts and RMSD provides the
researcher with a more complete picture of their docking
performance and allows for a more quantitative analysis of the
results. Here, we can use the %Total contacts correct at various

RMSD cutoff values to examine if 2 Å is an appropriate metric,
and if not, what is. At a RMSD cutoff of 2 Å, the %Total
contacts correct ranges from 14% to 86% (for 499 data points).
The same analysis was conducted at a RMSD cutoff of 1.5, 2.5,
3, and 3.5 Å, and the ranges along with the percentage of %
Total contacts that fall within various cut-offs are provided in
the Supporting Information. An examination of all data suggests
that lowering the value does not gain significant contacts;
however, 2.5 Å is just as reasonable of a cutoff as 2 Å for
defining a correct pose.
The data for %C−C contacts correct (Figure 4C) essentially

follows the same trend shown in %Total (Figure 4A). On the %
Het−Het contacts correct graph (Figure 4B), there are
interesting data points where 0% of the correct contacts are

Table 4. Distribution of Pose RMSD Values by Proteina

<1 Å (%) 1−2 Å (%) 2−3 Å (%) 3−4 Å (%) 4−5 Å (%) >5 Å (%) median RMSD

LpxC
all poses (n = 458) 22.05 41.27 15.50 4.15 1.31 15.72
best poses (n = 174) 34.48 47.70 9.20 0.57 0.57 7.47 1.14
top poses (n = 174) 24.14 49.43 14.37 2.30 1.72 8.05

Urokinase
all poses (n = 390) 22.31 29.74 22.56 5.38 4.87 15.13
best poses (n = 137) 35.04 38.69 13.87 3.65 2.92 5.84 1.25
top poses (n = 137) 24.09 33.58 22.63 5.84 3.65 10.22

Chk1: all 3 ligand series combined
all poses (n = 1279) 9.38 12.90 5.63 12.90 9.54 49.65
best poses (n = 477) 16.35 18.24 7.76 17.19 9.01 31.45 3.50
top poses (n = 477) 12.58 15.09 5.24 13.00 9.43 44.65

Chk1: series 1
all poses (n = 364) 27.47 22.80 9.89 5.77 3.30 30.77
best poses (n = 141) 44.68 26.95 8.51 4.96 0.71 14.18 1.08
top poses (n = 141) 36.88 24.82 8.51 4.26 2.84 22.70

Chk1: series 2
all poses (n = 442) 1.13 5.43 4.75 18.78 14.93 54.98
best poses (n = 166) 3.01 10.84 8.43 24.10 15.06 38.55 4.20
top poses (n = 166) 1.20 4.22 3.61 18.07 15.06 57.83

Chk1: series 3
all poses (n = 473) 3.17 12.26 3.17 12.90 9.30 59.20
best poses (n = 170) 5.88 18.24 6.47 20.59 10.00 38.82 3.94
top poses (n = 170) 3.53 17.65 4.12 15.29 9.41 50.00

Erk2: all 3 ligand series combined
all poses (n = 1123) 4.54% 9.35 5.43 5.43 8.90 66.34
best poses (n = 411) 8.76 12.90 7.79 8.27 11.44 50.85 5.03
top poses (n = 411) 6.33 9.98 5.84 7.06 8.27 62.53

Erk2: series 1
all poses (n = 186) 8.60 30.65 6.45 9.68 11.83 32.80
best poses (n = 71) 14.08 40.85 7.04 12.68 9.86 15.49 1.67
top poses (n = 71) 8.45 43.66 2.82 11.27 14.08 19.72

Erk2: series 2
all poses (n = 745) 1.74 3.89 4.56 5.50 9.93 74.36
best poses (n = 276) 4.71 5.80 6.88 9.06 13.77 59.78 5.49
top poses (n = 276) 3.99 1.45 6.16 7.25 7.97 73.19

Erk2: series 3
all poses (n = 192) 11.46 9.90 7.81 1.04 2.08 67.71
best poses (n = 64) 20.31 12.50 12.50 0.00 3.13 51.56 5.06
top poses (n = 64) 14.06 9.38 7.81 1.56 3.13 64.06

All proteins
all poses (n = 3250) 11.05 17.69 8.98 8.18 7.60 46.49
best poses (n = 1199) 18.52 23.02 8.67 10.18 7.92 31.69 3.00
top poses (n = 1199) 13.43 20.43 8.76 8.59 7.26 41.53

aRMSD values greater than 30% are bolded.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400025f | J. Chem. Inf. Model. 2013, 53, 1853−18701859



being made at a range of RMSD values (even less than 2 Å).
Careful examination of the predicted poses elucidated that
these points are all from Chk1. As shown in Figure 5, the ligand
is just slightly shifted to the right. Although, the RMSD is equal
to 0.702, both of the hinge region hydrogen bonds have been
lost. One must be careful in the interpretation of native
contacts data because the number of hydrogen bonds is
typically much smaller than the number of carbon−carbon
interactions, and the number of hydrogen bonds varies

significantly from target to target. This data will also be
influenced by the size and composition of the ligand.

Did the scoring functions overpredict or under-
predict raw contacts? Additional information on whether
scoring functions overpredict or underpredict contacts can be
gathered by analyzing all raw contacts made between the
protein and ligand (i.e., not just the percent native contacts
correct as previously presented). This is an important question
because it highlights the cause of the differences in the poses
rather than just assessing whether or not the correct ligand pose
was found. Consequently, it emphasizes weaknesses that could
be addressed in scoring function development. Table 5 presents
the percentage of raw Het−Het, C−C, and packing contacts
that were overpredicted, underpredicted, or the same number
of contacts (within 10%) for all protein targets combined and
broken down by each protein. An important note is that “same-
predicted” does not mean the same contacts are being made

Figure 3. Native contacts box plot of the best pose for each protein−
ligand complex broken down by protein target. The rectangular box
indicates the interquartile range (25−75%) and the bars the 1.5×
interquartile range. The median is shown by the line in the box, and
the diamond denotes the mean and 95% confidence interval around
the mean. The red bracket signifies the shortest interval that contains
50% of the data, and outliers are indicated by squares above the bars.
(A) %Total contacts correct, (B) %Het−Het contacts correct, and (C)
%C−C contacts correct.

Figure 4. (A) %Total contacts correct, (B) %Het−Het contacts
correct, and (C) %C−C contacts correct plotted again RMSD. The
exponential fit is shown on each graph.
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but rather that the same number of contacts has been predicted.
For all proteins combined, the trend emerges that scoring
functions have a bias to underpredict Het−Het and packing
contacts but both underpredict and overpredict C−C contacts
at the same rate. About half of all methods underpredict Het−

Het contacts, while only 32% overpredict them. For C−C
contacts, the same exact number of methods overpredict and
underpredict (∼40%), and there is no general bias seen. We
were very surprised to find that Het−Het and packing contacts
were biased toward underpredicting contacts as the overall
consensus in the field is that scoring functions tend to focus on
optimizing both types of contacts and overpredicting the
interactions.
In Figure 6A and B, the RMSD < 1 Å bin and RMSD = 1−2

Å bin for Het−Het contacts are provided, respectively; the
population of each value is given by the size of the point. As
one would expect, when the RMSD is quite small, the majority
of the points are close to the identity line. It is also obvious
from these graphs that when the RMSD is small, the trend that
scoring functions are underpredicting contacts holds true. As
the RMSD becomes larger, the data becomes more spread and
moves away from the identity line (data for bins 2−4, 4−10,
and >10 Å is provided in the Supporting Information).
Furthermore, once the RMSD is greater than 10 Å, almost all
of the contacts are off the identity line and being under-
predicted. Figure 7A and B show the RMSD < 1 Å bin and
RMSD = 1−2 Å bin for C−C contacts and Figure 8A and B for
Packing contacts (again data for bins 2−4, 4−10, and >10 Å is
provided in the Supporting Information). For C−C contacts,
the points are spread almost evenly between underprediction
and overprediction. The packing contacts agree with what was
shown for Het−Het contacts, and at small RMSD values, the
trend that the scoring function is underpredicting contacts
remains. Again, this is a very interesting finding as most scoring
functions use an additive term for van der Waals packing, and
hence, more contacts should result in a better score.
Table 5 also shows the data broken down by protein target.

For LpxC, the Het−Het contacts were significantly under-
predicted, while the C−C contacts were overpredicted. The
packing contacts were overpredicted and underpredicted at
essentially the same rate. LpxC contains a catalytic zinc atom,
which was included as part of the active site. Methods had a
difficult time predicting these hydrogen bonds. However, the
scoring function was still able to rank these predictions correct
because it was overcompensating by overpredicting C−C
contacts.

Did the docking metrics correlate with ligand
descriptors? When utilizing new metrics for pose prediction,
it is always prudent to determine if they correlate with size and
chemical properties of the ligand. To assess this, MOE 2010
was utilized to calculate the Pearson (r), Spearman (ρ), and
Kendall (τ) correlations between the ligand properties and
RMSD, %Het−Het, and %C−C. The results are provided in
the Supporting Information for molecular weight, # of atoms, #
of heavy atoms, # of hetero atoms, # of hydrophobic atoms, #
of acceptors, # of donors, # of acceptors and donors, # of
carbons, and # of nitrogens. We found that there was no
correlation between the ligand size and the metrics.
Furthermore, we found that the metrics were not correlated
with chemical properties of the ligand such as the number of
hydrogen bond acceptors and donors, among others.

How did the methodology “features” correlate with
RMSD? Each of the 20 groups employs their own protocols for
protein and ligand setup and docking methodology. In order to
understand how such methodology “features” across multiple
groups’ results affected the pose/ranking predictions, we asked
each participant to fill out an online questionnaire to gather
additional data on the details of their methodology. The pose

Figure 5. Predicted docking pose (submission; yellow) overlaid with
the experimental co-crystal structure of Chk1−ligand 1 (blue). Dotted
lines illustrate two important hydrogen bonds formed between the
ligand and the hinge region of the protein backbone. The RMSD
between the coordinates of the predicted pose and coordinates of the
experimental structure is equal to 0.702, %Het−Het contacts correct is
equal to 0%, and %C−C contacts correct is equal to 37%.

Table 5. Percentage of Raw Het−Het, C−C, and Packing
Contacts Where the Number Was Overpredicted,
Underpredicted, or Had the Same Contacts within 10% for
Best Posea

Hetero−Hetero Carbon−Carbon packing

All (n = 1199)
same predicted 17.70 ± 2.17 21.10 ± 2.25 32.53 ± 2.63
underpredicted 50.37 ± 2.79 40.38 ± 2.84 40.71 ± 2.80
overpredicted 31.93 ± 2.63 38.53 ± 2.75 26.60 ± 2.46

LpxC (n = 174)
same predicted 21.26 ± 6.32 29.90 ± 6.90 49.41 ± 7.47
underpredicted 73.00 ± 6.61 19.00 ± 5.75 23.56 ± 6.32
overpredicted 5.75 ± 3.74 51.20 ± 7.47 27.03 ± 6.61

Urokinase (n = 137)
same predicted 27.77 ± 7.30 19.75 ± 6.57 29.90 ± 7.66
underpredicted 37.21 ± 8.03 59.09 ± 8.03 50.37 ± 8.39
overpredicted 35.02 ± 8.03 21.16 ± 6.93 19.75 ± 6.93

Chk1 (n = 477)
same predicted 15.33 ± 3.25 20.13 ± 3.46 31.23 ± 4.19
underpredicted 49.48 ± 4.57 43.61 ± 4.51 46.95 ± 4.51
overpredicted 35.19 ± 4.19 36.26 ± 4.40 21.82 ± 3.67

Erk2 (n = 411)
same predicted 15.53 ± 3.53 19.00 ± 3.77 27.75 ± 4.28
underpredicted 46.19 ± 4.87 39.41 ± 4.74 37.46 ± 4.77
overpredicted 38.27 ± 4.74 41.60 ± 4.87 34.31 ± 4.52
aValues greater than 35% are bolded.
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Figure 6. Number of raw Het−Het contacts in co-crystal versus number of raw Het−Het contacts in prediction. The solid line illustrates a perfect
match, while the dotted lines show a ±10% range. (A) RMSD < 1 Å bin. (B) RMSD = 1−2 Å bin.

Figure 7. Number of raw C−C contacts in co-crystal versus number of raw C−C contacts in prediction. The solid line illustrates a perfect match,
while the dotted lines show a ±10% range. (A) RMSD < 1 Å bin. (B) RMSD = 1−2 Å bin.

Figure 8. Number of raw packing contacts in co-crystal versus number of raw packing contacts in prediction. The solid line illustrates a perfect
match, while the dotted lines show a ±10% range. (A) RMSD < 1 Å bin. (B) RMSD = 1−2 Å bin.
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prediction results were binned by RMSD, and the percentage of
time that a particular feature resulted in a pose within the
RMSD bin is presented. It is important to note that although
we received a 100% response rate, some participants did not

answer every question. The data presented is for “all poses” as
“best pose” when binned by RMSD did not always have enough
data points to be statistically significant. Figure 9 shows how
the various components of protein and ligand setup trend with

Figure 9. Outcome of the online questionnaire on protein and ligand setup for all poses. The pose prediction results were binned by RMSD and
plotted as the percentage of time that a particular feature resulted in a pose within the RMSD bin. Distinct trends that are related to docking RMSD
are noted with arrows.

Figure 10. Outcome of the online questionnaire on docking methodology for all poses. The pose prediction results were binned by RMSD and
plotted as the percentage of time that a particular feature resulted in a pose within the RMSD bin. Distinct trends that are related to docking RMSD
are noted with arrows.
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the RMSD. Here, minimizing the protein and correcting the
histidine tautomeric state had a positive effect on the docking
results, while minimizing the ligand appeared to have a less
positive effect. As previously mentioned, many groups that
participated in the 2011 Docking and Scoring Challenge also
found that optimizing the protein structure prior to docking
improved their performance.27−29 Most likely, this creates an
internally consistent environment as the protein is now on the
same energy landscape as the scoring function used in docking.
Furthermore, scoring functions are typically parametrized for
proteins but not for ligands, which may result in unrealistic
ligand conformations such as bent aromatic rings. Lastly,
pregenerated ligand conformations had better results than
those that were generated on the fly. This may suggest an issue
with ligand sampling.
Figure 10 shows the same analysis for the docking

methodology that was employed by each group and how it
trends with the RMSD. The data revealed that first training
with the native ligand to determine optimal docking parameters
significantly improved the docking performance as did using
restraints, substructure fitting, and shape fitting. This data
implies that results can be enriched when prior information
about the system is known. Furthermore, marrying ligand- and
structure-based approaches has been an area of active research
in the field recently, and these hybrid techniques have been
shown to outperform the use of structure-based methods on
their own.65−67 Interestingly, the use of special parameters for
the catalytic zinc in LpxC did not improve docking perform-
ance (data not shown).

The type of scoring function utilized for both sampling and
ranking was also analyzed, as shown in Figure 11. Many groups
utilize their own scoring function or a combination of the
different types, and these would fall into our “other” category.
When empirical scoring functions are used as either the
sampling or ranking scoring function, they appear to have a
positive effect on the docking results as demonstrated by Figure
11A and B. However, the “other” category negatively affected
pose prediction when utilized as the sampling or ranking
scoring function. In general, the “other” category was primarily
hybrid-type scoring functions where two or more types were
combined. Knowledge-based scoring functions performed fairly
consistent across the RMSD bins for both sampling and ranking
scoring functions. Here, consistently means that this particular
scoring function did not seem to have a negative or positive
effect on the pose prediction performance. The force field-
based scoring function was also fairly consistent across the
RMSD bins when utilized as the sampling scoring function but
appeared to have a positive effect when used as the ranking
scoring function. The top three performing groups (best pose)
all utilized empirical-based scoring functions for sampling, and
two of the three also used empirical-based for ranking (the
third was force field-based). One of the bottom three
performing groups employed a force field-based scoring
function for both sampling and scoring. The second used a
shape and functionality-based complementarity, and the third
used a crude shape-based complementarity for sampling and
knowledge-based for scoring.

How well did methods perform overall on identifying
actives from inactives and relative ranking? Tables 6 and

Figure 11. Outcome of the online questionnaire on scoring functions for all poses. The percentage of time that a scoring function was utilized is
shown by RMSD bin. Distinct trends that are related to docking RMSD are noted with arrows.
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7 show the Pearson r and Spearman ρ, respectively, assessments
of the correlation between the predicted scores and the
experimental binding affinity for each group−method, broken
down by protein target. Only the 28 group−methods that
submitted scores for all ligands of LpxC, Urokinase, Chk1, and
Erk2 were included in the analysis to ensure a fair evaluation
and are shown in Tables 6 and 7. However, for completeness,
all groups that submitted rankings are provided in the
Supporting Information as well as the Kendall τ correlation.
Pearson is parametric and a measure of the linear relationship
between scores and binding affinities, while Spearman ρ and
Kendal τ are nonparametric and reflect the correlation of the
rank ordering of the data. As r compares the absolute values of
each prediction, it is a much more difficult assessment metric
than ρ and τ. While all correlations are worthwhile to compare,
ρ and τ are more appropriate metrics for relative ranking and r
for absolute binding affinities.
Overall, most groups did not perform well on relative

ranking. This is not surprising as it is well documented that
ranking ligands is very difficult.6,20,33,34 The sum of r and ρ
across all proteins is provided as a metric to assess each groups
overall performance; a perfect ranking would result in a sum of

r or ρ of 4.0 while random would be 0. We interpreted methods
with sums of ≥2.0 as having good performance. Molecular
weight and SlogP were calculated and used as “yardsticks” or
null cases to determine a baseline value.20 The sum of r was
1.05 for molecular weight and −0.93 of SlogP. We also
calculated the F-statistic to determine if the fits found for the
group−methods were statistically different from the fits found
for molecular weight and also for SlogP. For the majority of the
group−methods, the linear fits are statistically significant in
their difference from the yardsticks both for methods with good
correlation and methods with poor correlation.
Here, the maximum sum of ρ was 2.05 (group S-1, which

used an empirical-based scoring function), and the minimum
sum of ρ was −1.07 (group A-1, which used a force field-based
scoring function). Only one of the group−methods resulted in
a sum of ρ greater than 2.0, and two were anticorrelated. In
summary, across all protein systems, most groups were not able
to relatively rank the ligands. The maximum sum of r was 2.16
(group P-5, which used a knowledge-based ranking scoring
function), and the minimum sum of r was −0.14 (group T-1,
which used a force field-based scoring function). Only 2 of the
28 group−methods were able to attain a score of a sum of r

Table 6. Pearson r Parametric Correlation between the
Predicted Scores and Experimental Binding Affinities by
Protein for Group−Methods That Submitted Scores for All
Ligands of LpxC, Urokinase, Chk1, and Erk2a

group−
method

LpxC
(3 lig)

Urokinase
(15 lig)

Chk1
(29 lig)

Erk2
(38 lig)

sum r
(max = 4.00)

median 0.78 0.50 −0.01 0.37 1.64
molecular
wt

0.37 0.42 −0.14 0.40 1.05

SlogP −0.51 0.06 −0.33 −0.15 −0.93
group A-1 −0.84 −0.28 0.01 0.11 −1.00
group C-1 0.76 0.71 0 0.30 1.77
group C-2 0.73 0.71 −0.12 0.34 1.66
group E-1 0.87 0.45 0.09 0.66 2.07
group E-2 0.87 0.45 0.01 0.57 1.90
group G-1 1.00 0.09 0.16 0.41 1.66
group H-1 0.99 0.32 0.02 0.46 1.79
group H-2 0.92 0.23 0.02 0.47 1.64
group I-1 0.94 0.48 −0.12 0.26 1.56
group I-2 0.92 0.49 −0.09 0.31 1.63
group J-1 1.00 0.35 0.30 −0.02 1.63
group L-1 0.61 0.77 −0.02 −0.02 1.34
group L-2 0.41 0.60 0.02 0.09 1.12
group M-1 0.67 0.29 −0.15 0.23 1.04
group M-2 0.31 0.33 −0.26 0.41 0.79
group M-3 0.40 0.47 −0.13 0.16 0.90
group M-4 0.20 0.43 −0.31 0.33 0.65
group N-1 −0.56 0.22 −0.12 0.03 −0.43
group P-1 0.99 0.36 0 0.41 1.76
group P-2 0.59 0.50 −0.22 0.63 1.50
group P-5 0.99 0.72 −0.03 0.48 2.16
group P-6 0.79 0.58 −0.14 0.55 1.78
group R-1 0.89 0.54 −0.12 0.22 1.53
group R-2 0.84 0.61 −0.11 0.15 1.49
group S-1 0.92 0.57 0.38 0.12 1.99
group S-2 0.77 0.60 0.16 0.44 1.97
group T-1 −0.56 0.17 0.32 −0.07 −0.14
group T-2 0.85 0.37 −0.17 0.40 1.45
aValues of r greater than 0.50 and sum r values greater than 2.00 are
bolded.

Table 7. Spearman ρ Nonparametric Correlation between
the Predicted Scores and Experimental Binding Affinities by
Protein for Group−Methods That Submitted Scores for All
Ligands of LpxC, Urokinase, Chk1, and Erk2a

group−method
LpxC
(3 lig)

Urokinase
(15 lig)

Chk1
(29 lig)

Erk2
(38 lig)

sum ρ
(max = 4.00)

median 0.50 0.52 −0.03 0.31 1.30
molecular wt 0.50 0.41 −0.14 0.40 1.17
SlogP −0.50 0.14 −0.29 −0.15 −0.80
group A-1 −0.87 −0.28 0.02 0.06 −1.07
group C-1 0.50 0.64 −0.02 0.32 1.44
group C-2 0.50 0.63 −0.09 0.34 1.38
group E-1 0.50 0.50 0.03 0.67 1.70
group E-2 0.50 0.50 0.05 0.58 1.63
group G-1 1.00 0.29 0.18 0.42 1.89
group H-1 1.00 0.20 0.06 0.45 1.71
group H-2 1.00 0.24 0.01 0.50 1.75
group I-1 1.00 0.56 −0.09 0.22 1.69
group I-2 1.00 0.51 −0.14 0.30 1.67
group J-1 1.00 0.44 0.10 −0.08 1.46
group L-1 0.50 0.76 0.01 −0.04 1.23
group L-2 0.50 0.72 0.08 0.05 1.35
group M-1 0.50 0.31 −0.16 0.21 0.86
group M-2 0.50 0.37 −0.24 0.39 1.02
group M-3 0.50 0.50 −0.05 0.14 1.09
group M-4 0.50 0.50 −0.30 0.28 0.98
group N-1 −0.50 0.22 −0.10 0.17 −0.21
group P-1 1.00 0.38 −0.04 0.41 1.75
group P-2 0.50 0.52 −0.22 0.64 1.44
group P-5 1.00 0.55 −0.02 0.45 1.98
group P-6 0.50 0.49 −0.11 0.56 1.44
group R-1 0.50 0.60 −0.17 0.24 1.17
group R-2 0.50 0.62 −0.15 0.14 1.11
group S-1 1.00 0.63 0.30 0.12 2.05
group S-2 0.50 0.57 0.13 0.40 1.60
group T-1 −0.50 0.32 0.28 −0.02 0.08
group T-2 0.50 0.40 −0.14 0.40 1.16

aValues of ρ greater than or equal to 0.50 and sum ρ values greater
than 2.00 are bolded.
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greater than 2.0, and 3 of the 28 were anticorrelated. Using the
rankings from ρ, two of the top three performing groups used
empirical-based scoring functions for sampling and scoring, and
the third used a crude shape-based complementarity for
sampling and knowledge-based for scoring. One of the bottom
three performing groups employed a force field-based scoring
function for both sampling and scoring. The second used a
shape and functionality-based complementarity, and the third
used a combination of knowledge and empirical-based.
This finding illuminates another potential issue: Is the

experimental data that the computational field considers to be
“gold standard” actually correct? As discussed in our data set
paper,40 we have found that different experimental methods
(e.g., Thermofluor, ITC, Octet Red, etc.) can give different
values for the same protein−ligand complex, and furthermore,
even the relative ranking between a chemical series can be
dependent on the various experimental method employed. This
is a very troublesome finding as it suggests that the best we may
be able to do as a computational field is predict whether a
compound is active or inactive but not absolute values or
ranking between libraries of compounds. Our techniques are
only as good as the data being used for development, and if the
experiment data does not agree between methods, then we
have no gold standard to judge our predictions. Researchers will
need to first check the variance of their data and use only

targets with the lowest to parametrize and validate their
methods. We calculated correlations between the rankings for
each group−method in this exercise and found no correlation,
suggesting that inaccurate reference data is not the issue here.
Most groups truly found ranking to be a difficult task. In our
next benchmark exercise, we will try to build a data set to
address this issue in more detail.
Table 8 shows the results for the enrichment or

discriminating actives from inactives portion of the exercise,
again only for the 28 group−methods that submitted ranks for
all ligands (all group−methods are provided in the Supporting
Information). A high AUC indicates that actives were clearly
identified over inactives. The sum of the AUC is provided as a
metric to assess each groups overall performance; a perfect
ranking would result in a sum of 3.00, while random ranking
would be 1.50 (there were no inactives for Erk2). Here, the
evaluation was conducted again using only group−methods
that sent in scores for all ligands of LpxC, Urokinase, and Chk1.
The maximum sum AUC was 2.44 (group L-2, which used an
empirical-based ranking scoring function), and the minimum
sum AUC was 1.14 (group I-1, which used an empirical-based
ranking scoring function). Thirteen of the 28 group−methods
performance was less than random (sum AUC less than 1.50).
All of the top three performing groups utilized empirical-based
scoring functions for both sampling and scoring. Two of the

Table 8. AUC Values Derived from ROC Curves by Protein for Group−Methods that submitted Scores for All Ligands of LpxC,
Urokinase, and Chk1a

group−method
LpxC

(3 active, 8 nonactive)
Urokinase

(15 active, 4 nonactive)
Chk1

(30 active, 9 nonactive)
sum AUCs
(max = 3.00)

Urokinase + Chk1 sum AUCs
(max = 2.00)

median 0.21 0.83 0.56 1.60 1.39
molecular wt 0.83 0.55 0.69 2.08 1.24
SlogP 0.13 0.72 0.49 1.33 1.21
group A-1 0.71 0.25 0.69 1.64 0.94
group C-1 0.04 0.97 0.59 1.60 1.56
group C-2 0.04 0.78 0.60 1.42 1.38
group E-1 0.08 0.83 0.64 1.55 1.47
group E-2 0.08 0.83 0.54 1.46 1.37
group G-1 0.33 0.63 0.41 1.38 1.04
group H-1 0.42 0.83 0.55 1.80 1.38
group H-2 0.25 0.83 0.56 1.64 1.39
group I-1 0 0.68 0.46 1.14 1.14
group I-2 0.33 0.73 0.38 1.44 1.11
group J-1 0.92 0.97 0.44 2.32 1.41
group L-1 0.75 0.98 0.49 2.22 1.47
group L-2 1 0.97 0.47 2.44 1.44
group M-1 0.13 0.80 0.55 1.48 1.35
group M-2 0.42 0.78 0.43 1.63 1.21
group M-3 0.13 0.82 0.47 1.41 1.29
group M-4 0.42 0.78 0.42 1.62 1.21
group N-1 0.79 0.82 0.50 2.11 1.32
group P-1 0.38 0.72 0.62 1.71 1.34
group P-2 0.21 0.75 0.72 1.68 1.47
group P-5 0.33 0.97 0.75 2.05 1.71
group P-6 0.21 0.77 0.74 1.72 1.51
group R-1 0.17 0.53 0.53 1.23 1.06
group R-2 0.13 0.57 0.52 1.21 1.08
group S-1 0.79 0.83 0.47 2.10 1.31
group S-2 0.67 0.90 0.43 1.99 1.33
group T-1 0.92 0.33 0.53 1.78 0.87
group T-2 0 0.72 0.66 1.38 1.38

aAUC values greater than 0.50 and sum AUC values greater than 1.50 and 1.00 (for Urokinase and Chk1 alone) are bolded.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400025f | J. Chem. Inf. Model. 2013, 53, 1853−18701866



bottom three performing groups employed a combination of
force field- and empirical-based scoring functions for both
sampling and scoring, and the third used empirical-based.
We also conducted this analysis without LpxC as Urokinase

and Chk1 have more ligands and suffer less from small-number
statistical issues. For just Urokinase and Chk1, the sum of the
median AUC was 1.39 (here perfect would be 2.00 and random
would be 1.00). Only 3 of the 28 group−methods had sum
AUCs greater than random, and 3 of the 28 were less than
random. The majority of them were close to random. Similar to
relative ranking, most methods were not able to do enrichment
well across the board. Furthermore, no group−method
performed the best in all three categories of pose prediction,
discriminating actives from inactives, and relative ranking. The
scoring functions utilized in each method have their own
strengths and weaknesses that do not appear to be robust
across the evaluation exercises.
Which test sets were most challenging for identifying

actives from inactives and relative ranking?When using a
Pearson correlation as the evaluation metric, the group−
methods performed the best on LpxC (median r was 0.78), as
provided in Table 6. However, when applying a nonparametric
correlation coefficient (Table 7), the maximum median ρ was
0.52 for Urokinase, while LpxC was very close with a median ρ
of 0.50. For this analysis, LpxC stands out as the protein system
that group−methods performed the best at, while Chk1
appears to be the hardest test case. For the most part, the
correlations found were not any better than random as
compared to the null test cases. The three chemical series
within the Chk1 and Erk2 ligands were also broken up (data is
provided in the Supporting Information). For both Chk1 and
Erk2, the correlations do improve within a few of the series but
are still essentially not any better than random. Relative ranking
is a difficult task and one where much work is needed.
When evaluating the group−methods on each protein system

independently, the performance by the various group−methods
was much better. Here, the median AUC for Urokinase was
0.83, indicating that groups were able to discriminate Urokinase
actives from inactives quite well, as shown in Table 8. Chk1
followed with a median AUC of 0.56 (essentially random), and
the median AUC of LpxC was 0.21 (worse than random). The
three chemical series within the Chk1 ligands were also broken
up, and the median AUCs were found to be 0.61 for series 1,
0.69 for series 2, and 0.56 for series 3 (tables are provided in
the Supporting Information). Unlike with pose prediction,
group−methods were still not able to discriminate actives from
inactives within the three chemical series. However, there were
cases where actives and inactives within a series could be
identified, but overall performance suffered because inactives in
one series outranked actives of another series.
Are scoring functions able to identify actives from

inactives better than relative ranking or vice versa? Four
protein systems were employed in the exercise. However, LpxC
was too small of a data set to draw a statistically significant
conclusion, and Erk2 did not have any inactives. As such, Chk1
and Urokinase were examined to determine if scoring functions
were better at enrichment or relative ranking in this benchmark
exercise. Unfortunately, most methods were not able to do
either very well for Chk1 (data not shown). Figure 12 shows
the ranking results (Pearson r or Spearman ρ correlations)
plotted against enrichment results (AUC) for Urokinase. An
AUC of less than 0.50 is considered random, while negative
values of r or ρ signify that the rankings were anticorrelated.

Here, we see that the trend is the same whether a parametric or
nonparametric correlation is applied; most groups are able to
predict the active Urokinase ligands from the inactives better
than rank the active molecules. At a value of AUC equal to 1.0
(perfect enrichment), there is a large spread of r and ρ.
However, we see that at high values of r and ρ, the AUC is close
to 1.0. This demonstrates that if a group is able to rank well,
then they are usually able to discriminate actives from inactives
well but not vice versa. Ranking is typically thought of as the
harder task of the two, so if the scoring function is fined tuned
enough to rank, then it should also be able to do enrichment.

How do predicted poses correlate with ranking? Do
the programs typically get the pose correct when the
ranking is correct or vice versa? Docking programs are
faced with two major tasks: (1) predicting the pose of the
ligand in the presence of the protein and (2) scoring the
predicted the pose. Although two separate tasks, they should be
correlated, which brings about the question “Are scoring
functions getting the rankings correct for the right reasons?”.
One would assume that if the pose is ranked the highest, it
should be the pose seen in the crystal structure. In Figure 13,
the RMSD of the top-ranking pose for molecule X is shown
versus the percentage of inactive molecules ranked higher than
molecule X for both Urokinase and Chk1 targets (Was the
scoring function able to rank the active molecule higher than

Figure 12. For the Urokinase test set, the ability to rank active
molecules versus enriching hit lists is plotted. An AUC of less than
0.50 is considered random. Negative values of r or ρ signify that the
data was anticorrelated. (A) Pearson r parametric correlation versus
AUC and (B) Spearman ρ nonparametric correlation versus AUC.
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the inactive molecules, and if not, how many inactive molecules
were ranked higher?). Again, only Urokinase and Chk1 were
used because of the reasons stated above. While there is a
spread in the data suggesting that the scoring function is not
always ranking for the correct reason, there also is a large group
of molecules (13.6%) near the 0,0 point on the graph. There
are multiple reasons that scoring functions may be ranking an
incorrect pose higher than the correct pose. First, it may be due
to incorrect capturing of the contacts being made between the
protein and ligand. Additionally, it may be because of the terms
that are not explicitly accounted for in the scoring function
(e.g., entropy and/or solvation are typically not included).
The data was also binned by RMSD for two groups: (1)

active molecules that have no inactives ranked higher (0%) and
(2) active molecules that have one or more inactives ranked
higher (all other). Of the “0%” group, 54.2% of the poses had a
RMSD of less than 2 Å, the cutoff for a successful docking
prediction. For the “all other” group, only 17.4% fall within this
cutoff. It appears from this data that the correct pose is not a
necessity for ranking correctly, but there is a better chance to be
scored correctly if the pose is correct as well.

■ CONCLUSION
In this benchmark exercise, participants were asked to compare
different improvements for pose prediction, enrichment, and
relative ranking of congeneric series of compounds across four
protein targets. Here, we have provided a thorough analysis
across all groups’ results to determine common limitations to
many docking programs to help the field prioritize where effort
should be made. Additionally, much emphasis was placed on
the pose prediction evaluation metrics to help set standards in
the field. When developing computational methods, proper
evaluation of the results is just as important as the high quality
experimental data used in the data set.
Using best pose, the median RMSD across all group−

methods was 3.0 Å, and 37% of group−methods had a median
RMSD < 2 Å. LpxC and Urokinase had the smallest median
RMSD with Chk1 following, and Erk2 was the most
challenging. Native contacts are exponentially correlated to
RMSD. Additionally, they provide a breakdown of contact

types (Het−Het vs C−C) and information on atom packing.
For all proteins combined, raw Het−Het and packing contacts
were underpredicted and raw C−C contacts were both
overpredicted and underpredicted at the same rate. No
correlations were found between the pose prediction metrics
and chemical properties or size of ligand. For protein and
ligand setup, minimizing the protein and correcting the
histidine tautomeric state had a positive effect on the docking
results, while minimizing the ligand appeared to have a less
positive effect. Pregenerated ligand conformations had better
results than those that were generated on the fly. Additionally,
first training with the native ligand to determine optimal
docking parameters significantly improved the docking
performance as did using restraints, substructure fitting, and
shape fitting. Lastly, for both sampling and ranking scoring
functions, the use of the empirical scoring function appeared to
have a positive effect on the docking results, while the “other”
category negatively affected pose prediction.
For the most part, methods were not very successful at

relative ranking or enrichment. The sum of the median ρ was
1.28/4.00, r was 1.65/4.00, and the sum of the median AUCs
was 1.60/3.00. For relative ranking, group−methods performed
the best on LpxC, and Chk1 was found to be the most
challenging. In the enrichment study, Urokinase proved to be
the most straightforward, while LpxC was the most difficult.
Compared to relative ranking, group−methods were able to
identify actives from inactives better for Urokinase. However,
LpxC was too small of a data set to draw conclusions, and for
Chk1, group−methods were not able to do either very well.
Lastly, the correct pose is not a necessity for ranking correctly,
but there is a better chance to be scored correctly if the pose is
correct as well.
Future benchmark exercises from CSAR will involve ranking

pregenerated poses to separate the two major components of
the docking algorithm and, hence, focus only on the ability of
the scoring function to correctly rank the “real” binding pose.
As always, we will strive to conduct a blinded exercise with as
many systems and ligands as possible to not only avoid system
dependent insights but also to provide statistical significance to
the results. We greatly appreciate the efforts of all of our
colleagues in the pharmaceutical industry for the donation of
this data and for future benchmark exercises.

■ ASSOCIATED CONTENT
*S Supporting Information
(1) RMSD box plot of the best pose for each protein−ligand
complex broken down by group method for each protein target,
(2) percent of %Total contacts within various RMSD bins and
broken down by various %Total contact cut-offs, (3) number of
raw Het−Het contacts in co-crystal versus number of raw Het−
Het contacts in prediction, (4) number of raw C−C contacts in
co-crystal versus number of raw C−C contacts in prediction,
(5) number of raw packing contacts in co-crystal versus number
of raw packing contacts in prediction, (6) Pearson, Spearman,
and Kendall correlations between ligand descriptors and pose
prediction metrics (RMSD and %Native contacts correct), (7)
Pearson r parametric correlation between the predicted scores
and experimental binding affinities by protein for all group
methods, (8) Spearman ρ nonparametric correlation between
the predicted scores and experimental binding affinities by
protein for all group methods, (9) Kendall τ nonparametric
correlation between the predicted scores and experimental
binding affinities by protein for all group methods, (10)

Figure 13. RMSD is plotted against the percentage of inactive
molecules ranked higher than an active molecule for both Urokinase
and Chk1 targets. The insert shows the percentage of ligands that fall
with each RMSD bin for two groups: (1) active molecules that have no
inactives ranked higher (0%) and (2) active molecules that have one or
more inactives ranked higher (all other).

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400025f | J. Chem. Inf. Model. 2013, 53, 1853−18701868



Pearson r parametric correlation between the predicted scores
and experimental binding affinities by chemical series for all
group methods, (11) Spearman ρ nonparametric correlation
between the predicted scores and experimental binding
affinities by chemical series for all group methods, (12) Kendall
τ nonparametric correlation between the predicted scores and
experimental binding affinities by chemical series for all group
methods, (13) AUC values derived from ROC curves by
protein for all group methods, and (14) AUC values derived
from ROC curves by all series of Chk1 for all group methods.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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