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A novel approach for finding and evaluating structural models of small metallic

nanoparticles is presented. Rather than fitting a single model with many degrees

of freedom, libraries of clusters from multiple structural motifs are built

algorithmically and individually refined against experimental pair distribution

functions. Each cluster fit is highly constrained. The approach, called cluster-

mining, returns all candidate structure models that are consistent with the data

as measured by a goodness of fit. It is highly automated, easy to use, and yields

models that are more physically realistic and result in better agreement to the

data than models based on cubic close-packed crystallographic cores, often

reported in the literature for metallic nanoparticles.

1. Introduction

Advances in the synthesis of metallic nanoparticles have given

researchers a great deal of control in tailoring their func-

tionalities for many applications including catalysis (Lewis,

1993; Somorjai & Park, 2008), plasmonics (Atwater & Polman,

2010; Linic et al., 2011), energy conversion (Aricò et al., 2005)

and biomedicine (Rosi & Mirkin, 2005; Ackerson et al., 2006;

Nune et al., 2009). At the simplest level, the distinct properties

of nanoparticles can be attributed to the increased role of their

external surfaces, which can be manipulated by changing

experimental parameters in a synthesis to obtain particles of a

certain size, shape and composition. However, an atomic scale

characterization of the varying structural degrees of freedom,

including size, morphology and chemical ordering of very

small nanoparticles, remains a major challenge (Bøjesen &

Iversen, 2016; Lee et al., 2016). Critical to engineering the next

generation of these materials by design, rather than empirical

optimization, is to develop structural probes and modeling

methodologies capable of quantifying the arrangements of

atoms at the smallest length scales possible.

Determining the atomic core structures of ultra-small

nanoparticles using X-ray powder diffraction methods is

difficult (Billinge & Levin, 2007). The information obtained in

these experiments is degraded not only because of finite size

effects but also because the internal arrangements of atoms

deviate significantly from bulk materials. Non-crystallographic
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structures have long been reported in electron microscopic

studies of metallic nanoparticles (Ino, 1966; 1969; Marks &

Howie, 1979; Sun & Xia, 2002; Chen et al., 2013) and it is

established that growth mechanisms across a diversity of

synthesis methods are directed by the size-dependent forma-

tion and rearrangement of multiply twinned domains, in

addition to thermodynamic stabilization of nanoparticle

surfaces by capping agents (Lofton & Sigmund, 2005; Langille

et al., 2012; Marks & Peng, 2016). Despite this evidence,

atomic models built from face-centered cubic (f.c.c.) cores,

which do not account for the multi-domain nature of these

materials, are still commonly used in atomic pair distribution

function (PDF) analysis of metallic nanostructures (Petkov &

Shastri, 2010; Page et al., 2011; Kumara et al., 2014; Fleury et al.,

2015; Wu et al., 2015; Poulain et al., 2016; Petkov et al., 2018).

It was recently demonstrated that the PDF does contain

information allowing for the detection and characterization of

internal atomic interfaces in a diversity of metallic nano-

materials and atomic clusters (Banerjee et al., 2018). It was

also shown that the PDF could differentiate between various

arrangements of multiply twinned domains. For a majority of

the samples surveyed, simple decahedral or icosahedral cluster

cores, instead of f.c.c. attenuated crystal (AC) approximations

or single-crystal f.c.c. cutouts, gave significantly improved fits.

This analysis hinged on time-consuming, manual trial-and-

error refinements of a few representative cluster models from

different structure motifs. Here we describe a new approach

for determining the best models for metallic nanoparticle core

structures by automatically generating large numbers of

candidate cluster structures and comparing them with PDF

data from nanoparticles. The methodology differs from

traditional approaches for crystallographic analysis of nano-

particles where a single model containing many refinable

parameters is used to fit peak profiles from a measured

diffraction pattern. Instead, this approach uses many structure

models and highly constrained refinements to screen libraries

of discrete clusters against experimental PDF data, with the

aim of finding the most representative cluster structures for

the ensemble average nanoparticle from any given synthesis.

2. Modeling

The core of the new approach is to generate large numbers of

candidate structure models, which in principle could be pulled

from databases or generated algorithmically. PDFs are then

computed from each model and compared with a measured

PDF. A small number of refinable parameters may be varied in

this last comparison step, such as an overall scale factor and an

average bond length, in such a way as to minimize an agree-

ment factor, Rw, described in greater detail below. The results

of the comparisons for all models are then reported back to

the experimenter. In this initial implementation we tested

finite-sized cluster models, which we use to compare against

data collected from small metallic nanoparticle samples, and in

this case we generate the libraries of clusters, which we call

cluster mines, algorithmically.

Clusters may be grouped into different types, or motifs,

which have specific algorithmic structure builders. Here we

consider motifs built from densely packed hard-sphere models

which form a seed or atomic core for the metallic nano-

particles of interest.

Three dense-packing configurations were used in this study

(N specifies the smallest building block for the atomic core):

(1) the cubic close-packed (c.c.p.) tetrahedron (N = 4) yielding

f.c.c. clusters (Kepler, 1611; Hales, 2005), (2) the pentagonal

bipyramid (N = 7), which generates decahedral clusters

(Bagley, 1965), and (3) the icosahedron (N = 13) used to build

magic or Mackay icosahedra (Mackay, 1962).

A diversity of different cluster geometries can be made by

stacking layers of atoms in specific arrangements on top of the

densely packed atomic seeds and by truncating the growth

along different high-symmetry directions (Martin, 1996).

These structure-building algorithms are implemented in the

Atomic Simulation Environment (ASE) Python package

(Hjorth Larsen et al., 2017), and other motifs are currently

being developed. A fourth motif, singly twinned f.c.c. bicrys-

tals, was also built and tested by applying a simple transfor-

mation to f.c.c. single-crystal clusters. Briefly, f.c.c. clusters are

cut along a {111} lattice plane and misoriented by applying a

60� rotation to one half of the crystal around an axis normal to

the {111} plane. This is carried out on f.c.c. crystals with an odd

number of c.c.p. layers such that one {111} contact twin plane,

resulting in two mirror-equivalent domains with the same

number of atoms, is generated. In this way, popular cluster

types from the literature are created and added to the mine,

but this also illustrates how other cluster types may be

generated and added in the future.

The geometries that result from the different motif-specific

truncation criteria can be classified as families, which share the

same local atomic environment common to each motif but

differ in the topology of their polyhedral surfaces. For

example, in the ASE decahedron structure builder, four

parameters can uniquely specify a cluster model: a nearest-

neighbor bond distance, the number of layers parallel to the

fivefold axis, the number of layers truncated perpendicular to

the five pentagonal edges and the number of layers truncated

perpendicular to the five apical vertices. When no truncation

exists, regular decahedra or pentagonal bipyramids are

generated, whereas truncation of the pentagonal edges

produces families of Ino-truncated wire-like decahedra (Ino,

1966) and apical truncation yields Marks decahedra (Marks,

1994) with re-entrant facets. Changing the type and degree of

truncation influences the resulting morphology of the cluster,

and in decahedra this also changes the relative number of

atoms within the five f.c.c.-like subunits versus the atoms

situated at twin boundaries between the decahedral domains

and at surfaces.

If a unique set of parameters that specify a cluster model is

given as input to a structure builder in ASE, a list of Cartesian

coordinates is returned which may be read into a PDF

calculating program. In this case we use our own complex

modeling infrastructure, CMI (Juhás et al., 2015). PDFs are

then calculated from the atomic coordinates using the Debye
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scattering equation (DSE; Debye, 1915) PDF calculator

implemented in DiffPy’s DebyePDFCalculator class under

SrFit. The atomic coordinates in space are held constant in the

refinements but four parameters are allowed to vary to obtain

good agreement between the calculated and measured PDFs:

an isotropic expansion coefficient (linear scaling in r) to

account for differences in nearest-neighbor distances, a single

Uiso (isotropic atomic displacement parameter), a single scale

factor and a parameter for correlated motion effects, �2

(Proffen & Billinge, 1999). Parameters that describe the

resolution of the measurement (Qdamp and Qbroad) are

obtained by independently refining a bulk calibrant measured

in the same geometry as the nanocrystalline sample and fixed.

The cluster mine is built by iterating through the integer

values for parameters and combinations thereof, specifying

the number of added and truncated layers for each motif-

specific structure builder. The size of the structure mine (the

number of clusters in the mine) can be tuned by providing

bounds on the values that a given builder parameter may take

or by specifying a minimum and maximum number of atoms

(Na) in the clusters regardless of the builder. During this

procedure, cluster-mining stores metadata such as the number

of atoms, atom type, nearest-neighbor distance and motif, and

starting values for the refinable variables along with the set of

integers for that cluster. This information is then passed to

ASE which generates the x, y, z atomic coordinates, which are

then used as inputs to CMI to calculate the PDF and refine the

variable parameters against a measured PDF for each cluster

in the mine. The fit range in r can also be adjusted prior to

refining the library of clusters. The cluster-mining program

then returns a table of initial and refined PDF parameter

values, and goodness of fit (Rw), with each individual refine-

ment linked to the input cluster parameters and associated

metadata. A plot can then be generated of the best fit Rw

versus the number of atoms (Na) for all clusters in the mine.

We call this plot the cluster-screen map. The cluster-screen

map can be filtered or labeled according to any cluster-specific

metadata, such as the motif.

The dimension of the input parameter space (typically 3–6)

is significant, so the size of the mine can be large. For example,

2419 unique combinations are possible for decahedra

containing less than 1500 atoms, including regular, Ino, Marks

and Ino-truncated Marks families. However, the cluster-

mining method is easily parallelizable and lends itself to

deployment on multi-node computers. As well as giving more

ideal cluster model fits than, for example, stochastic approa-

ches (Page et al., 2011), the procedure greatly speeds up a

researcher’s workflow compared with more manual trial-and-

error routines. This approach to nanostructure modeling may

also be sped up by increasing the efficiency of selection of the

clusters from the mine for testing and we expect that statistical

approaches such as machine learning will be effective in this

regard, though this is beyond the scope of this article.

3. Results

We first applied our cluster-mining approach to a PDF

measured from �3 nm Pd nanoparticles that was described by

Banerjee et al. (2018). In that work, the best cluster model that

was found was a 609-atom regular decahedron with a

maximum inter-vertex distance of 36.4 Å. This was determined

by trial-and-error testing of a regular decahedral size series,

starting with a 22.8 Å (181-atom) decahedron and ending with

an 51.9 Å (1442-atom) decahedron. The refinement of the

best-fit decahedral cluster core for the small Pd nanoparticles

is given in Fig. 1, which shows the experimental nanoparticle

PDF and the calculated PDF for the 609-atom decahedron,

with the cluster structure reproduced in the inset. The differ-

ence curves (fit residuals) for both the discrete cluster and

f.c.c. AC (attenuated crystal) models are offset below in blue

and dark purple, respectively.

In the work by Banerjee et al. (2018), it was demonstrated

that a diversity of small, representative clusters from motifs

with different domain structures and morphologies were

needed to fit all the metallic nanoparticle PDFs that were

considered. However, it is a laborious task to find the best

cluster models and it would also be valuable to know about the

degeneracy of the solution set i.e. how many different clusters

give comparable agreement with the data. To do this we can

construct libraries, or mines, containing hundreds to thousands

of discrete cluster models. These were built combinatorially

from motif-specific structure builders as described in

Section 2. To demonstrate what can be learned from this

approach we applied it to the measured PDF from Pd nano-

particles shown in Fig. 1 by generating and fitting 464 different

discrete models. We start by investigating 60 clusters from a

single structure motif (f.c.c.) in greater detail. The results are

summarized in Fig. 2, which shows the best-fit agreement

factor of each f.c.c. model plotted versus the number of atoms

in the model (Na), which we call a cluster-screen map. We

compare the cluster-mined solutions to that from the f.c.c. AC

model, which is the benchmark for refinements carried out in

the traditional way using PDFgui. For this Pd nanoparticle

sample, the AC model resulted in an Rw of 0.253 and this value

is shown as a solid teal circle in Fig. 2. This fit was obtained
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Figure 1
Experimental PDF (open circles) from �3 nm Pd nanoparticles and the
calculated PDF (red solid line) from a 3.6 nm decahedron (inset). Offset
below are the difference curves from the discrete decahedral (blue) and
spherically attenuated f.c.c. crystal model (dark purple) refined to the
measured Pd nanoparticle data.



with a refined spherical particle diameter of 19.4 Å, which

corresponds to Na ’ 225 for a discrete f.c.c. spherical cutout.

Next we built discrete spherical f.c.c. cutouts to compare with

the AC model. These are shown as solid green circles with a

dashed outline in Fig. 2. This family of clusters has Rw’s that

follow a trend with nanoparticle size. The trend goes through a

minimum at a particle size containing Na = 225, the same as the

AC model.

Somewhat surprisingly, the Rw of this model was lower than

that of the AC model, though both correspond to spheres of

f.c.c. material. There are a number of differences between

calculating the PDF of a spherical particle using a discrete

spherical cluster and the DSE versus a bulk model attenuated

with the characteristic function of a sphere. One of the largest

factors to affect the Rw appears to be the choice of Qmin used

in the DSE calculation. This strongly influences the baseline in

the PDF (Farrow & Billinge, 2009) depending on the degree to

which the small-angle scattering signal is incorporated into the

measured and calculated PDFs. Understanding this effect in

detail is beyond the scope of this article, but tests on this Pd

nanoparticle sample show that the best Rw factors were

obtained when the same Qmin was used for the DSE calcula-

tions as was used in the treatment of the measured data. We

note that this careful study of spherical nanoparticle models

yields insight into how the different cluster models work with

the data, and improvements in fit are possible over the AC

model. However, as was pointed out by Banerjee et al. (2018),

the spherical models do not remove much of the signal from

residuals and are still deficient in many regards.

We now turn to models with the same f.c.c. atomic structure,

but which are cut out from the bulk with well defined surface

faceting. The clusters considered here were made by forming

octahedral shapes exhibiting {001} and {111} facets. Three

families of faceted f.c.c. octahedra are shown in Fig. 2: regular

octahedra (solid diamonds) with only {111} facets exposed,

truncated octahedra (hexagons) with a mixture of {111} and

{001} surfaces, and cuboctahedra (solid hexagons) which

satisfy a specific truncation condition where the percentage of

the surface covered by {001} (non-close-packed) facets is

largest and all facet edges contain the same number of atoms.

The cuboctahedral family of clusters has the most isotropic or

spherical shape from the octahedral motif. There are subtle

variations in the Rw trends for each of the faceted f.c.c. octa-

hedral families, with the cuboctahedral series following most

closely the results of the discrete f.c.c. spheres. Regular and

truncated octahedra follow trends that are offset slightly

below the spherical and cuboctahedral series. Overall, the f.c.c.

cluster families track very closely with each other, reaching Rw

minima in the vicinity of Na ’ 250 and in fact the best

candidate faceted octahedron is a slightly truncated cluster

with 225 atoms, which has the same Na as the best-fit discrete

f.c.c. sphere and AC approximation. In the inset of Fig. 2 we

compare the fit residuals between the f.c.c. AC model and (a)

the minimum Rw f.c.c. sphere and (b) the faceted octahedron,

respectively. Although improvements are seen in Rw, it is clear

that the majority of the misfit signal in the residual is not

affected. This suggests that collectively, monocrystalline f.c.c.

cluster cores regardless of shape might not be the most

suitable structure motif for the small Pd nanoparticles studied

here.

Next, twinned cluster models from decahedral, icosahedral

and singly twinned structure motifs were constructed and

added to the mine, and compared with the Pd nanoparticle

data. In Fig. 3 we reproduce the same Rw scatter plot as

discussed for f.c.c. cutouts in Fig. 2 with each point appearing

as green symbols.

The blue symbols are from 398 different decahedral struc-

tures including regular decahedra (pentagonal bipyramids),

Ino decahedra, Marks decahedra and Ino-truncated Marks

decahedra (see Section 4 for additional details). The red

symbols are from icosahedral structures and the teal symbols

(hexagons) are from singly twinned f.c.c. bicrystals. 55% of the

decahedral models tested are in better agreement with the

measured Pd nanoparticle PDF than the best-fit faceted f.c.c.

octahedron. This can be seen as many of the blue symbols are
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Figure 2
Scatter plot of agreement factors (Rw) for discrete f.c.c. clusters fitted to
the Pd nanoparticle PDF, plotted as a function of the number of atoms
per model (Na). Each point is an individual PDF refinement of a discrete
structure from a different f.c.c. cluster type. These have been categorized
as different families (see Section 2 for details) which are represented in
the legend at the bottom right. From top to bottom, the five families from
the f.c.c. motif shown here are AC, discrete spheres, regular octahedral,
truncated octahedral and cuboctahedral. In the scatter plot, the AC
model fit is marked as a solid teal circle, and the best-fit model from the
discrete spherical and truncated octahedral families is highlighted with
red and blue circles, respectively. In the inset to the top left, the PDF fit
residual from the AC model (light purple) is overlaid with the difference
curves from the aforementioned best-fit discrete sphere (a) and
octahedral clusters (b), using the same colors as highlighted in the
scatter plot.



at lower Rw values than the lowest green symbol in the cluster-

screen map.

The best candidate decahedral models for the Pd nano-

particle data turn out to be from a family of pentagonal

bipyramids. The Rw points from this family are outlined with

red pentagons in Fig. 3. These clusters increase in diameter, or

maximum intervertex distance, as a function of Na and reach a

minimum Rw of 0.121 for a decahedron with 609 atoms and a

diameter of �3.6 nm, which is nearly twice the size of the best

f.c.c. model and contains 384 more atoms. This diameter for

the 609-atom decahedron is much closer to the transmission

electron microscopy (TEM) estimated particle size of 3.0 �

0.3 nm for the Pd nanoparticles investigated here. The TEM

estimate is not a full sample average and is a slight under-

estimate of the average particle size. This may be because the

TEM estimate is averaging over particles viewed from

different directions, and the particles are somewhat oblate in

shape. The shape of this 609-atom decahedron (Fig. 1 inset)

also aligns with the observation of oblate-like morphologies in

high-resolution TEM images of these Pd nanoparticles

(Banerjee et al., 2018). In general, combined imaging and

sample average estimates of particles are preferable for

building a full picture. Most convincingly, in comparing the fit

residual from the f.c.c. AC model and the best-fit decahedron

(Fig. 3 inset) we observe drastic changes to the largest

amplitude features in the difference curve, with many of the

misfit correlations removed altogether, which strongly

supports the idea that the decahedral cluster core is capturing

the correct modification to the f.c.c. structure. The ability to

determine nanoparticle structure and morphology in such

detail can be expected to yield insights into questions such as

the mechanisms governing nanoparticle formation and stabi-

lity (Ringe et al., 2013) through systematic studies of well

controlled nanoparticle systems under different growth

conditions.

It is often discussed in the literature whether the range of r

where features are seen in the PDF corresponds to a range of

structural coherence or a crystallite size but this modeling

shows how such a situation may come about. The observed

PDF structural coherence range is roughly the size of one of

the five f.c.c. sub-domains that make up the decahedral cluster.

This is an exemplar case where a model of a much larger

cluster, which accounts for the inter-domain structure and

domain twin boundaries, produces a significantly better fit to

the PDF than just a model of incoherent small grains of f.c.c.

material and provides an illustration of how rather small

nanoclusters may consist of sub-domains in general. The other

cyclic twinned motif tested in Fig. 3, magic icosahedra (red

markers), yields Rw’s that are significantly worse than both the

f.c.c. and decahedral motifs, which shows that despite

containing a high density of contact twin boundaries, the

spatial arrangement of these domains is not representative for

this Pd nanoparticle sample and the icosahedral motif can be

easily ruled out. Singly twinned f.c.c. bicrystals follow a trend

that is intermediate between the single-crystal f.c.c. cutouts

and the best candidate decahedral models, which makes sense

given that the density of atoms on twin planes is also inter-

mediate between the two.

We now apply cluster-mining to a series of ultra-stable

magic sized Au144(SR)60 clusters (Whetten et al., 1996)

prepared with different thiolate ligands (Ackerson et al., 2010;

Qian & Jin, 2011). In Fig. 4(a) we show the cluster-screen map

from one sample in this series consisting of hexanethiol-

ligated clusters, Au144(SC6)60. In this case, icosahedral struc-

tures perform better than the AC, f.c.c. octahedral and deca-

hedral motifs. The best-fit model obtained is a 55-atom

Mackay icosahedron with Rw = 0.228, highlighted with an

orange outline in the cluster-screen map, Fig. 4(a). In Fig. 4(b)

we show the PDF of the best-fit cluster-mined 55-atom core.

The difference curve is offset below and overlaid on the

difference curve from the f.c.c. AC approximation. The main

misfit in the AC difference curve between 5 and 8 Å is dras-

tically improved and no other clusters are close in agreement,
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Figure 3
Scatter plot of agreement factors (Rw) for discrete clusters from three
different structure motifs fitted to the Pd nanoparticle PDF, plotted as a
function of the number of atoms per model (Na). Green diamonds and
circles are for the f.c.c. motif and include the faceted and spherical cluster
families shown in Fig. 2. Red octagons are for Mackay icosahedra, teal
hexagons are for singly twinned f.c.c. bicrystals and blue pentagons are for
different decahedral families (see text for details). The best-fit AC model
is marked as a solid blue circle. Red pentagons outline a size series of
regular decahedra (pentagonal bipyramids). In the inset, the PDF fit
residual from the AC model (light purple) is overlaid with the difference
curve from the absolute best-fit cluster model, which in this case is the
609-atom non-truncated decahedron (Fig. 1 inset).



giving us confidence that the core of this Au144 cluster is

icosahedral in nature.

In this case, a structure solution for Au144(SC6)60 has been

found by density functional theory (DFT), high-angle annular

dark-field scanning transmission electron microscopy

(HAADF-STEM) and PDF analysis (Lopez-Acevedo et al.,

2009; Bahena et al., 2013; Jensen et al., 2016). In Fig. 4(c) we

show the PDF from the 144-atom Lopez-Acevedo (LA)

model, which contains chiral arrangements of atoms on top of

a core that is nearly identical to a Mackay icosahedron (Jensen

et al., 2016; Banerjee et al., 2018). The additional lower-

symmetry outer layers of the LA model further remedy the

misfit features at higher r [Fig. 4(c)] and improve the overall

agreement factor to a value of Rw = 0.146. This highlights the

fact that cluster-mining can also identify good candidate

cluster cores, which can be used as starting structures for more

complex core/shell models.

Not all samples are ideally single phase and we would like to

know how robust the cluster-mining approach is in the case

where more than one phase exists in the sample. This can be

tested using an Au144(SR)60 sample where a different thiolate

ligand, dodecanethiol (SC12), was used to prepare the clusters.

This sample was shown to consist of both icosahedral and

decahedral cores with the decahedral phase fraction being

�14% (Jensen et al., 2016). The resulting cluster-screen map is

shown in Fig. 5. The cluster-mining methodology is stable,

resulting in a cluster-screen map that is largely similar to the

pure single-phase icosahedral SC6 sample shown in Fig. 4(a).

It yields the 55-atom Mackay core as the best candidate cluster

research papers

Acta Cryst. (2020). A76, 24–31 Banerjee et al. � Core structures of metallic nanoparticles 29

Figure 4
(a) Cluster-screen map for Au144(SC6)60 including structures from AC (teal), f.c.c. octahedral (green), decahedral (blue) and icosahedral (red) motifs.
The best-fit cluster core, a 55-atom Mackay icosahedron, is outlined in orange. (b) Measured PDF (open circles) from the Au144(SC6)60 cluster sample
and the calculated PDF (red solid line) from the cluster-mined 55-atom Mackay core (shown in inset). The difference curve from this refinement is offset
below in green and overlaid with the AC residual in light blue. (c) Analogous to (b), except the calculated PDF (red solid line) is from a DFT-derived
structure solution (Lopez-Acevedo et al., 2009) for Au144(SC6)60, which shares the icosahedral core shown in (a), and also contains lower-symmetry outer
layers. In the inset, the radii of atoms surrounding the DFT-determined core are scaled down by a factor of two for illustration purposes.

Figure 5
Cluster-screen map for a multi-phase cluster sample, Au144(SC6)60. The
cluster mine includes AC (teal), f.c.c. octahedral (green), decahedral
(blue) and icosahedral (red) motifs.



which is consistent with the expected majority phase, but the

cluster-screen map also shows that the Rw trends for icosa-

hedral and decahedral clusters have changed, with the two

motifs reaching minima much closer to one another compared

with the single-phase case. This behavior may be characteristic

of nanoparticle mixtures. In the future we will explore

extending cluster-mining to quantify minority phases in multi-

phase samples.

4. Experimental methods

Pd samples were prepared by the Murray group using methods

described by Mazumder et al. (2012). Synthesis of Au144(SR)60

cluster samples was carried out in the Ackerson group

following Qian & Jin (2011). Pd nanoparticle data were

collected at the National Synchrotron Light Source II

(beamline XPD, 28-ID-2) at Brookhaven National Laboratory

and data for the two cluster samples, Au144(SC6)60 and

Au144(SC12)60, were collected at the Advanced Photon Source

(11-ID-B), Argonne National Laboratory. During both

beamtimes, data were collected using the rapid acquisition

PDF geometry (Chupas et al., 2003) with large-area 2D

detectors mounted behind nanopowder samples loaded in, or

deposited on, polyimide capillaries and films. Pd nanoparticle

samples were measured at 300 K with � = 0.1846 Å and the

two cluster samples were measured at 100 K with � =

0.1430 Å.

Fit2D (Hammersley et al., 1996; Hammersley, 2016) was

used to calibrate experimental geometries and azimuthally

integrate diffraction intensities to 1D diffraction patterns for

all three samples. Standardized corrections were then made to

the data to obtain the total scattering structure function, F(Q),

which was then sine Fourier transformed to obtain the PDF,

using PDFgetX3 (Juhás et al., 2013) within xPDFsuite (Yang et

al., 2015). The range of data used in the Fourier transform

(Qmin to Qmax, where Q ¼ 4� sin �=� is the magnitude of the

momentum transfer on scattering) was tuned per sample to

give the best trade-off between statistical noise and real-space

resolution, and also to truncate low-Q scattering unambigu-

ously originating from organic species in the sample. For Pd

nanoparticles, a range from 2.0 � Q � 26.0 Å�1 was used, and

for the cluster samples ranges of 0.8�Q� 27.0 Å�1 and 0.8�

Q � 26.0 Å�1 were used for Au144(SC6)60 and Au144(SC12)60,

respectively.
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