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Astragalus membranaceus (A. membranaceus) is a type of traditional Chinese medicine
with a long history of clinical application. It is used in the improvement and treatment of
various diseases as medicine and food to invigorate the spleen and replenish qi. The main
components of A. membranaceus are Astragalus polysaccharide (APS), flavonoids
compounds, saponins compounds, alkaloids, etc. APS is the most important natural
active component in A. membranaceus, and possesses multiple pharmacological
properties. At present, APS possess the huge potential to develop a drug improving or
treating different diseases. In this review, we reveal the potential approaches of pre-
treating and preparation on APS as much as possible and the study on content of APS
and its chemical composition including different monosaccharides. More importantly, this
paper summarize pharmacological actions on immune regulation, such as enhancing the
immune organ index, promoting the proliferation of immune cells, stimulating the release
of cytokines, and affecting the secretion of immunoglobulin and conduction of immune
signals; anti-aging; anti-tumor by enhancing immunity, inducing apoptosis of tumor cells
and inhibiting the proliferation and transfer of tumor cells; antiviral effects; regulation of
blood glucose such as type I diabetes mellitus, type II diabetes mellitus and diabetic
complications; lipid-lowering; anti-fibrosis; antimicrobial activities and anti-radiation. It
provided theoretical basis for the further research such as its structure and mechanism of
action, and clinical application of APS.

Keywords: Astragalus polysaccharide, preparation, chemical composition, pharmacological action, immune
regulation, anti-aging, anti-tumor, regulation of blood glucose
INTRODUCTION

A. membranaceus is one of the most popular herbal medicines worldwide. In China, it is known as
“Huangqi.” In traditional Chinese medicine, it is used as medicine and food to invigorate the spleen
and replenish qi. Astragalus polysaccharide (APS) is a type of water-soluble heteropolysaccharide
with bioactive effects, which is extracted from the stems or dried roots of A. membranaceus. The
components are complex and diverse, and polymeric carbohydrates are mainly linked by a-type
glycosidic bonds between the monosaccharides (Li C. et al., 2019). APS is the most important
in.org March 2020 | Volume 11 | Article 3491
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natural active component in A. membranaceus and exerts
multiple pharmacological effects (Li S.S. et al., 2019). Owing to
its low toxicity and side effects, non-residue, and non-tolerance,
APS has been widely utilized (Zhang and Zhu, 2010). In this
review, the authors examined the extraction and structural
composition of APS, as well as the effects on immune function
in immune organs, cells, and molecules. Furthermore, the latest
research progress on the pharmacological effects of APS was
illustrated to provide the theoretical basis for the clinical
application of APS.
PREPARATION OF APS

APS, one of the natural active components in A. membranaceus,
is an active substance which is beneficial to human health. Thus
far, the extraction methods of APS mainly involve water
extraction, microwave extraction, enzyme extraction, alkali
water extraction, etc. The purity of APS extracted at the same
dose varies because of the different preparation methods. Studies
showed that the best extractive method of APS by water is to
perform the extraction twice through heating water at 100°C for
60 min per extraction. The liquid ratio of the material is 1:10 g/
ml, and the rate of extraction is 3.570%. The use of tannic acid to
split protein provides the best effect. Moreover, the purification
of APS, which is isolated and purified by D101 macroporous
absorptive resin, is 65.07% (Liu et al., 2018). The water extraction
method will extract other substances, such as saponins and
flavonoids, from A. membranaceus. These substances are
difficult to separate at the later stage, resulting in the low
purity of APS. Moreover, the energy consumption of this
method is high, whereas the economic benefit is relatively low.
However, the extraction ratio of APS was significantly improved
with the alkali extraction method versus water extraction (Li
et al., 2000). Alkali destroy the fiber of A. membranaceus,
facilitating the flow of polysaccharides. Compared with the
method of APS extraction using heated water, microwave-
assisted extraction reduced the amount of extractant, shortened
the extraction time, and increased the production of APS (Gong
and Yang, 2004). Microwaves can inactivate the enzymes in the
cell membrane and cell wall. This facilitates the flow of APS,
increasing the yield of polysaccharides. Similarly, it was found
that the extraction rate can reach 92.1% after 1 h of ultrasonic
extraction through the method of ultrasonic-assisted extraction
of APS (Song and Zhao, 2010). Cellulose is the main component
of the cell wall. Cellulase can destroy the cell wall of A.
membranaceus and improve the extraction rate of polysaccharide.
Following the extraction of APS using the cellulase method, the
content of polysaccharide was 9.78% and the total sugar content was
50.2% (Chen and Ma, 2005). The extraction of APS using the
alcohol alkali method resulted in 3.53-fold and 2.63-fold higher
yield compared with the water extraction and alkali extraction
methods, respectively (Tian et al., 2006). When APS was
extracted using a calcium oxide solution, the yield of APS was
different under different conditions. The results showed that the
yield and purity of the extracted APS was highest when pH was 9.0
Frontiers in Pharmacology | www.frontiersin.org 2
(Liu et al., 2010). Furthermore, other studies showed that the new
methods of pressurized liquid extraction, microwave-assisted acidic
hydrolysis, and comprehensive chromatography are more effective,
more suitable for carbohydrate analysis, and can more optimally
control the quality of APS extraction (Lv et al., 2015). The extraction
of APS through homogenization-assisted negative pressure
cavitation extraction could increase the yield of polysaccharides to
approximately 15% (Jiao et al., 2014). In addition, the methods of
extracting APS also include ultrahigh pressure technology
extraction, rapid extraction with a high-voltage pulsed electric
field, etc. (Liu et al., 2009). The extraction methods for plant
polysaccharides also include using a response surface
methodology on Box-Behnken design (Zhao C. et al., 2017),
application of ammonia fiber expansion pretreatment (Qiao et al.,
2016; Zhao et al., 2016; Zhao L.C. et al., 2017), etc. Astragalus
contains water, and the determination of water content should be
performed before extraction of polysaccharides. Near-infrared
spectroscopy technology can be used for testing on a wide range
of water contents of plants (Zhang et al., 2019). Different extraction
methods influence the composition of APS, while different
structures of APS also influence its function. Through water
boiling and alcohol precipitation, two components of APS,
termed APS-I (sugar content: 94.59%) and APS-II (sugar content:
97.57%), are obtained by graded precipitation with 30% and 70%
ethanol, respectively. By comparing the inhibitory effects on mice
ascites tumors, it was found that the inhibitory rate of APS-I (50
mg/kg) was 55.47%, and the effect was higher than that of APS-II
(50 mg/kg) by 47.72% (Zhu et al., 2011). Recent studies have found
that the contents and functions of extracted APS at different
temperatures are different. Although the main component of
APS4 and APS90 extracted at 4°C and 90°C is glucose and the
main chain is composed of (1!2) a-D-Glcp, APS4 shows a higher
content of (1!2) a-D-Glcp and exerts the greatest inhibitory effect
onMGC-803, A549, and HepG2 cells. This indicates that the higher
branching degree may be responsible for the strong in vitro
antitumor activity of APS4 (Yu et al., 2019). At present, the
representative preparation of APS for injection (Chinese medicine
standard Z20040086) is mainly used to improve immunity and
assist in the treatment of diseases, such as cancer and diabetes
(Zheng et al., 2013).
STUDY ON CHEMICAL COMPOSITION
OF APS

APS is the macromolecular substance and its structure material
contains numerous carbohydrates. The content of APS in A.
membranaceus is different depending on the medicinal part,
basic sources, place of production, planting method, and growth
year. Some studies showed that the polysaccharide content in
stems and leaves of Astragalus mongholicus Bge (A. mongholicus)
is far lower than that in roots (Bi et al., 2017). By comparing the
quality of A. membranaceus and A. mongholicus using
metabolomics, it was found that the content of mannose,
xylose, and other soluble sugars in the former was significantly
higher than that noted in the latter (Duan et al., 2012). Among
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the four places of production in China (i.e., Heilongjiang, Inner
Mongolia, Shanxi, and Gansu), the Gansu area yields the highest
content of APS (Zhu et al., 2016). The content of polysaccharides
and glycoconjugates in wild A. membranaceus is generally higher
than that measured in fast-growing A. membranaceus (Li et al.,
2015). Some studies havemeasured the content ofAPS in 1–3 years
Astragali radix. They found that the content of polysaccharide in 1-
yearAstragali radix is the highest, and the content of polysaccharide
gradually decreaseswith time (Zhang et al., 2006). This is attributed
to the complex chemical structures and content differences in
polysaccharides. Hence, it is relatively difficult to separate or
represent each component. The polysaccharides isolated from A.
membranaceus are mostly extracted in the form of white powder;
some studies showed that the relative molecular weight of APS was
10–50 kDa (Jiang et al., 2013).

Due to the complicatedchemical structureofpolysaccharide, the
cognition on accurate components of APS is very limited. The
monosaccharide composition and proportion of polysaccharides
with different molecular weights are different. Hence, the sugar
chain connection sequence and glycosidic bond types, as well as the
corresponding biological activities will also differ. There are eight
main glycosidic bond types of APS measured through gas
chromatography–mass spectrometry. Of those, 1,4- glucose
linkage is the main, and nuclear magnetic resonance confirmed
that anomeric hydrogen is characterized bya configuration (Wang
et al. , 2017). The main components of APS include
heteropolysaccharide, dextran, neutral polysaccharide, and acidic
polysaccharide. Heteropolysaccharide is an acidic water-soluble
polysaccharide, while dextran is divided into water-soluble and
water-insoluble forms (GaoandGao, 2017), namelya(1!4)(1!6)
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dextran and a(1!4) dextran, respectively (Chen and Huang,
2008). A type of acid heteropolysaccharide is isolated from the
root ofA.mongholicus and its relativemolecularweight is 76 kDa. It
is composed of L-arabinose-D-galactose-D-galacturonic acid-D-
glucuronic acid (18:18:1:1), a small quantity of O-acetyl groups,
and peptide residue (Ai et al., 2008). Studies also showed that there
were six types of monosaccharides isolated from APS, namely
amylaceum, seminose, arabinose, xylose, glucuronic acid, and
rhamnose; the composition ratio of these monosaccharides
(nmol) was 12.83: 0.27: 0.71: 1.63: 1.04: 0.56, respectively (Liao
et al., 2018). Of the 14 types of polysaccharides isolated from
Astragalus, 13 have b-D(1!6)-galactooligosaccharide branching
b-D-(1!3)-galactose (Kiyohara et al., 2010). In total, there are 24
types of polysaccharides extracted from the root of A.
membranaceus, and most of them are heteropolysaccharides. The
molecular weight of heteropolysaccharides ranges 8.7–4,800 kDa;
they are composed of different monosaccharides, including L-
rhamnose, L-rabinose, D-xylose, L-xylose, D-ribose, L-ribose, D-
galactose, D-glucose, and D-mannose (Jin M. et al., 2013).
PHARMACOLOGICAL ACTION OF APS

APS exerts multiple pharmacological effects. In particular, nine
of these effects have been thoroughly investigated, including the
regulation of immune function, and anti-aging, antitumor,
reducing blood sugar, lowering blood lipid, anti-fibrosis,
antibacterial, radiation protection, and antiviral effects
(Figure 1).
FIGURE 1 | Nine pharmacological effects of APS. This figure shows the most highlighted nine effects in studies on APS.
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zheng et al. Pharmacological Action of Astragalus Polysaccharide
Regulation Effect of APS on Immunity
APS regulates the immune function by enhancing the immune
organ index, promoting the proliferation of immune cells,
stimulating the release of cytokines, and affecting the secretion
of immunoglobulin (Ig) and conduction of immune signals.

Influences on Immune Organs
Many studies showed that APS can act on various immune
organs to increase organ weight, improve organ index, and
promote the development of partial visceral organs. In a study
investigating the effect of APS on H22 tumor-bearing mice, it was
found that fluorouracil significantly inhibited tumor growth; the
thymus was obviously degenerated, and the spleen was obviously
swollen. After treatment with APS, the thymus and spleen
showed obvious improvement compared with those observed
in the model group (Yu et al., 2018). Recent studies showed that
after treatment with APS in Lewis transplantable lung cancer
mice, the spleen and thymic immune organ indices in APS group
were higher than those determined in normal saline group. This
effect may improve the function of immune organs by reducing
the expression of vascular endothelial growth factor and
epidermal growth factor receptor, thereby inhibiting the tumor.
(Zhao et al., 2019). Similarly, the APS+polysaccharopeptide
herbal formulation significantly improved the immune
function of mice with Lewis lung cancer and increased the
spleen and thymus indices (Zhou et al., 2018). Besides, APS
antagonized thymus atrophy in rats with incremental load
training (Hu and Gao, 2011). When combined with probiotics,
APS markedly improved the spleen, bursa of fabricius, and
thymus index in Gushi chicken, especially in chicks. APS was
able to promote the maturation of immune organs (Zhao et al.,
2012), and enhanced the immune function by increasing the
weight of immune organs.

Influences on Immune Cells
The influences of APS on immune cells mainly include an
increase the proliferation and differentiation of B lymphocytes
and T lymphocytes, regulation of the balance in the T
lymphocyte subgroup, and regulation of natural killer cells and
macrophages. Dendritic cells (DCs) are key in activating the
immune response. Studies have shown that APS facilitates the
growth and maturation of DCs and their antigen-presenting
capacity, as well as decreases the endocytosis activity of DCs.
Moreover, APS can markedly promote the development and
maturation of bone marrow-derived DCs (Shao et al., 2006). APS
activates T cells by inducing the differentiation of DCs (Liu et al.,
2011). A recent study found that APS is the first effective
regulator of tumor M1/M2 macrophage polarization and an
effective activator of DC maturation (Bamodu et al., 2019).
APS activates the proliferation of B cells and macrophages and
increases the production of cytokines. Furthermore, it can
activate B lymphocytes through antigen receptors on B cell
membranes rather than through the toll-like receptor 4 (TLR4)
(Shao et al., 2004). An in vivo study of mice revealed that APS is
able to increase complement (C3) deposition and the number of
macrophages (Wang et al., 1989). In addition, some studies have
Frontiers in Pharmacology | www.frontiersin.org 4
shown that APS promotes humoral immune response by
regulating the functional activity of natural killer and natural
killer T cells (Xie et al., 2013).

Influences on Immune Molecules
Influences on Cytokines
APS exerts different effects on cytokines under different
conditions. Under normal physiological conditions, it can
promote cytokine production and enhance immunity.
However, following an increase in cytokines as a result of an
inflammatory response, APS can reduce inflammatory response
factors and protect cells or the body (Table 1). Studies have
shown that APS affects the secretion and production of
cytokines; it is able to promote splenocytes to produce
interleukin 2 (IL2), induce interferon (IFN), and promote the
secretion of IL3, IL4, and IL6 (Deng et al., 2012). Recent studies
have found that adenosine monophosphate (AMP), as a
potential immunomodulator, improves the serum levels of
IL11, tumor necrosis factor-a (TNF-a), and IFNg, and
enhances spermatogenesis and sperm quality in mice (Qiu and
Cheng, 2019). APS promotes immune regulation by inducing the
production of IL in human body. Following the application of
APS, the production of IL10, IL12, and IL2 was found to be dose-
dependent compared with the negative control (Yin et al., 2012).
Besides, APS can upregulate the expression of TNF-a, lysozyme
C, and IL1b in the spleen, gill, and kidney of the carp, which was
also found to be dose-dependent (Yuan et al., 2008). APS can also
improve the expression of IL2 and IL10 in the jejunum of
cyclophosphamide broilers (Li S. et al., 2019). It has been
shown that the levels of TNF-a, IL6, and IL1b were
significantly increased in mice with colitis induced by saline in
in vivo studies. However, the production of these inflammatory
cytokines was markedly decreased in the groups treated with
APS and dexamethasone treatment group (Lv et al., 2017).
Another study of experimental colitis in rats treated with APS
found that A high dose of APS (200 mg/kg) or dexamethasone
could markedly downregulate the expression of IL1b and TNF-a
and upregulate the protein expression of nuclear factors of
activated T cells 4 mRNA. Although a low dose of APS (100
mg/kg) markedly downregulated IL1b, it had no significant
impact on the expression of TNF-a protein (Yang et al., 2014).
In vitro studies have investigated the effect of APS on the
inflammatory reaction in lipopolysaccharide-infected (LPS-
infected) Caco-2 cells. The results showed that APS could
significantly downregulate the expression of TNF-a, IL1b, and
IL8 in Caco-2 cells infected with LPS (Wang et al., 2013). APS
also restrained the expression of TNF-a and IL1b by inhibiting
the activation of nuclear factor kappa-B (NF-kB) in THP-1
macrophages, which is induced by LPS (Liu et al., 2017). After
stimulating RAW264.7 cells with LPS or APS for 24 h, the levels
of TNF-a and IL6 were significantly increased. It was found
through reverse transcription-polymerase chain reaction that the
mRNA expression of IL6, TNF-a, and inducible nitric oxide
synthase was strongly increased after treatment with APS (Li
et al., 2018). A study of tumor-bearing mice found that APS
could enhance the immune function by increasing the levels of
March 2020 | Volume 11 | Article 349
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cytokines, such as IL2, IL6, IL12, and TNF-a (Xiao et al., 2009).
In a similar study, APS upregulated the expression of TNF-a,
IL12, and IL2, whereas it decreased the levels of IL10 and
downregulated the expression of multidrug resistance 1 mRNA
and P-glycoprotein in H22 tumor-bearing mice (Tian et al., 2012;
Yang et al., 2013). Another study revealed that APS can inhibit
tumorous growth in tumor-bearing mice. The mechanism of this
process may involve increasing the levels of TNF-a and IFNg,
and reducing those of IL10 and transforming growth factor-b
(TGF-b) (Sun et al., 2014). A new study suggested that APS
significantly improves cancer symptom clusters in patients with
metastatic disease and reduces the expression of major
proinflammatory cytokines, including IL1b, IL6, IL12, and
IFNg (Huang et al., 2019).

Influences on Ig
The major role of APS in Ig is to mediate immunity through IgA,
IgG, and IgM. APS increased the expression of IL2, IL3, IL4,
IFNg, IgM, and IgG, whereas it decreased that of IgE (Lu Y. et al.,
2016). Animal experiments affirmed that the production of IgM
antibody in aged mice (36 and 60 weeks) was increased following
the administration of APS (Kajimura et al., 1997). The level of
antibody IgG in the serum of mice infected with Listeria can be
significantly increased by APS injection (Xiang et al., 2007).
Similarly, the levels of serum IgA, IgM, and IgG in juvenile
broilers fed with APS were higher than those reported in broilers
without exposure to APS. However, the excessive dose of APS
(> 1 g/kg) did not further improve the serum levels of IgA, IgM,
and IgG in juvenile broilers (Wu, 2018). The study showed that
oral administration of APS promoted the immune function of
Newcastle disease-vaccinated chickens and the formation of IgA
cells, and increased the secretion of secretory IgA, thus
improving mucosal immunity in the jejunum (Shan et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 5
Influences on Immune Signal Transduction
Intracellular signal transducers and immune signaling pathways
play a key role in the process of immune regulation (Figure 2).
Studies have shown that APS can increase the TLR4/NF-kB and
Ca2+-cAMP signaling pathways in RAW264.7 cells (murine
mononuclear macrophage leukemia cells) (Wang Z. et al.,
2017). The mouse macrophages is activated by triggering the
TLR4-mediated signaling pathways, upregulating the expression
of phosphorylated-p38 (p-p38), p-extracellular signal-regulated
kinase (p-ERK), and p-JNK, inducing inhibitor of IkB-a
degradation and NF-kB translocation, and ultimately enhances
nitric oxide and TNF-a (Wei et al., 2016). Recent research has
found that APS prevents coxsackievirus B3-induced myocardial
injury and inflammation by modulating the TLR4/NF-kBp65
signaling pathway (Liu T. et al., 2019). APS nanoparticles can
protect against sepsis-induced cardiac dysfunction by inhibiting
the TLR4/NF-kB pathway (Xu et a l . , 2019) . APS
supplementation in diet may regulate the immune function of
piglets by activating the TLR4-mediated MyD88-dependent
signaling pathway (Wang K.L. et al., 2019). APS can also
inhibit the expression of thrombin-induced intercellular cell
adhesion molecule-1 through blocking the NF-kB signal
transduction in rat bone marrow endothelial progenitor cells,
and upregulating the expression of vascular endothelial growth
factor and its receptor (Zhang et a l . , 2016) . The
phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT)
signaling pathway regulates cell metabolism, growth,
migration, and proliferation. Notably, endothelial nitric oxide
synthase is a key enzyme in the regulation of endothelial nitric
oxide production, and is regulated by the PI3K/AKT signaling
pathway. Following the treatment of H9c2 cells with different
concentrations of APS, the result showed that APS protected
these cells from LPS-induced inflammatory injury. This effect
TABLE 1 | Influences of APS on cytokines.

Cytokine Influence Model Reference

IL1b Upregulation In vivo (Wang et al., 1989)
Downregulation In vivo (Deng et al., 2012; Qiu and Cheng, 2019)

In vitro (Yuan et al., 2008; Yin et al., 2012)
IL2 Upregulation In vivo (Shao et al., 2004; Wang et al., 2013; Xie et al., 2013; Yang et al., 2014; Lv et al., 2017)

In vitro (Liu et al., 2011)
IL3 Upregulation In vitro (Liu et al., 2011)
IL4 Upregulation In vitro (Liu et al., 2011)
IL6 Upregulation In vivo (Lv et al., 2017)

In vitro (Liu et al., 2011; Li S. et al., 2019)
Downregulation In vivo (Deng et al., 2012)

IL8 Downregulation In vitro (Yin et al., 2012)
IL10 Upregulation In vivo (Shao et al., 2004; Xie et al., 2013)

Downregulation In vivo (Wang et al., 2013; Yang et al., 2014; Liu et al., 2017)
IL11 Upregulation In vivo (Bamodu et al., 2019)
IL12 Upregulation In vivo (Wang et al., 2013; Yang et al., 2014)

Downregulation In vivo (Li et al., 2018)
IFNg Upregulation In vivo (Liu et al., 2017; Bamodu et al., 2019)

Downregulation In vivo (Li et al., 2018)
TGF-b Upregulation In vivo (Liu et al., 2017)
TNF-a Upregulation In vivo (Wang et al., 1989; Wang et al., 2013; Yang et al., 2014; Liu et al., 2017; Lv et al., 2017; Bamodu et al., 2019)

In vitro (Li et al., 2019)
Downregulation In vivo (Deng et al., 2012; Qiu and Cheng, 2019)

In vitro (Yuan et al., 2008; Yin et al., 2012)
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may also be attributed to the downregulation of miR-127, as well
as the adjustment of the JNK, NF-kB, and PI3K/AKT signaling
pathways (Ren et al., 2018). APS can promote the proliferation
and differentiation of bone marrow mesenchymal stem cells
(BMSCs) by upregulating BMP9, during which overexpression
of BMP9 activates the PI3K/AKT and Wnt/b-catenin signaling
pathways (Li Q. et al., 2019). APS can also partially suppress
pulmonary artery remodeling through endothelial nitric oxide
synthase/nitric oxide and the NF-kB signaling pathway to
improve monocrotaline-induced pulmonary hypertension
(Yuan L.B. et al., 2017). In addition, APS can inhibit the
expression of adhesion molecules, which is induced by TNF-a
through blocking NF-kB signal transduction in human umbilical
vein endothelial cells and suppressing the production of reactive
oxygen species (Zhu Y.P. et al., 2013). APS activated the
downstream PI3K/AKT pathway by inducing neuregulin 1
(NRG1), which enhanced the phosphorylation of PI3K and
AKT (Chang et al., 2018). APS can improve muscle atrophy
through AKT/mammalian target of rapamycin (AKT/mTOR),
autophagy signal transduction, and ubiquitin proteasome;
sodium-dependent neutral amino acid transporter (SNAT2)
may be one of the latent targets (Lu L. et al., 2016). AMP-
activated protein kinase (AMPK) activated by AMP is the most
important substrate of liver kinase B1 (LKB1); it is able to
sensitively perceive the levels of cellular energy and maintain
homeostasis. LKB1/AMPK participates in the regulation of cell
growth and cell cycle by regulating mTOR. The mTOR is an
important kinase regulating cell growth in eukaryotes. In similar
studies, the mTOR inhibitor rapamycin markedly eliminated the
Frontiers in Pharmacology | www.frontiersin.org 6
protective effect of APS on adriamycin-induced cardiac injury;
APS may play a protective role by regulating LKB1/AMPK to
regulate mTOR (Cao et al., 2017). In pathological conditions,
APS can downregulate the activity of mTOR and protect cells. In
a study investigating the effect of APS on iron-overloaded mice,
APS activated the p38/mitogen-activated protein kinase (p38/
MAPK) signal transduction pathway in vitro (Ren et al., 2016).
The inhibitory effect of APS on autophagy may be regulated by a
mTOR-independent signaling pathway. Moreover, APS reduces
hydrogen peroxide-induced apoptosis in myoblast C2C12 cells
by inhibiting the Caspase-3 signaling pathway (Yin et al., 2015).
By modulating the MEK/ERK pathway to up-regulate Kruppel
like factor 2 expression, it can also reduce hydrogen peroxide-
induced cell damage in human umbilical vein endothelial cells
effectively (Li D.T. et al., 2019). Recent studies have also found
that APS can effectively inhibit experimental autoimmune
encephalomyelitis-mediated immune response by downregulating
proinflammatory cytokines, upregulating the co-stimulatory
molecule PD-1/PD-Ls signaling pathway, and inhibiting T cells
(Sun et al., 2019).
Anti-Aging Effect of APS
Numerous studies have found that APS exerts an anti-aging
effect through antioxidant and life-prolonging properties. An
increase in free radicals in vivo can lead to lipid peroxidation. As
the end product of lipid peroxide metabolism in cells,
malondialdehyde can indirectly reflect the extent of cell
damage. And the formation of lipid peroxide can induce the
FIGURE 2 | APS exerts different effects on the signaling pathways in different environments and under certain physiological conditions.
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production of antioxidant enzymes in body. If the activity of
superoxide dismutase is decreased and the antioxidant ability of
the body is decreased, it will lead to attack of free radicals on
normal tissues and cells, accelerating the occurrence of aging and
diseases. Free radicals can attack normal tissues and cells, as well
as accelerate the occurrence of aging and diseases. APS
demonstrates resistance to oxidation, and is able to scavenge
free radicals, improve oxidative stress, inhibit lipid peroxidation,
and chelate iron ions in vitro (Pu et al., 2015). In addition, APS
increases superoxide dismutase and simultaneously blocks the
production of malondialdehyde (Huang et al., 2013); glutathione
and total antioxidant capacity can be improved, whereas
hydroxyl radical activity can be eliminated (Jia et al., 2012;
Tian et al., 2018). APS can play an anti-aging role via different
mechanisms. It was found that APS significantly prolonged the
life span of N2 nematodes in S-complete medium and solid
nematode growth medium. It was found that the highly
conserved miRNA miR-124 was significantly upregulated in
APS-treated nematodes. The results showed that activating
transcription factor 6 (ATF6), which is regulated by miR-124,
can prolong the life span. This observation may be the basis for
the ability of APS to prolong the life span of Caenorhabditis
elegans (Wang et al., 2015). APS can also exert its anti-aging
effects by regulating telomerase activity, regulating or changing
telomere-binding proteins, and preventing the shortening of the
end of the chromosomal restriction fragment (Zhu G.M. et al.,
2013). Furthermore, APS can effectively inhibit the aging of
BMSCs induced by ferric ammonium citrate (Yang et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 7
Antitumor Effect of APS
APS shows its characteristic antitumor properties by enhancing
immunity, inhibiting the proliferation of tumor cells, inducing
apoptosis of tumor cells, and inhibiting the transfer of tumor
cells (Table 2).

Inhibiting the Proliferation of Tumor Cells
Studies showed that APS can significantly inhibit the
proliferation of tumor cells. APS was able to inhibit the
proliferation of human erythroleukemia K562 cells by
downregulating the expression of cyclin B and cyclin E, as well
as upregulating the expression of p21 (Li, 2014). APS also
inhibited the growth and proliferation of human gastric cancer
cells MKN45 in a dose-dependent and concentration-dependent
manner. The mechanism of this process involves blockage of
MKN45 cells in the G0-G1 phase by affecting the cell cycle (Xie
et al., 2009; Chao et al., 2012). APS at concentrations >50.0 mg/ml
inhibited the growth of COLO205 human colon cancer cell lines
in vitro; the mechanism of this process may be related to a
decrease in the expression of proliferating nuclear antigen
(Zheng et al., 2012). Other studies have shown that the growth
and proliferation of BEL-7404 hepatoma carcinoma cells were
significantly inhibited by APS; the cells were blocked in the G1
phase and the number of cells in the S phase was significantly
decreased (Zhao and Li, 2005). APS may delay tumor growth of
A549 xenografts in vivo by reducing the transcriptional activity
of P65mRNA in cells (Wu et al., 2017), or inhibit the growth of
A549 cells in lung cancer by reducing the expression of LC3B and
TABLE 2 | Antitumor effect mechanism of APS.

Pharmacological action Function Living model Reference

Inhibition of tumor cell
proliferation

Downregulation of cyclin B and cyclin E expression and upregulation of P21
expression

K562 cells (Jia et al., 2012)

Blockage of cells in the G0-G1 phase MKN45 cells HgpG2
cells

(Wang et al., 2015; Tian et al.,
2018)

Decrease in proliferating nuclear antigen expression COLO205 cells (Zhu G.M. et al., 2013)
Cell blockage in the G1 phase; cells in the S phase were obviously reduced BEL-7404 cells (Yang et al., 2016)
Reduction of transcriptional activity of P65mRNA in cells, reduction of LC3B and
beclin 1 expression

A549 cells (Chao et al., 2012; Li, 2014)

Increase of BAX protein expression, decrease of BCL2 protein expression H22 cells (Xie et al., 2009)
H22 tumor-bearing
mice

(Xie et al., 2009)

Regulation of CDC6 and CCNB1 MCF-7 cells (Zheng et al., 2012)
Promote tumor cells
apoptosis

Cell blockage in the G1 phase; cells in the S phase were obviously reduced MCF-7 cells (Zhao and Li, 2005)
4T1 cells (Wu et al., 2017)

Promotion of cell differentiation into the G0-G1 and G0-M phases, decrease in the
S phase

HgpG2 cells (Wang X.L. et al., 2019)

Inhibition of the ERK1/2 signaling pathway HgpG2 cells (Lai et al., 2017)
Inhibition of the transcriptional activity of NF-kB A549 cells (Liu C. et al., 2019)
Decrease in BCL2 expression, increase in caspase 3 activity HgpG2 cells (Li et al., 2019a)
Increase in the levels of BAX and caspase 8, and decrease in the levels of BCL2 H460 cells (Li et al., 2019b)
Downregulation of BAX and BCL2 expression SGC7901 cells (Wang, 2012)
Reduction of telomerase activity HL-60 cells (Feng and Zhang, 2010)
Increase in intracellular calcium concentration S-180 cells (Lee and Jeon, 2005)

Inhibit tumor cell metastasis Decrease in MMP2 C-33A cells (Wu et al., 2013)
Up-regulation of E-cadherin expression, inhibition of MMP2 C-4I cells (Zhang et al., 2015)
Inhibition of NOTCH1 expression H22 cells (Nie, 2014)
Inhibition of the NF-kB and MAPK signaling pathways Lewis cells (Yao et al., 2005)
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beclin 1 (Wang X.L. et al., 2019). Research studies revealed that
APS inhibited the growth of H22 cells; the mechanism of this
process is related to the increase in the expression of BAX protein
and decrease in the expression of B-cell lymphoma 2 (BCL2)
protein (Lai et al., 2017). Recent research suggested that APS may
inhibit the proliferation of MCF-7 breast cancer cells through
regulation of control protein 6 homolog (CDC6) and mitotic
specific cyclin-B1 (CCNB1) (Liu C. et al., 2019).

Promoting the Apoptosis of Tumor Cells
APS is able to significantly promote the apoptosis of tumor cells.
Research studies showed that APS can induce the apoptosis of
MCF-7 cells and 4T1 cells by blocking the cell cycle in the G1
stage (Li et al., 2019a; Li et al., 2019b). APS may inhibit the
ERK1/2 signaling pathway (Wang, 2012) by promoting HepG2
cell differentiation into the G0-G1 and G0-M stages (Feng and
Zhang, 2010), inducing the expression of BCL2 in HepG2 cells
and increasing the activity of caspase 3 (Lee and Jeon, 2005), thus
promoting the apoptosis of HepG2 cells. In a study investigating
the apoptosis of human lung cancer A549 cells, it was found that
APS may accelerate apoptosis by inhibiting the transcription
activity of NF-kB (Wu et al., 2013). Following treatment of
human lung cancer H460 cells with APS, the levels of pro-
apoptosis BAX and caspase 8 were markedly increased, whereas
those of anti-apoptosis BCL2 were decreased; these effects
promoted the apoptosis of tumor cells (Zhang J.X. et al., 2015).
APS regulates the apoptosis of human gastric cancer SGC7901
cells (Nie, 2014), possibly by downregulating the expression of
the p53 downstream genes BAX and BCL2. In addition, the
apoptosis of human early childhood leukemia HL-60 cells
induced by APS may be induced by decreasing the activity of
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telomerase (Yao et al., 2005). The apoptosis of mice S-180
sarcoma cells induced by APS may be mediated by increasing
the concentration of calcium ions in cells (Luo et al., 2008).

Inhibiting the Metastasis of Tumor Cells
APS can significantly inhibit the metastasis of C33A cells in
cervical cancer, which may be achieved by reducing the levels of
matrix metalloproteinase 2 (MMP2) (Shi, 2014). In addition,
APS significantly inhibited the migration and invasion abilities of
cervical cancer C-4I cells; this effect may be related to the
upregulation of E-cadherin expression and inhibition of
MMP2 activity (Chen, 2015). Other studies have shown that
APS inhibits the metastasis of hepatocellular carcinoma H22
cells in a concentration-dependent manner and induces
apoptosis in H22 cells by inhibiting the expression of
NOTCH1 (Huang et al., 2016). Furthermore, APS may inhibit
the metastasis of mouse Lewis lung cancer cells by inhibiting the
activation of the NF-kB and MAPK signaling pathways (Ming
et al., 2016).

Regulation of Blood Glucose by APS
Studies have shown that APS reduces the levels of blood glucose,
increases the sensitivity to insulin, improves insulin resistance
(IR), and inhibits the apoptosis of islet b cells. It also plays a key
role in the treatment of diabetes mellitus (DM) and its
complications (Figure 3).

Effects of APS on Type I Diabetes Mellitus
Type I diabetes mellitus (T1DM) is an autoimmune disease,
which mainly leads to the apoptosis of islet b cells and the
absolute deficiency of insulin. It has been found that APS can
FIGURE 3 | Regulation on blood glucose by APS. The effect of APS on DM mainly involves reduction of IR, promotion of the proliferation of islet cells, and inhibition
of the apoptosis of islet b cells. The intrinsic mechanism of its pharmacological action mainly involves influencing the expression of related genes and proteins.
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reduce the incidence of T1DM in non-obese diabetic mice, delay
the onset of disease, reduce the degree of islet inflammation, and
protect the ultrastructure of b cells (Chen et al., 2007). APS also
up-regulates the expression of galectin 1 in the muscle of T1DM
mice, leading to the apoptosis of CD8+T cells (Zhou et al., 2011).
In addition, it regulates the ratio of helper T cell 1 (Th1)/Th2 to
restore balance (Jin et al., 2013) and interferes with the
expression of Fas and cysteine protease 3 in islet b cells (Li
C.D. et al., 2011), thus inhibiting the apoptosis of islet b cells.
Moreover, 10 and 100 mg/ml of APS also stimulated the
proliferation activity of islet MIN6 cells and decreased the
apoptosis of cells, thereby enhancing the production of insulin
to lower the levels of blood glucose (Li L. et al., 2011).

Effect of APS on Type II Diabetes Mellitus
The pathogenesis of Type II diabetes mellitus (T2DM) is mainly
attributed to IR, the functional defect of islet b cells, and the relative
insufficiency of insulin. The normal functions of islet b cells
including decreasing IR, stabilizing lipid metabolism, increasing
the secretion of insulin, and reducing the levels of blood glucose
(Song et al., 2013). APS can also protect islet b cells, reduce the levels
of blood glucose and fasting insulin in T2DM rats effectively (He
and Zhu, 2018). Some studies showed that APS can reduce blood
glucose by reducing endoplasmic reticulum stress in patients with
T2DM, thereby increasing the sensitivity to insulin (Hu et al., 2010).
Its mechanism may involve reduction of the activation of ATF6
(induced by endoplasmic reticulum stress), reversal of the
translocation of ATF6 in cells, inhibition of the high expression of
protein tyrosine phosphatase 1B (PTP1B). These effects relieve
endoplasmic reticulum stress in the liver to produce the
sensitizing effect of insulin (Wang et al., 2009). Moreover, APS
may inhibit the IR of T2DM by upregulating or maintaining the
expression of miR-203a-3p, decreasing the expression of glucose-
regulated protein (GRP78) mRNA and protein, and regulating the
expression of protein in the signaling pathway of endoplasmic
reticulum stress (Wei et al., 2017). APS can also bind and activate
peroxisome proliferator-activated receptor g, significantly inhibit
hepatic glycosylation, increase the non-oxidative metabolism of
glucose in skeletal muscle, and significantly improve IR in
patients (Seino et al., 2007). It also promotes cell differentiation,
induces the secretion of adiponectin (Hu et al., 2018), increases the
expression of T2DM rat skeleton (Liu et al., 2011a) and glucose
transporter 4 (GLUT4) mRNA in adipose tissue (Liu et al., 2011b),
decreases the expression of resistin mRNA, downregulates adipose
tissue resistance protein in T2DM rats (Liu et al., 2012c), and
increases the expression of AMPK in liver tissue of T2DM rats (Wu
et al., 2009). Collectively, these effects improve IR.

Effect of APS on Diabetic Complications
APS can prevent and treat other chronic complications of DM,
such as diabetic nephropathy (DN), diabetic cardiomyopathy
(DCM), etc.

Influence of APS on DN
DN is a common and serious chronic complication of DM. It is
an important cause of death in patients with DM. The protective
effect of APS on DN may be related to maintaining the
Frontiers in Pharmacology | www.frontiersin.org 9
expression of nephrin and podocin in podocytes (Li Z.J.et al.,
2011). Moreover, it may relevant to downregulating the
expression of renal neuropeptide y and its Y2 receptor (Chen
et al., 2011). The mechanism of APS in the treatment of DN may
be related to the reduction of the expression levels of renal
medullary aquaporin 2 (AQP2) mRNA (Mao et al., 2010).

Influence of APS on DCM
DCM, a chronic complication of DM, is a specific
cardiomyopathy that occurs in the absence of coronary artery
disease and hypertension (Bai et al., 2016). Treatment with APS
can improve the apoptosis and necrosis of cardiac muscle cells in
diabetic rats (Chen et al., 2018). The mechanism involved in this
process may reduce the apoptosis of cardiac muscle cells in
diabetic rats by affecting the expression of peroxisome
proliferator-activated receptor g coactivator 1a (Yu et al.,
2015) or by inhibiting the expression of brain natriuretic
peptide (Wang F. et al., 2012). APS may also exert a protective
effect on DM cardiomyopathy by decreasing the expression of
myocardial angiotensin II (ANG II) and inhibiting the
production of regional chymase-dependent ANG II in the
diabetic cardiac muscle (Chen et al., 2010). Moreover, it
prevents the development of lipotoxic cardiomyopathy by
regulating PPARa (Chen et al., 2015). Furthermore, overload
of intracellular calcium is also the cause of DCM; APS can reduce
intracellular calcium overload and alleviate myocardial
dysfunction (Liu et al., 2011d).

Influences of APS on Other Chronic Complications of DM
Studies have shown that the expression of brain nerve growth
factor mRNA decreased in T2DM rats. However, it increased in
T2DM rats after the administration of APS (Liu et al., 2011e),
indicating that APS may be able to improve diabetic peripheral
neuropathy. APS can also alleviate the increase in MMP2 and
MMP9 activity and their protein expressions in fibroblasts from
diabetic foot ulcer, thus promoting healing (Zhang et al., 2007). It
also reduces the incidence of DM retinopathy by reversing the
decrease of Kir2.1 protein expression in early retinal Muller cells
of DM rats (Li et al., 2008).

Other Pharmacological Effects of APS
Antiviral Effect of APS
An in vitro experiment revealed that APS inhibited the
replication of porcine circovirus type 2 by reducing oxidative
stress and activation of the NF-kB signaling pathway (Xue et al.,
2015). APS also inhibited the proliferation of astrocytes infected
by the herpes simplex virus (Shi et al., 2014). In addition, it
effectively inhibited the cytopathic changes induced by
coxsackievirus B3 and the proliferation of the virus in Vero
cells and cardiomyocytes (Liu et al., 2003). It was also found that
APS at a non-cytotoxic concentration of 30 mg/ml significantly
inhibited the expression of zipper transcription factor,
transcription activator, and the diffuse component of early
antigen in the Epstein-Barr virus cleavage cycle, showing that
APS carries potential as an anti-Epstein-Barr virus drug (Guo
et al., 2014). Moreover, APS inhibited the replication of
infectious bronchitis virus in vitro. The observed decrease in
March 2020 | Volume 11 | Article 349

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zheng et al. Pharmacological Action of Astragalus Polysaccharide
viral replication after treatment with APS was related to the
decrease of cytokines; these results showed that APS had activity
against infectious bronchitis virus (Zhang et al., 2018).
Treatment with APS also reduced the replication of H9N2
avian influenza virus (AIV) and promoted the early humoral
immune response in young chicken, thus enhancing the cellular
immunity (Sanpha et al., 2013).

Antagonistic Fibrosis Effect of APS
It has been found that APS reduced the production of collagen in
skin treated with bleomycin, and was able to antagonize
prostaglandin-induced fibrosis (Hao et al., 2015). APS may
prevent and treat myocardial fibrosis induced by isoproterenol
by inhibiting the TGF-b1/SMADs pathway (Zhu et al., 2017).
APS also inhibited the formation of renal interstitial fibrosis and
protected the kidney to some extent by upregulating the
expression of MMP2 and downregulating that of TGF-b1,
tissue inhibitor of MMP1, and ANG II in renal interstitial
tissue (Lu and Wei, 2014). APS may also prevent and treat
hepatic fibrosis by inhibiting the expression of type I collagen
and a-smooth muscle actin in rats (Zhang C. et al., 2015).

Lowering Blood Lipids Effect of APS
It has been found that APS can improve hyperlipidemia in mice
(Liu et al., 2013). It decreases the levels of serum triglycerides in
T2DM rats and improves the disorder of body fat metabolism
(Luo et al., 2007). APS can significantly reduce the levels of
serum leptin in obese rats induced by high-fat diet, by increasing
the levels of serum adiponectin (Chen et al., 2013). The content
of total cholesterol, triglycerides, and low-density lipoprotein
cholesterol in the blood of rats with non-alcoholic fatty liver
disease was significantly decreased after treatment with APS. The
results showed that APS decreased the levels of blood lipids and
retarded the accumulation of fat in the liver of rats with fatty liver
(Tang et al., 2016). By comparing the therapeutic effects of APS
and simvastatin on hyperlipidemic rats, it was found that APS
exerted a similar lipid-lowering effect to that of simvastatin after
prolonging the administration time, and was superior to
simvastatin in improving the effect of transaminase (Yuan Q.F.
et al., 2017).

Antimicrobial Effect of APS
It was found that APS exerted a certain bacteriostatic effect on the
main pathogenic bacteria causing mastitis in dairy cattle, including
Streptococcus, Escherichia coli, and Staphylococcus aureus; this
bacteriostatic effect was dose-dependent (Yang et al., 2010). At
concentrations of 20 mg/L and 40 mg/L, APS also significantly
inhibited the bacterial strains of Staphylococcus aureus, Escherichia
coli, and Salmonella in vitro (Li et al., 2007). The water-soluble
portion of the polysaccharide extracted from the root of A.
membranaceus was used to synthesize silver nanoparticles
(AgNPs). The results showed that A. membranaceus-mediated
AgNPs was resistant to clinical multidrug-resistant bacteria
(Methicillin-resistant S. aureus, Methicillin Resistant S.
Epidermidis, E. coli, P. aeruginosa), and showed significant
Frontiers in Pharmacology | www.frontiersin.org 10
antibacterial activity and relatively low concentrations of reference
strains (S. aureus ATCC 29213, S. epidermidis ATCC 12228, E. coli
ATCC 25922, P. aeruginosa ATCC 15442). In particular, APS
demonstrated great potential for eliminating multidrug-resistant
bacteria (Ma et al., 2017).

Radiation Protection Effect of APS
It was found that APS could alleviate DNA damage in BMSC
after X-ray irradiation (Zhou et al., 2016), as well as damage to
the nucleus and chromosomes (Wang et al., 2008). APS may also
prevent the injury to interstitial glands induced by 60cog-ray by
promoting the expression of luteinizing hormone receptor
mRNA in Leydig cells of the testes (Wang R. et al., 2012). It
was found that the compatibility of angelica polysaccharide and
APS at a 3:1 ratio significantly reduced damage to model mice
caused by radiation (Ding et al., 2014). The compatibility of APS
and Astragaloside A at a 4:1 ratio also markedly reduced
radiation-induced damage in model mice (Liu et al., 2014).
CONCLUSION AND FUTURE
PERSPECTIVES

This article described the nine main pharmacological effects of
APS. The main function of APS is to promote repair and
regulation of the immune system. However, there are few
reports on the modification of the APS structure. Thus, future
research studies should investigate whether different APS
modifiers can enhance its immune regulatory function. The
mechanism of antioxidation is the most important in the anti-
aging effect of APS, which is generally considered to be effective
in the prevention and cure of cancer. Notably, there is usually
abnormal energy metabolism in tumor cells. However, there are
few reports investigating whether APS can regulate the energy
metabolism in tumor cells to exert its characteristic antitumor
activity. Hence, this is also one of the research directions
regarding the antitumor effect of APS. APS offers great
advantages in the treatment of DM and its complications. As a
natural drug, it is suitable for long-term use in patients with
chronic disease. Therefore, it is important to elucidate the
mechanism of APS involved in the treatment of DM.
Nevertheless, further clarification of its mechanisms involved
in reducing blood lipids, antagonizing fibrosis, bacteriostasis,
radiation protection, and antiviral activities is warranted. APS, as
the extract of A. membranaceus, exhibits almost no toxic side
effects. The dose-response relationship is an important factor in
the prevention and treatment of diseases. Thus, the precise
control of the dosage of APS, while exerting its various
pharmacological effects, requires further investigation. APS has
great potential in the treatment of diseases. At present, injection
with APS has been used to assist in radiotherapy and
chemotherapy, and play a synergistic role in reducing toxicity.
APS is a natural complex compound; thus, the greatest current
challenge in APS research is to extract its specific components
and identify their precise targets. Accurate detection of the
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targets of the nine pharmacological actions of APS and
demonstration of the remarkable effects of the multi-target
integration of traditional Chinese medicine will be more
instructive for the clinical use of APS.
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