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Abstract: High Intensity Ultrasound (HIUS) can induce modification of the protein structure. The
combination of enzymatic hydrolysis and ultrasound is an interesting strategy to improve the release
of the Angiotensin-Converting Enzyme (ACE) inhibitory peptides. In this study, whey proteins were
pretreated with HIUS at two levels of amplitude (30 and 50%) for 10 min, followed by hydrolysis
using the vegetable protease bromelain. The hydrolysates obtained were ultrafiltrated and their
fractions were submitted to a simulated gastrointestinal digestion. The conformational changes
induced by HIUS on whey proteins were analyzed using Fourier-transform infrared spectroscopy
by attenuated total reflectance (FTIR-ATR) and intrinsic spectroscopy. It was found that both levels
of ultrasound pretreatment significantly decreased the IC50 value (50% Inhibitory Concentration)
of the hydrolysates in comparison with the control (α = 0.05). After this treatment, HIUS-treated
fractions were shown as smaller in size and fractions between 1 and 3 kDa displayed the highest
ACE inhibition activity. HIUS promoted significant changes in whey protein structure, inducing,
unfolding, and aggregation, decreasing the content of α-helix, and increasing β-sheets structures.
These findings prove that ultrasound treatment before enzymatic hydrolysis is an innovative and
useful strategy that modifies the peptide profile of whey protein hydrolysates and enhances the
production of ACE inhibitory peptides.

Keywords: antihypertensive peptides; ultrasound pretreatment; whey protein hydrolysate;
Fourier-transform infrared spectroscopy by attenuated total reflectance (FTIR-ATR)

1. Introduction

Whey is the liquid by-product obtained in the cheesemaking process and comprises
between 85 and 90% of the initial milk volume. Whey is a rich source of nutrients, par-
ticularly whey proteins that account for 20% of the total milk proteins, and it possesses
high biological value [1,2]. Whey proteins are a heterogeneous group of soluble proteins
that include β-lactoglobulin (β-lg), α-lactalbumin (α-La), Bovine Serum Albumin (BSA),
Immunoglobulins (Igs), and Glycomacropeptide (GMP). Whey proteins are recognized for
their nutritional value due to the presence of sulfur and branched-chain amino acids and
they are commonly used in food products and recognized as safe (GRAS) [3].

Whey proteins are also an interesting source of nutraceutical components such as
bioactive peptides (BAPs). BAPs have been defined as specific fragments of a protein
that exert different physiological effects on health [4]. BAPs from whey proteins have
been studied for their potential to inhibit the Angiotensin-I-Converting Enzyme (ACE;
EC 3.4.15.1). This enzyme plays an important role in the Renin–Angiotensin system and,
therefore, on hypertension control [5]. ACE hydrolyzes angiotensin I into the potent
vasoconstrictor peptide angiotensin II. Therefore, ACE inhibition is key in controlling high
blood pressure, and ACE inhibitory peptides could be used as a nutraceutical strategy
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for hypertension management and prevention. Antihypertensive peptides are of special
interest due to the prevalence of hypertension worldwide, which affects about 30% of the
adult population. BAPs could represent a healthier and natural alternative to common
drugs [6].

The production of whey protein hydrolysates containing BAPs includes a step of
enzymatic hydrolysis of whey protein using enzymes from animal, microbial, and vegetable
origins, and a purification step carried out with membrane separation techniques, usually
including ultrafiltration. The challenge in the production of BAPs is to obtain a high degree
of hydrolysis (DH, and produce short-chain peptides with high activity. Selected enzymes
with a hydrolysis time of 4–100 h are used during the hydrolysis, while maintaining pH,
temperature, enzyme activity [7]. Moreover, whey proteins are complex substrates due
to their compact globular structure that makes them resistant to the enzymatic action,
obtaining low DH values. The use of vegetable proteases in BAP production is less
conventional than animal or microbial proteases. Bromelain (EC 3.4.22.32), a cysteine
protease from pineapple, is widely used in food processing due to its GRAS status; it can
produce high hydrolysis degree, showing potential for BAP production [8].

Ultrasound is an emerging processing technology used to enhance the efficiency of
several food processing systems. High intensity ultrasound (HIUS) is found between 20
and 100 kHz with a power intensity of 10–1000 W/cm2, and it can produce high shear
and mechanical energy due to the cavitation phenomenon. Acoustic cavitation, the main
mechanism involved in the effect of ultrasound waves, is caused by the delivery of a
high amount of energy bubbles in a liquid medium [9]. HIUS instrumentation is highly
developed compared with other recent technologies and its scale-up facility is a funda-
mental reason for exploring different applications. Ultrasound treatment before enzymatic
hydrolysis has recently been used for the production of bioactive peptides, finding many
advantages, such as hydrolysis time reduction, bioactivity increase, and enzyme reduction,
compared with traditional enzymatic hydrolysis [10–12]. The conformational changes in
the structure of proteins have been associated with the application of ultrasound, which
weakens interactions and disrupts quaternary and tertiary structures, thus increasing enzy-
matic hydrolysis [13]. These, results can inform the study of structural changes in proteins
and their effects on bioactivity.

The use of food by-products, such as cheese whey, is an emerging topic due to its
potential contribution to the sustainability of food processes. Protein hydrolysis assisted
by ultrasound technology could be applied to modify the complex protein structure of
whey proteins and enhance the enzymatic hydrolysis, releasing short-size BAPs with ACE
inhibitory activity. In this study, we aimed to evaluate the conformational modifications
of the secondary structure of whey proteins produced by HIUS pre-treatment, by using
intrinsic fluorescence and Fourier-transform infrared spectroscopy by attenuated total
reflectance (FTIR-ATR) analyses. Additionally, we evaluated the effects of ultrasound on
the ACE inhibitory activity of whey protein hydrolysates and their ultrafiltrate fractions
produced with the vegetable enzyme bromelain.

2. Materials and Methods
2.1. Materials

The whey protein used was whey protein isolate (WPI), provided by Hilmar Ingre-
dients (Hilmar, CA, USA), which contained 91.7% protein, 0.5% lactose, and 1.4% fat.
Bromelain from pineapple (BROMELAIN 240® EC 3.4.22.32), with an activity of 300 Ca-
sein digestion units (CDU), was kindly provided by Enzyme Development Corp. (New
York, NY, USA). Angiotensin-converting enzyme (ACE) from rabbit lungs, containing
0.25 units/mg protein (EC 3.4.15.1), hippuryl-histidyl-leucine (HHL), trifluoroacetic acid
(TFA), and hippuric acid, were purchased from Sigma-Aldrich (St Louis, MO, USA).



Foods 2021, 10, 2099 3 of 11

2.2. Sample Preparation and Ultrasonic Pretreatment

WPI powder was suspended in distilled water to obtain solutions at 10, 20, 30, 40,
and 50 g/L protein substrate concentration; they were stirred for 30 min and then allowed
to stand at 4 ◦C for complete hydration. The WPI solutions were pretreated using an
ultrasound homogenizer (500 W nominal power at 20 kHz) with a 13 mm titanium diameter
probe (Cole-Parmer Instrument Co., Vernon Hills, IL, USA) at 25 and 50% of amplitude.
During sonication, the solutions were jacketed with chilled water and the temperature did
not exceed 25 ◦C.

The acoustic power intensity, Ia (W/cm2), was determined by calorimetry, recording
the temperature as a function of time using the equation of Margulis and Margulis [14]:

Ia =
Pa
SA

where P = m × Cp ×
(

dT
dt

)
(1)

where Pa (W) is the acoustic power, SA is the surface of the ultrasound emitting surface
(5.06 cm2), m is the mass of the sonicated liquid (g), Cp is the specific heat capacity at a
constant pressure (J/Kg ◦C), and dT/dt is the slope at the origin of the curve.

2.3. Enzymatic Hydrolysis of WPI Solutions

After ultrasonic treatment, the temperature of WPI solutions rose and was maintained
constant at 55 ◦C in a jacketed glass reactor, and the pH was adjusted at 7.0 using NaOH
1 M solution. Bromelain enzyme (enzyme/substrate ratio 1:20 w/w) was added to the
solutions and hydrolysis was performed by constant agitation for 1 h. Protein hydrolysis
was stopped with enzyme deactivation by heating the mixture for 15 min at 90 ◦C. Control
enzymolysis treatment was performed without ultrasonic pretreatment.

2.4. ACE Inhibition of WPI Hydrolysates

ACE inhibitory activity was measured by the Cushman and Cheung method [15]
with some modifications. The hydrolysates (0.08 mL) mixed with 0.2 mL of 5 mM HHL
(dissolved in a pH 8.3 borate buffer with 0.3 M NaCl) were preincubated for 5 min at
37 ◦C. The reaction was initiated by adding 0.02 mL of ACE (0.1 units/mL in distilled
water) and terminated by the addition of 0.25 mL of 1 N HCl after 30 min of incubation
at 37 ◦C. Next, the mixture was filtered through a 0.22 µm membrane for analysis by
Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC). For this analysis,
a Agilent ZORBAX 300SB-C18 column (Agilent technologies, Waldbronn, Germany) was
used, and the hippuric acid formed in the enzymatic process was detected at 228 nm. The
elution flux was 0.8 mL/min with a two solvent system (A) 0.1% TFA in water and (B) 0.1%
TFA in acetonitrile. The solvent system was 80% of solvent A and 20% of solvent B during
12 min. The ACE inhibitory activity was expressed as an IC50 value, which is defined as the
concentration of hydrolysate (µg/mL) necessary to reduce the activity of the enzyme by
50%. The IC50 was determined using graphical extrapolation by plotting ACE inhibition as
a function of different hydrolysate concentrations.

2.5. Hydrolysate Fractionation by Ultrafiltration

The whey protein hydrolysate with the highest ACE-AI (with and without ultrasonic
pretreatment) was selected for sequential ultrafiltration using a crossflow flat-sheet mem-
brane unit, SEPA® CF Membrane Cell System (GE Osmonics, Minnetonka, MN, USA). The
membranes used in this study were with molecular weight cut-off (MWCO) of 10 kDa
(HFK-131, Koch Membrane Systems, Inc., Wilmington, MA, USA), 5 kDa (HFK-328, Koch),
3.5 kDa (GK, GE Osmonics), and 1 kDa (GE, GE Osmonics). The hydrolysates were ul-
trafiltrated on sequential mode. First, the complete hydrolysate was filtered using the
10 kDa membrane, the permeate was used as a feed to the second ultrafiltration (UF) step
using 5 kDa membrane, and this second permeate was fed to the third UF step using
3.5 kDa membrane and, finally, this permeate was filtered by 1 kDa membrane (Figure 1).
Five fractions were collected: F1 (>10 kDa), F2 (5–10 kDa), F3 (3.5–5 kDa), F4 (1–3.5 kDa),



Foods 2021, 10, 2099 4 of 11

and F5 (<1 kDa). The protein content of each fraction was determined using the Kjeldahl
analysis, as described in the AOAC Method 991.20 [16], and multiplying by a factor of 6.38.
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Figure 1. Effect of substrate concentration and ultrasonic treatment on the angiotensin-converting
enzyme (ACE) inhibitory activity of whey protein isolate (WPI) hydrolysates. Values are means with
their standard deviations depicted by vertical bars. Different letters indicate significant differences
(α = 0.05, Dunnett’s test) within the same group.

2.6. Simulated Digestion of UF Fractions

The total hydrolysates (TH) and the five UF fractions were submitted to in vitro
digestion using the methodology of Majumder and Wu [17]. The temperature of the
samples was adjusted at 37 ◦C and the pH was adjusted to 2 by adding 1 N HCl. The
samples were first digested by pepsin (4% w/w of protein) for 3 h, then the pH was
increased to 7.5, to inactivate the enzyme, by adding 1 N NaOH solution, and then they
were subjected to pancreatin digestion (2% w/w of protein) for another 3 h. The hydrolysis
was terminated by raising the temperature to 95 ◦C and maintaining it for 10 min. The
ACE inhibition activity of the hydrolysates and UF fractions before and after simulated
digestions were determined, as was described above in Section 2.4

2.7. Intrinsic Fluorescence Spectra

Conformational changes of induced WPI solutions were monitored by intrinsic trypto-
phan fluorescence spectra. WPI solutions of 30 g/L, sonicated at 25 and 50% of amplitude
and non-sonicated as native control, were diluted at a final concentration of 0.2 mg/mL of
protein. Fluorescence measurements were performed using a Cary Eclipse Fluorescence
Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). The solutions were
exposed to an excitation wavelength of 295 nm. The fluorescence emission spectrum was
collected in the range of 300 to 450 nm and the fluorescence intensity was expressed as
arbitrary units. All measurements were performed at room temperature (~22 ◦C).

2.8. Fourier-Transform Infrared Spectroscopy

The freeze-dried sonicate and non-sonicated WPI solutions were analyzed by Fourier-
transform infrared spectroscopy using a Cary 630 FTIR Spectrometer (Agilent Technologies,
Santa Clara, CA, USA) equipped with a diamond attenuated total reflectance (ATR). Each
spectrum was obtained over 64 scans, with wavelengths ranging from 4000 to 600 cm−1

and a resolution of 4 cm−1. The protein spectra baseline was corrected, and the water
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spectrum was subtracted according to Martín del campo et al. [18]. Quantitative analysis of
the changes in the secondary structure of WPI samples was determined from amide I region
(1700–1600 cm−1), the amide I spectra obtained were analyzed by OMNIC software (Version
8, Thermo Nicolet Co., Madison, WI, USA). For the location of the bands for each secondary
structures (α-helix, β-turns, and random coils) each spectrum was deconvoluted. A half-
bandwidth of 23 cm−1 and an enhancement factor of 3 with triangular apodization was
employed. A curve-fitting procedure was performed with Gaussian shape, using OriginPro
software (Version 9, Origin Lab Corporation, Northampton, MA, USA). The bands from
1600 to 1640 cm−1 and 1674 to 1680 cm−1 were assigned to β-sheets. The bands from
1671 to 1647 cm−1 were assigned to random coil. The bands between 1648 to 1660 cm−1

were assigned to α-helix, and the bands in 1663 cm−1, 1671 cm−1, 1683 cm−1, 1683 cm−1,
1688 cm−1, and 1694 cm−1 were assigned to β-turns. The peaks between 1600 cm−1 and
1619 cm−1 were considered as aromatic side-chains, according to Haque et al. [18].

3. Results and Discussion
3.1. Effect of Substrate Concentration and Ultrasound Pretreatment on ACE Inhibitory Activity

The ACE inhibitory activity (ACE-IA) of the hydrolysates was determined in vitro and
expressed in terms of IC50 (µg protein/mL). The values of IC50 using different substrate
concentrations are presented in Figure 1. The IC50 values of the WPI hydrolysate show
an increase when the substrate concentration increases. Using ultrasound pretreatment,
the IC50 value of the hydrolysates decrease in both amplitudes applied compared with
the control without sonication (p = 0.0032). The most remarkable increase in the ACE-IA
was observed in the substrate concentration of 30 g/L and sonication of 50% amplitude
(Ia = 2.71 W/cm2), where a reduction of 42% in IC50 concentration was observed. The
effectiveness of ultrasound pretreatment to increase bioactivities on hydrolysates from
different protein sources was studied. The bioactivity increase was suggested to be due to
structural and conformational modifications induced by cavitation bubbles, which could
change the susceptibility of the protein substrate exposing more enzymatic attack sites and
lead the release of new ACE inhibitory peptide sequences.

The hydrolysate bioactivity was affected by the interaction of ultrasound pretreatment
and substrate concentration (p = 0.026). The results show that the increase in substrate
concentration from 10 to 50 g/L of whey proteins, applying an ultrasonic treatment of 25%,
shows a decrease in the ACE-IA in the hydrolysates. At the higher level of ultrasound
amplitude applied (50%), the ACE inhibition was not clearly dependent on whey protein
concentration. This result shows the complexity of modifications made by ultrasound
pretreatment. Ultrasonic waves are very complex, and the bioactivity can increase or
decrease depending on the conditions and the intensity of the treatment, and the viscosity
of the medium could modify how the ultrasound waves travel. Shah et al. [19] proposed
that with an increase in viscosity in the medium, the absolute reflection factor decreases
exponentially. Changes in the intensity or direction of waves could vary the modifications
made by ultrasound pretreatment.

3.2. Membrane Fractionation of Ultrasound Pretreated Hydrolysates

Selective ultrafiltration of bromelain WPI hydrolysates was performed by a crossflow
unit. A substrate concentration of 30 g/L and an ultrasound pretreatment of 50% amplitude
were selected for the highest ACE inhibition (IC50 45.07 ± 1.35 µg protein/mL). A control
treatment without bromelain was evaluated in order to analyze the effect of HIUS alone
on the release of ACE inhibitory peptides. There was negligible ACE inhibitory activity
found (IC50 8.20 ± mg protein/mL), indicating that the ultrasonic conditions applied
could not cause the peptide bonds breakage in whey proteins. Protein quantification and
ACE-IA of each UF fraction were compared with the hydrolysate, with the same substrate
concentration but without sonication, with the aim to identify the impact of ultrasound
pretreatment on the molecular weight distribution and bioactivity of the hydrolysate.
Figure 2 shows the protein balance of each fraction. Protein content in F1 and F2 decreases
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when ultrasound pretreatment is applied, which means that a higher proteolytic activity
was achieved by the enzyme. On the other hand, the fractions of shorter molecular weight
(F3, F4, and F5) increase their concentration with the pretreatment. These changes on
peptide distribution represent a higher concentration of peptides with a molecular weight
below 5 kDa, which could improve their bioactivity. Several studies observed that shorter
peptide sequences, generally between 3 and 12 amino acids, exhibited stronger ACE
inhibition, mainly due to a higher interaction with the active site of the enzyme [20,21].
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membrane fraction.

Figure 3 presents the ACE-IA (IC50) of each associated membrane fraction obtained.
Membrane fractionation affected the ACE inhibitory activity: five associated membrane
fractions with and without ultrasound pretreatment displayed lower ACE IC50 compared
with the whole hydrolysate. F3 (5 kDa) and F4 (3 kDa) showed the lowest IC50 values,
according to previous reports of refining hydrolysates by ultrafiltration. The ultrasound
treatment before enzymatic hydrolysis increased the ACE-IA, and the IC50 of F2 (10 kDa),
F3 (5 kDa ), and F4 (3 kDa) had a reduction of 32%, 43%, and 31%, respectively, compared
to the non-sonicated control fractions. However, F1(<1 kDa) and F5 (>10 kDa) did not
show statistical differences (α = 0.05). Uluko et al. [20] reported similar results; however,
they did not compare the fractions without ultrasound pretreatment. This study showed
the potential of ultrasound pretreatment to change the peptide profile and improve the
ACE-IA of hydrolysate fractions to produce higher amounts of peptides, thereby increasing
their bioactivity.
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3.3. Stability of ACE Inhibitory Activity of Associated Membrane Fractions Peptides after
Simulated Gastrointestinal Digestion

The stability of ACE inhibitory peptides exposed to gastrointestinal enzymes was
evaluated via a two-stage hydrolysis process which was intended to simulate in vitro the
conditions prevailing during human digestion. The ACE-IA of the whole WPI hydrolysates
(WPI-H) and their associated membrane UF fractions with and without ultrasound pre-
treatment, before and after simulated digestion, is shown in Table 1. The IC50 value of the
whole WPI hydrolysates decreases after digestion without ultrasound pretreatment, while
no significant change was observed on hydrolysates with US pretreatment (α = 0.05). The
main differences observed in the whole WPI-H bioactivity due may be to the different pro-
files of undigested proteins and large peptides contained, that are the target for proteolytic
enzymes during the digestion assay.

Table 1. ACE inhibitory activity of whey protein isolate hydrolysates (WPI-H) and their associated membrane fractions
with and without High intensity ultrasound (HIUS) treatment, before and after simulated in vitro digestion conditions.

ACE Inhibitory Activity (IC50 µg Protein/mL)

Without HIUS Pretreatment With HIUS Pretreatment

Samples
Before Simulated
Gastrointestinal

Digestion

After Simulated
Gastrointestinal

Digestion

Before Simulated
Gastrointestinal

Digestion

After Simulated
Gastrointestinal

Digestion

WPI Hydrolysate (WPI-H) 87.29 ± 0.08 a 68.21± 2.15 b 45.07 ± 4.90 b 41.08 ± 5.23 b

F1 (>10 kDa) 111.60 ± 7.06 a 74.56 ± 4.58 b 108.65 ± 5.58 a 63.00 ± 10.12 b

F2 (5–10 kDa) 64.80 ± 4.12 a 53.15 ± 5.68 b 51.10 ± 2.51 a 45.15 ± 2.30 b

F3 (3–5 kDa) 60.03 ± 7.09 a 78.45 ± 4.12 b 34.30 ± 4.02 a 72.05 ± 6.12 b

F4 (1–3 kDa) 54.40 ± 6.24 a 62.14 ± 3.52 b 37.80 ± 5.20 a 58.07 ± 5.10 b

F5 (<1 kDa) 69.60 ± 6.32 a 69.15 ± 4.57 a 63.70 ± 7.10 a 61.14 ± 6.51 a

Values represent the means ± standard error (n = 3); different superscript letters in the same line indicate significant differences (Tukey
HSD test, α = 0.05).
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Associated membrane UF fractions above of 10 kDa, F1, and F2, present a decrease in
IC50 value after digestion. These results are according to Wang et al. [22], who suppose that
gastrointestinal digestion may release and form active fragments, from inactive or fewer
active precursors. On the other hand, associated membrane fractions between 1 and 5 kDa
(F3 and F4), showed an increase in IC50 value; these fractions showed the same pattern with
and without HIUS pretreatment. The decrease in the ACE inhibitor effect is probably due
to the enzyme attack on active peptic fragments where the C-terminal amino acid residues
were hydrolyzed, and the resulting peptides are less compatible with the active site of ACE.
It is important to notice that residual ACE-IA is remarkable after simulated digestion, and
the ACE-IA of F1 and F2 pretreated with HIUS are higher than non-sonicated ones. The F5,
mainly amino acids and short peptides, remained stable after in vitro digestion. This effect
may be due to peptides as these are less susceptible to the attack of proteolytic enzymes.

3.4. Analysis of Fluorescence Spectra

Changes in the maximum wavelength and fluorescence intensity were evaluated to
study the structural changes of whey proteins induced by ultrasound treatment. Ultra-
sound pretreatment did not alter the shape of the WPI fluorescence spectrum, and typical
fluorescence emission spectra with a maximum at 332 nm were observed. This fluorescence
spectrum is characteristic of tryptophan residues of the two main whey proteins, α-La and
β-Lg which have two and four tryptophan residues, respectively [23]. This indicated no
changes in the microenvironment of tryptophan residues, and these results are in agree-
ment with Gao et al. [24]. Figure 4 shows that the fluorescence intensity decreases with the
increase in amplitude of ultrasound pretreatment. This could be due to the quenching of
tryptophan fluorescence indicating structural changes, aggregation, or oxidation exposed
to ultrasound. Tryptophan fluorescence can be quenched by water molecules, and amino
acids positively charged, such as cysteine, histidine, or tyrosine [25].
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3.5. FTIR-ATR Spectral Analysis

The amide I region (1600–1700 cm−1) of the FTIR spectra of WPI solutions with and
without ultrasonic pretreatment of 25 and 50% amplitude were used to evaluate changes
in the secondary structure of proteins. The amide region-I corresponds mainly to the
stretching vibration of C=O and C-N bonds [26]. As is shown in Figure 5, there is an
alteration on the secondary structure of WPI due to the ultrasound treatment. There is
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an increase in band intensity within this region. The secondary structural changes of
proteins were not completely visible from the FTIR spectra, hence the amide I band was
deconvoluted, the peaks were located and assigned to a secondary structure, and the
percentage of secondary structures were calculated using a Gaussian method (Table 2). The
content of secondary structures of WPI without HIU treatment was consistent with other
FTIR studies [27,28]. The modification of the secondary structures for HIUS treatment was
statistically significant, in general terms, and found a decrease in α-helix and disordered
structures (random coil), and an increase in β-sheets. The changes in the percentages of
β-turns were dependent on the sonic amplitude applied. While at 25% amplitude there
were no changes (α = 0.05), at 50% of amplitude there was a significant increase (p = 0.012).
Changes in α-helix composition are attributed to the cavitation phenomenon associated
with the ultrasonic treatment, and this could show a partial unfolding of α-La. The increase
in β-sheet structures is related to changes in the intra or intermolecular hydrogen bonds
exposing the hydrophobic amino acids [29]. These changes are promoted by the acoustic
energy applied sufficiently to reduce the number of hydrogens bonds and electrostatic
interactions. Then, this new β-sheets result is from a subsequent crosslinking of proteins,
aggregation, and network formation [30–32].
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Figure 5. Effect of ultrasound treatment (25 and 50% of amplitude) on Fourier-transform infrared
spectroscopy by attenuated total reflectance (FTIR-ATR) spectra of WPI samples.

Table 2. Secondary structure analysis of WPI samples in amide I region.

Secondary Structure Composition (%)

Samples R2 α-Helix β-Sheet β-Turn Random Coil

Non-sonicated WPI 0.97 12.01 ± 0.24 a 31.99 ± 0.17 a 34.44 ± 0.28 a 21.58 ± 0.19 a

Ultrasound-treated WPI 25% amplitude 0.98 9.81 ± 0.19 b 39.56 ± 0.21 b 34.97 ± 0.23 a 15.66 ± 0.18 b

Ultrasound-treated WPI 50% amplitude 0.97 9.59 ± 0.22 b 36.43 ± 0.19 b 37.10 ± 0.32 b 16.89 ± 0.26 b

Values represent the means ± standard error (n = 3); different superscript letters in the same column show a significant difference (Dunnett’s
test, α = 0.05).

4. Conclusions

The HIUS treatment on WPI solutions depends on the acoustic parameters used
(amplitude and time), and the whey protein concentration. An ultrasound treatment before
enzymatic hydrolysis with bromelain modified the pattern of the WPI hydrolysates. The
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peptides released possessed higher ACE inhibitory activity compared to their controls
with no ultrasound-treated hydrolysates. The most remarkable changes were detected in
the peptide fractions between 1 and 5 kDa. This ACE inhibitory activity was stable after
simulated gastric and intestinal digestion. However, further studies of the molecular mass
peptide profile will be necessary to obtain a broad understanding of the changes.

Results of the study of conformational changes showed that the ultrasound induces
modifications on whey protein producing changes of the secondary structures. The FTIR
and fluorescence spectrum showed that HIUS affects the whey protein conformation
and generates new rearrangements between proteins that unfold, and finally produces
aggregates. This study showed that ultrasound treatment can improve the enzymatic
process with bromelain to obtain ACE inhibitory peptides from whey proteins that are
suitable for use as food ingredients. This could enhance the feasibility of bioactive peptide
production adding value to whey proteins.
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