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Abstract: The present work reports the synthesis, characterization, and antimicrobial activities of
adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of
Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with
NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was
carried out by different techniques, including UV–Visible spectroscopy, Fourier Transform Infrared
Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light
Scattering (DLS), and zeta potential (ZP). In the UV–Vis absorption spectrum, the characteristic
absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized
AgNPs was found to be 30 ± 5.0 nm. ZP values (−35.5 ± 2.4 mV) showed that NPs possessed
a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show
potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be
selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve
was constructed by plotting concentration as abscissa and absorbance ratio (AControl − AHg/AControl)
as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6–1.6 µM and 0.12 µM,
respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe.
The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe
was successfully applied for the detection of Hg2+ from tap and river water

Keywords: AgNPs@AA; colorimetric sensing; mercury; nanoparticles; antimicrobials; XDR typhoid

1. Introduction

Heavy metals are highly toxic to humans in high concentrations and cause harmful
effects on the respiratory, renal, and nervous systems [1,2]. These metals may sneak into
the drinking and groundwater from industrial wastes and remain persistent in the ecosys-
tem [3,4]. Even at non-hazardous levels, heavy metals may cause accumulative toxicity.
The sensing and removal of heavy metals are required to avoid their harmful effects on
humans and the environment [5]. Being a heavy metal, mercury has become a serious threat
to environmental and living organisms. The primary sources of environmental mercury
include industrial wastes, mining operations, and coal-burning power plants [6,7]. In its
elemental form, mercury can cross the lipid bilayer and enter living cells [8]. Various analyt-
ical methods have been used for the detection of mercury ions—e.g., electrochemical [9–11],
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fluorescence [12–14], and colorimetric methods [15,16]. The colorimetric methods are rela-
tively cheaper, with high sensitivity and accuracy representing a change in concentration
of the analyte by a color change. A sensitive colorimetric method for the visual detection
of mercury ions can be preferred being fast, cheaper, and sensitive. Previously, silver and
gold nanoparticles were advantageous for rapidly detecting mercury ions in environmental
samples due to changes in color upon aggregation [14,17].

Since the last century, nanotechnology has emerged as a well-known emerging field of
science [18–20], where nanoparticles (NPs) make an extensive class of materials used in
electrochemical [21–23] and colorimetric assays [24,25]. Silver nanoparticles have received
more attention from researchers over time because of their size and shape-dependent
distinctive properties. The developments in science with time have been enabling the
conversion of the bulk form of silver to silver nanoparticles (AgNPs). Silver (Ag) is relatively
cheap and eco-friendly and the plasmonic enhancement factor for silver in spectroscopic
measurements is also higher [26]. Moreover, AgNPs are better antibacterial agents [27,28]
due to their higher surface area to volume ratio in contact with bacteria [29]. AgNPs have
been found to be potential antimicrobial agents against Gram-negative and Gram-positive
bacteria [30–32].

Previously, synthesized AgNPs have been found to interact with mercury, leading to
the detection of Hg2+ in the water [33–35]. The diameter and interactions of the AgNPs are
two advantageous factors in designing modified AgNPs with improved mercury detection
and removal capability [36]. Carboxylic acid-capped AgNPs show better antimicrobial
properties even against drug-resistant strains [37–40]. As-synthesized silver nanoparticles
either capped with hydrophilic ligands or carboxylic acids have also been reported to detect
Hg+ at ppm levels [33,41]. The nanoparticles with different carboxylic acids on their surface
have been characterized previously, where the NPs capped with adipic acid were compar-
atively more uniform and mono-disperse, hence suitable for biological applications [42].
Our research goal was to prepare AgNPs capped with adipic acid (AgNPs@AA). These
AgNPs@AA were probed as the colorimetric sensors for Hg2+ detection and antimicrobial
potential. To our knowledge, this is the first report about the detection of Hg2+ by AgNPs
AA with the least LOD compared with previously reported AgNPs capped with other
carboxylic acids [41,43].

2. Results
2.1. Synthesis and Characterization of Adipic Acid-Capped Silver Nanoparticles

AgNPs@AA was prepared by reducing Ag+ using NaBH4, followed by capping
AgNPs with adipic acid. The change in color of the reaction mixture from colorless to
light yellow after adding a few drops of NaBH4 indicates the AgNPs@AA synthesis. The
silver ions (Ag+1) are reduced to Ag0, which are then combined to form AgNPs, evident
by a color change from colorless to light yellow [44], as shown in Figure 1a. To determine
the concentration of AgNPs@AA, the number of Ag atoms in one NP of AgNPs@AA was
found to be 245.1. The prepared AgNPs@AA concentration was about 0.11 nM (calculations
are shown in Supplementary Materials).

The AgNPs@AA were synthesized by reducing AgNO3 with NaBH4 in the presence
of adipic acid. By the action of reducing agent NaBH4, nucleation occurred, and silver
ions/adipic acid complexes turned into AgNPs. Adipic acid is a dicarboxylic acid that
possesses the ability to resonate a lone pair of electrons on oxygen with the carbonyl.
It is well established that the carboxylate group (—COO−) is a functional group that is
commonly used to stabilize silver nanoparticles [45,46].

The carboxylate moieties of adipic acid were adsorbed on the silver surface of Ag-
NPs@AA with a bi-dentate bridging arrangement. The —COO− moieties are bound to
silver (sp orbital) via two oxygen atoms of the carboxylate moieties.

The successful synthesis of AgNPs@AA can also be confirmed by comparing the UV–
Vis spectra of adipic acid and AgNPs. The UV–Vis spectra of adipic acid and AgNPs@AA
are presented in Figure 1b. No absorption band was observed in the adipic acid spectrum,
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while the spectrum of AgNPs@AA has a characteristics surface plasmon resonance (SPR)
absorption peak at 404 nm. AgNPs show a UV–Visible absorption maximum in the range
of 390–490 nm [47,48]. The well-defined SPR absorption band and narrow width showed
that prepared AgNPs were of narrow size distribution.
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Figure 1. (a) Visual color change for the formation of AgNPs@AA (b) UV–Vis spectra of solution of
adipic acid (A) and AgNPs@AA (B).

FTIR spectroscopic analysis classifies chemical compounds in a wide range of capacities.
FTIR is operative for detecting functional groups, which pave the way for identifying capping,
stabilizing, or reducing agents for nanoparticles [49]. FTIR confirmed the successful capping
of AgNPs@AA by adipic acid. The FTIR spectra of adipic acid and AgNPs@AA are shown
in Figure 2, and all characteristic peaks are listed in Table S2. In the spectrum of adipic acid
alone, the specific vibrations of adipic acid are seen at wavelength 3400 cm−1 because of the
existence of OH, 2954 cm−1 attributable to stretching of C-H bond, 1697 cm−1 assigned to
C=O symmetrical stretching, 1195 cm−1 due to C-O bond [50]. Comparison of spectra of
adipic acid and AgNPs@AA showed that all the peaks present in the adipic acid spectrum
were also present in the spectra of AgNPs@AA with a little change in peak position (from
3400 cm−1 to 3365 cm−1 and from 1697 cm−1 to 1685 cm−1). This retention of peaks in the
spectrum of AgNPs@AA confirms the successful capping of AgNPs by adipic acid.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 2. FTIR Spectra of adipic acid and AgNPs@AA. 

The AgNPs@AA were synthesized by reducing AgNO3 with NaBH4 in the presence 

of adipic acid. Adipic acid is a dicarboxylic acid that possesses the ability to resonate a 

lone pair of electrons on oxygen with the carbonyl. It is well established that the carbox-

ylate group (—COO−) is a functional group that is commonly used to stabilize silver na-

noparticles [45,46]. The carboxylate moieties of adipic acid were adsorbed on the silver 

surface of AgNPs@AA with a bi-dentate bridging arrangement. The —COO− moieties are 

bound to silver (sp orbital) via two oxygen atoms of the carboxylate moieties, as evidenced 

by the peak present at 1573 cm−1 for the carboxylate group and peaks in the fingerprint 

region at 513 cm−1 and 603 cm−1 for bending vibrations of O-Ag in the FTIR spectrum of 

the AgNPs@AA surface [51]. These results indicate that the surface of AgNPs was capped 

by adipic acid. 

2.2. SEM and XRD Measurement 

SEM images were recorded to examine the particles’ shape and size. Figure 3a dis-

plays an SEM image of the prepared NPs. This image shows a narrow particle size distri-

bution and almost uniform spherical appearance. Analysis of the particle sizes revealed 

an average diameter of about 19.7 ± 1.5 nm, which is different from the value obtained 

from DLS (30.0 ± 5.0 nm). Note that the DLS size of the AgNPs@AA is greater than that 

measured from SEM images (19.7 ± 1.5 nm). The difference is due to the nature of the two 

measurements, where DLS measures the hydrodynamic size, including the solvation 

shell, and during the sample drying for SEM measurements, slight shrinkage might occur. 

4000        3000        2000        1500          1000         500

Wavelength (cm−1)

T
ra

n
sm

it
ta

n
c
e
 (

%
)

AgNPs@AA

Adipic Acid

Figure 2. FTIR Spectra of adipic acid and AgNPs@AA.



Molecules 2022, 27, 3363 4 of 13

The AgNPs@AA were synthesized by reducing AgNO3 with NaBH4 in the presence
of adipic acid. Adipic acid is a dicarboxylic acid that possesses the ability to resonate a lone
pair of electrons on oxygen with the carbonyl. It is well established that the carboxylate
group (—COO−) is a functional group that is commonly used to stabilize silver nanoparti-
cles [45,46]. The carboxylate moieties of adipic acid were adsorbed on the silver surface of
AgNPs@AA with a bi-dentate bridging arrangement. The —COO− moieties are bound to
silver (sp orbital) via two oxygen atoms of the carboxylate moieties, as evidenced by the
peak present at 1573 cm−1 for the carboxylate group and peaks in the fingerprint region
at 513 cm−1 and 603 cm−1 for bending vibrations of O-Ag in the FTIR spectrum of the
AgNPs@AA surface [51]. These results indicate that the surface of AgNPs was capped by
adipic acid.

2.2. SEM and XRD Measurement

SEM images were recorded to examine the particles’ shape and size. Figure 3a displays
an SEM image of the prepared NPs. This image shows a narrow particle size distribution
and almost uniform spherical appearance. Analysis of the particle sizes revealed an
average diameter of about 19.7 ± 1.5 nm, which is different from the value obtained
from DLS (30.0 ± 5.0 nm). Note that the DLS size of the AgNPs@AA is greater than that
measured from SEM images (19.7 ± 1.5 nm). The difference is due to the nature of the two
measurements, where DLS measures the hydrodynamic size, including the solvation shell,
and during the sample drying for SEM measurements, slight shrinkage might occur.
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Figure 3. (a) SEM image of AgNPs@AA, (b) histogram for the size distribution of AgNPs@AA
estimated from SEM image, and (c) XRD pattern of AgNPs@AA.

XRD analysis of the AgNPs@AA was carried out to confirm their crystalline nature.
The XRD pattern of AgNPs@AA exhibited characteristic Bragg peaks of silver nanocrystals
and is presented in Figure 3. The peaks observed at 2θ values 38.3◦, 44.4◦, 64.4◦, and 77.6◦

were linked to different diffraction lattices planes of 111, 200, 220, and 311, respectively. This
set of lattices planes confirmed the face centered cubic structure of AgNPs@AA (JCPDS,
File No. 04-0783).

The Debye–Scherer equation (Equation (1)) was used to assess the average AgNPs@AA size.

D =
Kλ

βCosθ
(1)

where D is average nanoparticle size, and K is Scherer constant with a value of 0.94 for
spherical crystallite size with cubic symmetry. λ is the wavelength of X-ray used for
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diffraction, i.e., Cuκα = 0.154 nm. ‘β’ is full width at half maximum (FWHM), and ‘θ’ is
the diffraction angle. The XRD intensity for the peak at 38.29◦ was taken into account
to calculate size. The values of β—i.e., FWHM in radian—were found to be 0.00939 at
2θ values of 38.29◦. The average particle size using the Debye–Scherrer equation was
calculated to be 19.5 nm. The size of AgNPs obtained from XRD studies was in agreement
with that measured from SEM analysis (19.7 ± 1.5 nm) (see Figure 3).

DLS and ZP measurement plots are shown in Figure 4. The average hydrodynamic
particle size distribution determined for AgNPs@AA by dynamic light scattering (DLS) was
approximately 30 ± 5.0 nm (Figure 4a). However, the zeta potential value of synthesized
silver nanoparticles was −35.5 ± 2.4 mV (Figure 4b). The surface of AgNPs@AA was
negatively charged due to the presence of carboxylate ions. The high value of ZP indicates
that AgNPs@AA particles are electrostatically stabilized [52].
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Figure 4. DLS analysis of AgNPs@AA having a diameter of 30 nm (a) Zeta potential of AgNPs@AA (b).

2.3. Antibacterial Activity

The adipic acid showed negligible activity against all bacterial strains, while AgNPs
showed good antibacterial activity against E. coli, B. subtilis, S. typhi, and S. aureus. The
AgNPs@AA showed promising antibacterial activity against all four clinically isolated
bacteria—i.e., E. coli, B. subtilis, S. typhi, and S. aureus (Table 1). The AgNPs@AA seems to
be more potent against S. aureus showing a zone of inhibition (ZoI) of 26.1 ± 0.7 mm with
a MIC of 5.1 µg/mL. Interestingly, AgNPs@AA have shown considerable antimicrobial
activity against XDR S. typhi strain, showing a zone of inhibition of 17.7 mm and a MIC
of 16.2 µg/mL (Table 1). However, AgNPs without capping did not show considerable
antimicrobial activity against XDR S. typhi strain (Table 1).

Table 1. Antimicrobial activities of AgNPs against clinically isolated bacterial strains.

Zone of Inhibition (MM) MIC (µG/ML)

Bacterial
Strains AgNPs AA AgNPs@AA Cefixime AgNPs@AA Cefixime

B. subtilis 16.8 ± 3.2 3.0 ± 2.1 20.1 ± 2.5 18.0 ± 1.1 4.5 ± 0.9 3.3 ± 0.8
S. typhi 3.0 ± 0.2 ND 17.7 ± 1.3 7.0 ± 3.2 16.2 ± 1.0 64.1 ± 0.4

S. aureus 20.8 ± 1.4 ND 26.1 ± 4.0 24.3 ± 2.1 5.1 ± 1.1 9.4 ± 0.5
E. coli 13.3 ± 1.0 5.0 ± 1.3 19.7 ± 2.4 27.1 ± 1.5 13.7 ± 0.8 5.4 ± 0.1

AgNPs have been suggested as solid antimicrobial agents [53–55]. The size and
formulations of AgNPs play an important role in imparting antibacterial properties [56].
AgNPs have shown strong bacterial inhibitory growth potential against antibiotic-resistant
bacteria [57]. Organic acids—i.e., adipic acid in their form—show strong antibacterial
potential [58], and their presence in the antibiotic and hydrogel formulations augments their
individual antibacterial activity [59,60]. Previously, the reduced AgNPs have shown strong
antibacterial properties against animal-isolated multidrug-resistant (MDR) Salmonella
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strains [61]. Here, AgNPs capped with adipic acid, AgNPs@AA are shown to have better
antibacterial potential as expected (Table 1). These have shown considerable antibacterial
activity against both Gram-positive and Gram-negative bacteria. The growth of clinically
isolated XDR S. typhi was inhibited far better than the standard drug, cefixime (Table 1). The
cytotoxicity of AgNPs has already been probed in many studies, and it was observed that
AgNPs can induce cytotoxicity in mammalian cells at higher concentrations. Here, it was
found that the concentration of AgNPs@AA showing antimicrobial activities is less toxic
than previously reported carboxylic acid-capped NPs (unpublished data). This indicates
that further studies can explore the potential of AgNPs@AA against antibiotic-resistant
bacteria and that they can be employed.

2.4. Detection of Hg2+ Ions by AgNPs@AA

The potential of synthesized AgNPs@AA for selective detection of heavy metal ions
in an aqueous solution was investigated by interacting different metal ion solutions (Pb2+,
Cd2+, Mn2+, Hg2+) with AgNPs@AA. There was no change in color when Pb2+, Cd2+, or
Mn2+ solution was added to AgNPs@AA suspension. A significant color change, light
yellow to colorless, was observed when Hg2+ interacted with AgNPs@AA suspension, as
shown in Figure 5a. The UV–Vis spectrum showed a noticeable change in the characteristic
SPR peak upon the interaction of Hg2+ with AgNPs@AA, as shown in Figure 5b. Such
changes were not observed upon interaction with other metal ions (see Figure 5b). This
color change was due to the reduction of Hg2+ to Hg0 by AgNPs@AA (Ag0 converted to
Ag+1). The mechanism of mercury ion detection by AgNPs@AA can be explained based on
the reduction potential values of Ag+ and Hg2+ ions [62]. The standard reduction potentials
for mercury and silver are +0.92 V and +0.80 V, respectively, and metals with higher
reduction potential act as oxidizing agents [63]. These freshly generated Hg atoms give
a blue shift by diffusion into the silver surface and decrease the characteristic absorption
band due to substantial color change. Similarly, in a previous study, AgNPs aggregates
were formed because of the diffusion of Hg atoms [64].
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Figure 5. Visual response (a) and UV–Vis spectra (b) of different metal ion interactions with AgNPs@AA.

2.5. Systematic Performance of the Optical Sensor for the Detection of Hg2+

The limit of detection (LOD) for Hg2+ was determined by characteristic SPR peak
using UV–Vis spectra of as-synthesized AgNPs@AA. Figure 6 shows the in situ colorimetric
assays for Hg+2 detection by the naked eye. As the concentration of Hg2+ increased, the
absorbance peak of AgNPs@AA decreased. A linear line (y = 0.0976x + 0.2436) with
R2 = 0.9933 was obtained when the varying concentrations of Hg2+ were taken as abscissa
and the absorbance ratio (AControl − AHg/AControl) as ordinate in the concentration range
from 0.6–1.6 µM (Figure 7). A LOD of 0.12 µM was obtained for mercury detection by
AgNPs@AA using the following formula.

LOD =
3(Standard deviation of slope)
Slope of the calibration curve
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Figure 6. An in situ colorimetric assay for Hg+2 detection by the naked eye.
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Figure 7. UV–Vis spectra (a) and Calibration curve (b) for the interaction of various concentrations of
Hg+2 ions.

Figure 7 shows that increasing the concentration of Hg2+ ions might cause a blue shift
on the surface plasmon absorption band. A colorless solution was obtained by increasing
the Hg2+ concentration. When a small concentration of Hg2+ was used, fewer Hg2+ ions
were reduced to Hg. Hence, fading of the yellow color was very slight. As the concentration
of Hg2+ ions increases, colloidal mercury drops due to an increase in reduced Hg. Therefore,
a significant change in color from light yellow to colorless was observed by increasing the
Hg2+ ions concentration in the prepared samples.

Table 2 includes the LOD and linear ranges for detecting Hg2+ using AgNPs stabilized
by different methods as a colorimetric sensing probe. It is evident from the literature that
the present method occupies a prominent place among those of earlier reported colorimetric
AgNPs-based sensors [65].

Table 2. Comparison of AgNPs stabilized by different methods as a colorimetric sensing probe for
Hg2+ determination.

Surface Stabilizing Media Linear Range (µM) LOD (µM) Reference

Soap-root plant-based AgNPs 10–100 2.2 [66]
Fast orange peel-mediated AgNPs 1.0–100 1.2 [67]

Garlic extract AgNPs 2.0–75.0 2.0 [68]
Green biomimetic AgNPs 0.1–1.0 0.13 [69]

Citrate and γ-aminobutyric acid
stabilized AgNPs 5.0–35.0 2.4 [41]

Peptide-conjugated AgNPs 1.0–100 4.1 [69]
Adipic acid stabilized AgNPs 0.6–1.6 0.1 Present Work

The scientific reason why the AgNPs@AA interaction with other metal ions does
not result in any color change can be explained based on their reduction potential values.
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Pb(II), Cd(II), and Mn(II) have potential reduction values of −0.13 V, −0.41 V, and −1.18 V,
respectively. These values are lower than Ag (+0.80), so these metal ions cannot oxidize Ag
atoms present in silver nanoparticles. Meanwhile, Hg(II) has a higher reduction potential
value (+0.92 V) than Ag(I), which spontaneously oxidizes Ag atoms to Ag(I), turning the
solution from yellowish to colorless. Then the Ag(I) ions react with Hg(II), leading to
Ag-Hg nanoalloy formation. This redox reaction provides the basis of all such reactions in
which AgNPs are used for colorimetric detection of Hg(II) [70]. Another reason for this
selective detection of Hg(II) by AgNPs@AA is the strong binding energies of Hg(II) (5d10)
with Ag(I) (4d10) based on the high-affinity metallophilic interaction, which causes the
aggregation of AgNPs due to the metallophilic bonding between the d10 center having
similar interactions [71,72].

2.6. Effect of Response Time on Colorimetric Assay

In order to investigate the response time of the nano-probe, 1.6 µM solution of the Hg2+

was added to the AgNPs@AA suspension, and the SPR peak was monitored for 10 min
under the optimum conditions. This time-dependent spectral response was recorded after
every 30 s. An immediate drop in the SPR peak intensity was witnessed. After 4 min, the SPR
peak intensity reached a relatively constant value and did not show a significant decrease.
The same outcome was achieved when the color change of the AgNPs@AA was visualized
by the naked eye. The suspension became almost colorless after 4 min because the oxidation
of AgNPs was almost completed within 6 min. This rapid response time makes this method
an effective nano-probe for Hg2+ detection in real-time analyses (Figure S1a).

2.7. Effect of pH and Temperature on Colorimetric Assay

Synthesis and stabilization of the capped nanomaterial are controlled by the pH of
the medium. The change in pH of the medium might change the electrical charges of the
capping agent, which might result in the growth of the nanoparticles (Priya et al., 2016).
To assess the environmental acceptance of the AgNPs@AA as a colorimetric nano-probe,
the effect of pH on the stability of AgNPs was investigated. For this purpose, colorimetric
detection of Hg2+ by AgNPs@AA suspension containing 0.6 µM Hg2+ was carried out
within a pH range 3–9 (at higher pH, Hg2+ is precipitated as Hg(OH)2). The efficiency of
the AgNPs@AA for the sensing of Hg2+ was almost unaffected throughout this pH range of
3–9, as shown in Figure 1b. These results reveal that these AgNPs@AA can be successfully
employed to detect Hg2+ over a wide pH range.

To investigate the effect of temperature on the colorimetric detection of Hg2+ by
AgNPs@AA, suspension of AgNPs@AA containing 0.6 µM Hg2+ was maintained at a
different temperature from 25 to 55 ◦C. The efficiency of the AgNPs@AA for the sensing of
Hg2+ increased slightly with an increase in temperature from 25 ◦C to 40 ◦C, and then a
little decrease was observed, as shown in Figure S1c. An effective detection was observed
at 40 ◦C.

2.8. Real Sample Analysis

Finally, the potential of the proposed nano-probe for the detection of Hg2+ in natural
water samples (river and tap) was also investigated. The real water samples were collected
from river Jhelum District Sargodha and tap water from the chemistry laboratory, University
of Sargodha, Sargodha. Different concentrations of Hg were added to these actual water
samples. Recovery and the relative standard deviation (RSDs) of real water samples are
summarized in Table S1. The recovery percentages of spiked water were found to be
greater than 93%, with an RSD value of about 4%. These results show that this colorimetric
nano-probe could be a reliable and effective method for Hg detection in real water samples.
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3. Materials and Methods

The chemicals used in the study included hexanedioic acid or adipic acid (C6H10O4), sil-
ver nitrate (AgNO3), mercuric chloride (HgCl2), sodium borohydride (NaBH4), manganese
nitrate (Mn (NO3)2.4H2O), cadmium nitrate (Cd (NO3)2), and lead nitrate (Pb (NO3)2).

3.1. Preparation of Adipic Acid-Capped Silver Nanoparticles

AgNPs@AA were prepared by reducing Ag+ from AgNO3 with a reducing agent
NaBH4 followed by capping with adipic acid. The AgNO3 (3.38 mg, 1 mM, 20 mL) and
adipic acid (2.9 mg, 1 mM, 20 mL) solutions were mixed in distilled water under vigorous
magnetic stirring. Then NaBH4 (2.2 mg, 1 mM, 60 mL) solution in distilled water was
added dropwise to the above mixture. After adding a few drops of NaBH4, the color of the
solution changed from colorless to light yellow, confirming the formation of AgNPs@AA.
The suspension so obtained was then centrifuged at 6000 rpm for 30 min. The supernatant
was decanted, leaving pure silver nanoparticles at the bottom of the centrifugation tube.
The as-obtained AgNPs@AA were centrifuged again after washing with distilled water.
This washing process was repeated several times to remove any unreacted material. A part
of these pure AgNPs@AA, obtained after washing, was stored as a solid sample to carry
out different analyses. At the same time, the remaining fraction was sonicated after adding
distilled water to obtain a suspension of pure AgNPs@AA. This suspension obtained was
used as a stock solution of AgNPs@AA for further experiments. The concentration of the
stock solution of AgNPs@AA was measured by a method reported earlier with the help of
the UV–Vis technique (See Supplementary Materials) [73–75].

3.2. Characterization of AgNPs@AA

To confirm the successful synthesis of AgNPs@AA, UV–Vis spectra of adipic acid
solution and AgNPs@AA suspension were recorded within 300–800 nm using a UV–Vis
spectrophotometer (UV-1800 spectrophotometer, Shimadzu, Kyoto, Japan). FTIR spectra
of synthesized AgNPs@AA and adipic acid were recorded in KBr pellets in the range of
600–4000 cm−1 to confirm the success of capping the AgNPs with adipic acid.

Zeta potential (ZP) and hydrodynamic size of AgNPs@AA were measured by using
the Nano Zeta Sizer (ZS) system (Malvern Instruments, Malvern, UK). Different constraints
of measurements were as follows: scattering angle (173◦), laser wavelength (633 nm),
temperature (25 ◦C), the refractive index of the medium (1.330), the refractive index of
the material (0.200), and viscosity of medium (0.8872 mPa.s). For DLS measurements,
the sample was initially passed through membrane PVDF (polyvinylidene fluoride) of
0.2 µm diameter. The DLS analyses were performed using normal resolution (general-
purpose mode) and high resolution (with multiple narrow modes). The sample was put
in a micro-cuvette made up of quartz, and results were recorded. The SEM analyses of
AgNPs@AA were performed using an electron microscope (Nova, NanoSEM 450, Thermo
Fisher Scientific, Hillsboro, OR, USA) furnished with a low energy detector named Everhart–
Thornley detector after drying the nanoparticles over aluminum stubs.

The AgNPs@AA sample was also characterized by X-ray diffraction (XRD) to deter-
mine the crystal structure and size of the nanoparticle (Philips X’Pert-Pro X-ray diffractome-
ter system, Malvern Panalytical, Malvern, UK). The X-ray tube was operated at a voltage of
40 kV, while the beam current was 30 mA. The 2θ range of the XRD patterns was between
10 and 80◦ under Cuκα = 0.154 nm. Scan speed during the analysis was kept at 5◦/min.

3.3. Antibacterial Activity

The antibacterial activities of prepared AgNPs@AA were performed using the agar
well diffusion assay against four clinically isolated bacteria: Escherichia coli, Bacillus subtilis,
Salmonella typhi, and Staphylococcus aureus. The S. typhi strain used in this study was previ-
ously identified as an XDR strain causing XDR typhoid in patients [76]. The LB nutrient
agar (Oxoid) plates were prepared after autoclaving, and bacterial culture lawns were
prepared [77,78]. AgNPs@AA suspension (20 µL) was loaded on sterile disks and placed in
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LB agar plates to incubate at 37 ◦C overnight. A disk of a standard drug cefixime (5 µg)
was used as a control. The inhibition zones for the control and AgNPs@AA were measured.
Minimum Inhibitory Concentration (MIC) was estimated by making the serial dilutions
of AgNPs@AA and standard drug in LB broth [77,78]. An inoculum of 106 CFU/mL was
used for MIC inhibition, and MIC was determined using a previously reported method for
AgNPs [53].

3.4. Colorimetric Detection of Hg2+

To investigate the potential of synthesized AgNPs@AA for selective detection of heavy
metal ions in an aqueous solution, different metal ion solutions (Pb2+, Cd2+, Mn2+, Hg2+)
were interacted with AgNPs@AA. Each metal solution (1 µM, 0. 5 mL) was added to
AgNPs@AA suspension (3 mL) in separate test tubes. Then UV–Vis spectrum of each
solution containing metal ions and AgNPs@AA was recorded. Any apparent change in
color or UV–Vis spectra of AgNPs@AA after the addition of a metal ion might provide the
basis for the selective detection of the corresponding metal ion. A significant color change
was observed for Hg2+. In order to determine the minimum concentration of Hg2+ that can
be determined using the AgNPs@AA, a calibration curve was constructed by interacting
variable concentrations (0.6–1.6 mM, 0.5 mL each) of Hg+2 with AgNPs@AA (3 mL) and
recording their spectra.

4. Conclusions

The novel AgNPs@AA were found to be potential antimicrobial agents and excellent
sensing probes for metal ion detection. These nanoparticles were effectively used for
the selective detection of mercury ions in an aqueous solution. The color of the AgNPs
suspension changed from light yellow to colorless by the interactions of AgNPs with
mercury ions. The characteristic absorption peak in UV–Vis spectra was blue shifted. A
LOD value of 0.12 µM with a linear range of 0.6–1.6 µM was obtained. AgNPs@AA have
shown strong antibacterial potential against XDR S. typhi strain, and these can be further
studied as an effective treatment against drug-resistant bacterial agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113363/s1, Table S1: Analytical results for the de-
tection of Hg2+ using AgNPs@AA in real samples; determination of concentration of synthesized
AgNPs@AA. Table S2: Characteristics peaks of FTIR spectra of adipic acid and AgNPs@AA. Figure
S1: Effect of response time (a), pH (b), temperature (c) on the Hg2+ detection in real-time analyses.
Determination of Concentration of Synthesized AgNPs@AA.
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