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Abstract: Recent scientific trends have revealed that the collection and analysis of data on the occur-
rence and fate of SARS-CoV-2 in wastewater may serve as an early warning system for COVID-19.
In South Africa, the first COVID-19 epicenter emerged in the Western Cape Province. The City of
Cape Town, located in the Western Cape Province, has approximately 4 million inhabitants. This
study reports on the monitoring of SARS-CoV-2 RNA in the wastewater of the City of Cape Town’s
wastewater treatment plants (WWTPs) during the peak of the epidemic. During this period, the
highest overall median viral RNA signal was observed in week 1 (9200 RNA copies/mL) and declined
to 127 copies/mL in week 6. The overall decrease in the amount of detected viral SARS-CoV-2 RNA
over the 6-week study period was associated with a declining number of newly identified COVID-19
cases in the city. The SARS-CoV-2 early warning system has now been established to detect future
waves of COVID-19.
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1. Introduction

Wastewater-based epidemiology has played an important role in the development of
early warning systems (EWS) for various enteric viruses, including poliovirus, norovirus
and hepatitis [1]. In the current COVID-19 pandemic, wastewater-based epidemiology
has shown the potential to provide a platform for SARS-CoV-2 surveillance. SARS-CoV-2
RNA has been detected in the feces of both symptomatic and asymptomatic cases [2]
and research in many countries, including France, the Netherlands and the United States
of America (USA), has shown a correlation between SARS-CoV-2 RNA viral loads in
wastewater and COVID-19 clinical case data [3,4]. For example, a study in the Netherlands
detected SARS-CoV-2 RNA in wastewater even when the COVID-19 prevalence was low [4].
Such findings have provided the evidence-base for the Netherlands to incorporate sewage
surveillance as an EWS within its national response to COVID-19 monitoring and other
countries, including Australia, Germany, New Zealand and the USA, are taking similar
steps. According to the World Health Organization (WHO) [5], it has been demonstrated
that wastewater-based epidemiology has the potential to be used for monitoring COVID-19
prevalence and temporal trends, however it is necessary to pilot this approach in low-
and middle-income (LMIC) settings to demonstrate its added value to support clinical
surveillance. An effective wastewater-based epidemiology system may prove critical where
health systems infrastructures, testing systems, personal protective equipment (PPE) and
human resource capacities are constrained.

The City of Cape Town, in the Western Cape Province, is one of eight metropolitan
municipalities in South Africa, with approximately 4 million inhabitants. It is one of
the wealthiest cities in Africa but is also recognized as having one of the highest income
inequalities globally. This inequality extends to health care access and living conditions,
leading to variations in the transmission and spread of COVID-19 within the metropolis.
As such, wastewater surveillance within the City of Cape Town can assist in unbiased
tracking of COVID-19 at the sub-city scale to determine potential localized outbreaks. The
first COVID-19 case in the Western Cape was reported on 11 March 2020 and the confirmed
cases gradually increased after that point; from 1 May to 1 June 2020, the number increased
from 226 cases to 1668 cases, respectively [6]. In early July 2020, the Western Cape emerged
as the epicenter of COVID-19 in South Africa and at the time carried the highest proportion
of COVID-19 cases (35%) as well as related deaths (64%) in the country [7]. To coincide with
the COVID-19 peak in the Western Cape, this study undertook wastewater sampling in 23
WWTPs in the City of Cape Town and determined the spatial and temporal SARS-CoV-2
trends over a six-week period.

2. Materials and Methods
2.1. Wastewater Sampling

From 6 July 2020, one 500 mL untreated influent wastewater grab sample was collected
at the raw inlet after coarse screening from each of the 23 wastewater treatment plants
(WWTPs) in the City of Cape Town. Samples were collected once a week on a Monday with
sample collection occurring at a similar time each week over a 6-week period. Two of the
WWTPs (namely, Millers Point and Oudekraal) served as controls as they are situated on
nature reserves and do not serve residential populations. A random computer-generated
number was assigned to each WWTP and the laboratory staff were blinded to the incoming
samples. All samples were transported to the laboratory on ice and processed immediately
for the extraction of RNA, after which it was stored at −80 ◦C for subsequent quantitative
real-time polymerase chain reaction (qRT-PCR).

2.2. Sample Concentration and RNA Extraction

A modified method described by Peccia et al. [8] and optimized by Johnson et al. [9]
was used in order to extract the total RNA using the Qiagen RNeasy® PowerSoil® Kit, as
per the manufacturer’s instructions (Qiagen, Hilden, Germany). Briefly, 100 mL of influent
wastewater was spun down at 2500× g for 20 min, whereafter 2–5 mL of the resultant
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supernatant pellet was added to a 15 mL PowerBead® Tube containing a lysis buffer to
inactivate the virus and stabilize the viral RNA. Thereafter, the sample was homogenized
and phase-separated using an equal volume of phenol/chloroform and the upper aqueous
phase was transferred to a new 15 mL tube and mixed with the required buffers as supplied
within the RNeasy PowerSoil kit. The RNA isolation sample was then transferred to
the RNeasy JetStar Mini Column to elute out the bound RNA before centrifugation at
13,000× g for 15 min. The resultant pellet was dried and dissolved in a final volume of
50 µL of ribonuclease-free water. The quantity and quality of the total RNA was measured
by spectrophotometry using the NanoDrop® ND-1000 instrument (Nanodrop Technologies,
Wilmington, NC, USA). In the absence of a surrogate, a clinical SARS-CoV-2 positive nasal
swab sample with known viral copies was used to spike a wastewater sample in order to
investigate the efficiency of the extraction method.

2.3. Quantitative Real-Time Polymerase Chain Reaction Analysis

The Centers for Disease Control and Prevention (CDC) approved quantitative real-
time polymerase chain reaction (qRT-PCR) N1 and N2 primer/probe assays (Table 1) [10],
which were purchased from Whitehead Scientific (Integrated DNA Technologies, Coralville,
USA) and used for the detection of SARS-CoV-2 viral RNA in wastewater samples. Both
N1 and N2 primer/probe sets aligned 100% with the N-protein of the SARS-CoV-2 strain.
For qRT-PCR positive control and viral RNA copy number quantification, a 1:10 fold serial
dilution was made with assays 2019-nCoV-N-Positive plasmid control, which was supplied
at 200,000 copies/µL (Qauntabio, Beverley, MA, USA). For qualitative and quantitative
analysis detection of SARS-CoV-2 viral RNA, a one-step qRT-PCR reaction was performed
using the iTaqTM Universal Probes One-Step Reaction kit, according to the manufacturer’s
instructions (Bio-Rad Laboratories, Richmond, CA, USA). Briefly, 1 µL of 0.2 µg/µL of total
RNA was used for the qRT-PCR reaction in a final volume of 10 µL, using the QuantStudio™
7 Flex Real-Time PCR System (ABI instrument, Life Technologies, Carlsbad, USA). All
reactions were performed in technical duplicate and a template control was included for
each experimental run. To minimize potential contamination, RNA extraction and qRT-PCR
were performed in separate laboratories.

Table 1. Thermal cycling protocol and primers and probes used in the study.

Organism Target Assay
Name Target Part

Number
Product
Number

Cycling
Parameters References

SARS-CoV-2 N protein 2019-nCoV
CDC

N1
primer/probe

RV202001
RV202015 10006606 50 ◦C–10 min

95 ◦C–3 min
PCR: 40
Cycles
95 ◦C–15 s
60 ◦C–60 s

[8,10]
N2
primer/probe

RV202002
RV202016 10006606

2.4. Statistical Analysis

The SARS-CoV-2 copies per milliliter of wastewater were described using summary
statistics. The Shapiro–Wilk test was used to test the normality of SARS-CoV-2 copies per
milliliter. Spearman’s rank correlation was used to determine the correlation between N1
and N2 primers. The signed rank test was used to test whether there was a significant
change in SARS-Cov-2 RNA signals between weeks 1, 3 and 6. At week 1, quartiles
estimated from the average of N1 and N2 were used to form the four RNA signal categories
(category 1 with the lowest and category 4 with the highest RNA signal) which formed
the basis for the maps presented. Additionally, a Spearman’s rho correlation analysis was
performed on the wastewater and clinical cases.

2.5. Spatial Data

Suburb shapefiles were obtained from the City of Cape Town’s open data portal.
Coordinates for each WWTP were collected using a handheld GPS and verified using
Google Earth. All maps were produced using ArcGIS 10.6.1. (ESRI, Durban, South
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Africa). The WWTP catchment areas (comprising of 753 suburbs) were joined to the
corresponding WWTPs.

3. Results

WWTP capacity ranged from 0.03 Ml/day to 200 Ml/day (Oudekraal and Cape Flats,
respectively). The WWTP site characteristics are presented in Supplementary Table S1. A
total of 138 grab samples, one per WWTP, were collected weekly over 6 weeks, of which
12 samples were collected from the two control sites. A 15% recovery efficiency of the
extraction procedure was in line with previously published studies [11–13]. There was a
strong correlation between viral RNA copies/mL for N1 and N2 primers (r = 0.897, p-value
< 0.001). Samples from both control sites (Millers Point and Oudekraal WWTP) contained
undetectable viral RNA loads over the 6-week period. Week 1 had the highest overall
(median) viral RNA signal (9200 RNA copies/mL). The extremely high SARS-CoV-2 RNA
signal recorded in week 1 at the Mitchells Plain WWTP (37,486,080 copies/mL) was flagged
and re-analysis in the laboratory confirmed this result. There were a median decrease of
4779.5 RNA copies/mL between weeks 1 and 3 (p-value 0.001) and a median decrease of
3592 copies/mL between weeks 3 and 6 (p-value 0.0001). The median SARS-CoV-2 RNA
for weeks 2, 4 and 5 were 3448, 4032 and 583 copies/mL, respectively.

The spatial representation (Figure 1) shows the changing trend in SARS-CoV-2 RNA
signals over time in relation to the starting time point (week 1). Based on the Inter Quartile
Ranges (IQR), the RNA signals observed from the wastewater samples progressively
decreased from week 1 to week 6. It must be noted that despite the decreased SARS-
CoV-2 RNA load detected in most of the WWTPs, areas serviced by the Mitchells Plain
and Borcherds Quarry WWTP had higher viral loads. Notably, both Mitchell’s Plain and
Borcherds Quarry WWTPs were ‘hotspots’ (i.e., higher signal areas) in week 1. Additionally,
the reduction in SARS-CoV-2 RNA corresponded with the decline in COVID-19 clinical
cases over the same period (Figure 2). This was further confirmed by the Spearman’s rank
test, which showed a significant positive correlation (r = 0.83; p = 0.0416) between the
reported clinical cases and the SARS-CoV-2 viral RNA in the wastewater.
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Figure 1. Spatial representation of SARS-CoV-2 RNA/mL in wastewater from 23 wastewater treatments plants and related catchment areas (suburbs) in the City of Cape Town at 6 
sampling timepoints: (a): 6 July 2020 (week 1); (b): 13 July 2020 (week 2); (c): 20 July 2020 (week 3); (d): 27 July 2020 (week 4); (e): 3 August 2020 (week 5); (f): 10 August 2020 (week 6).

Figure 1. Spatial representation of SARS-CoV-2 RNA/mL in wastewater from 23 wastewater treatments plants and related catchment areas (suburbs) in the City of Cape Town at 6
sampling timepoints: (a): 6 July 2020 (week 1); (b): 13 July 2020 (week 2); (c): 20 July 2020 (week 3); (d): 27 July 2020 (week 4); (e): 3 August 2020 (week 5); (f): 10 August 2020 (week 6).
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Figure 2. Number of confirmed new COVID-19 cases in the City of Cape Town from the period of 
6 July 2020 to 10 August 2020. Data retrieved from the COVID-19 Dashboard from the Western 
Cape Provincial Government [6]. 
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Arora et al. [15] reported the presence of SARS-CoV-2 RNA in the wastewater over a pe-
riod of three weeks in Jaipur City, India. Low SARS-CoV-2 RNA signal in wastewater 
corresponded to the low number of positive COVID-19 cases in the city. In Brazil, re-
searchers monitored the SARS-CoV-2 RNA signal in wastewater for 41 weeks in the city 
of São Paulo and observed a positive correlation between the RNA signal in the 
wastewater and clinical cases [16]. Our results are consistent with these studies. In our 
study, untreated, influent wastewater samples were collected from the inlet of WWTPs, 
which other studies have demonstrated is the preferred sample type for investigating 
changes in SARS-CoV-2 RNA signals and correlations between clinical cases and hotspot 
identification [17,18]. 

The heterogeneous RNA signals within the City of Cape Town highlight the im-
portance of temporal trends at a sub-city scale, especially for densely populated cities. A 
study in south-eastern Virginia (USA) suggested that as the COVID-19 pandemic wanes, 
it is likely that communities will see an increased incidence of small, localized outbreaks 
which can be detected by water-based epidemiology [19]. In South Africa, increased local 
transmission of the virus has been noted in the second and third waves, as well as follow-
ing local super-spreader events [20,21]. The surveillance of suburbs allows for authorities 
to pin-point small outbreaks which for South Africa and other resource-constrained coun-
tries can guide targeted interventions and timeous public health responses [22]. 
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Figure 2. Number of confirmed new COVID-19 cases in the City of Cape Town from the period of
6 July 2020 to 10 August 2020. Data retrieved from the COVID-19 Dashboard from the Western Cape
Provincial Government [6].

4. Discussion

The COVID-19 pandemic has had devastating societal and economic impacts on South
Africa [14]. In this study, we determined spatial and temporal trends of SARS-CoV-2 in
wastewater as the basis for a COVID-19 early warning system. The overall trends show
the declining SARS-CoV-2 RNA signal that corresponds with the declining COVID-19 case
numbers in Cape Town as reported by the Western Cape Provincial Government. Arora
et al. [15] reported the presence of SARS-CoV-2 RNA in the wastewater over a period
of three weeks in Jaipur City, India. Low SARS-CoV-2 RNA signal in wastewater corre-
sponded to the low number of positive COVID-19 cases in the city. In Brazil, researchers
monitored the SARS-CoV-2 RNA signal in wastewater for 41 weeks in the city of São Paulo
and observed a positive correlation between the RNA signal in the wastewater and clinical
cases [16]. Our results are consistent with these studies. In our study, untreated, influent
wastewater samples were collected from the inlet of WWTPs, which other studies have
demonstrated is the preferred sample type for investigating changes in SARS-CoV-2 RNA
signals and correlations between clinical cases and hotspot identification [17,18].

The heterogeneous RNA signals within the City of Cape Town highlight the impor-
tance of temporal trends at a sub-city scale, especially for densely populated cities. A
study in south-eastern Virginia (USA) suggested that as the COVID-19 pandemic wanes,
it is likely that communities will see an increased incidence of small, localized outbreaks
which can be detected by water-based epidemiology [19]. In South Africa, increased local
transmission of the virus has been noted in the second and third waves, as well as following
local super-spreader events [20,21]. The surveillance of suburbs allows for authorities to
pin-point small outbreaks which for South Africa and other resource-constrained countries
can guide targeted interventions and timeous public health responses [22].

In March of 2021, The European Commission issued a recommendation for nationwide
wastewater monitoring system for SARS-CoV-2 surveillance as a complementary approach
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to monitor the spread of COVID-19 in all its member states [23]. Owing to reports of the
detection and tracking of the virus in wastewater by several European countries in 2020,
all EU member states were called to establish a wastewater surveillance system by October
2021. High-income countries with well-equipped sanitation systems, such as Finland [24],
the Netherlands [25] and the USA [26], have established nationwide COVID-19 wastewater
monitoring programs. Wastewater surveillance has shown to be a useful alternative and
low-cost tool for population-level screening in these countries.

In LMICs, several studies have detected the presence of SARS-CoV-2 in wastewater
including Argentina [27], Brazil [28] and India [29]. To our knowledge, this is the first study
in an African setting that reports the spatial and temporal trends of the SARS-CoV-2 RNA
signal in wastewater covering an entire Metro. This study demonstrates how wastewater
monitoring of SARS-CoV-2 can be of benefit for and can support clinical testing, identifying
hotspots, informing preparedness and monitoring the effectiveness of response measures
brought about by public health officials.

The SARS-CoV-2 RNA signals in the study are reported as the virus concentration
without normalization due to uncertainties in readily available information about flow
rate and population size estimates. As highlighted by Hou et al. [30], census data is
often outdated and does not accommodate for population mobility in cities, while the
design capacity of a WWTW is not reflective of the real time load in a sewerage system.
Moreover, Feng et al. [31] found that normalization to WWTP characteristics had a minimal
impact when correlating SARS-CoV-2 RNA in wastewater to clinical cases. Given these
uncertainties, the limited availability of such information in the study and the South African
context, future research can explore normalization using a human fecal marker, such as
pepper mild mottle virus.

At the time of sampling, South Africa was in lockdown level three, which indicated
the most moderate of the five severity levels. Although the first wave of COVID-19 cases
has since passed, there has been a resurgence of COVID-19 clusters and outbreaks, with
the country currently experiencing a third wave [32]. A rapid public health response is
therefore critical to prevent further morbidity and mortality, as health care systems in
South Africa have come under strain. Moreover, limited and biased testing data may
mask the estimates of COVID-19 infections, which are critical to informing public health
responses [33,34]. The SARS-CoV-2 viral load in wastewater represents both asymptomatic
and symptomatic shedding in a specific geographic location, thus providing a less biased
dataset which can be used to assess infection prevalence [19]. Results from this study
further support the need for prolonged wastewater surveillance as an additional strategy
to current tracing methods employed to mitigate COVID-19 spread. Nonetheless, this
study has a few key limitations. The wastewaters samples were collected using the grab
sampling technique. Therefore, the results presented for each week are reflective of one
time point. However, the routine sampling strategy adopted in this study allowed for
weekly comparisons of concentrations to be made at each wastewater treatment plant.
Furthermore, the SARS-CoV-2 variants of concern (VOC) have played an integral part
in driving the pandemic. SARS-CoV-2 VOC testing was not undertaken in this study;
however, our current and future wastewater surveillance studies now include VOC testing.

5. Conclusions

In conclusion, we report the detection of SARS-CoV-2 RNA in the wastewater of the
City of Town’s WWTPs. We identified an overall decrease in the amount of detected viral
RNA over the 6-week study period, associated with a declining number of newly identified
COVID-19 cases. This is the first study on the African continent to determine spatial and
temporal trends of SARS-CoV-2 spanning an entire metropolitan city. As South Africa has
declining COVID-19 case numbers, ongoing wastewater surveillance is an economical early
warning system that can guide public health responses. On the basis of these study results
and the feasibility of trend detection, a pilot early warning system is underway in various
cities across South Africa to identify potential COVID-19 resurgences at the sub-city scale.
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