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NLRC5 knockdown in chicken macrophages alters
response to LPS and poly (I:C) stimulation
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Abstract

Background: NLRC5 is a member of the CARD domain containing, nucleotide-binding oligomerization (NOD)-like
receptor (NLR) family, which recognizes pathogen-associated molecular patterns (PAMPs) and initiates an innate
immune response leading to inflammation and/or cell death. However, the specific role of NLRC5 as a modulator
of the inflammatory immune response remains controversial. It has been reported to be a mediator of type I IFNs,
NF-kB, and MHC class I gene. But no study on NLRC5 function has been reported to date in chickens. In the current
study, we investigated the role of NLRC5 in the regulation of IFNA, IFNB, IL-6, and MHC class I in the chicken HD11
macrophage cell line, by using RNAi technology. HD11 cells were transfected with one of five siRNAs (s1, s2, s3,
negative-siRNA, or a mixture of s1, s2, s3-siRNAs). After 24 hours, cells were exposed to LPS or poly (I:C) or a vehicle
control. Gene expression of NLRC5, IFNA, IFNB, IL-6, and MHC class I at 2, 4, 6, and 8 hours post stimulation (hps)
was quantified by qPCR.

Results: The expression of NLRC5, IFNA, IFNB, and IL-6 genes in negative irrelevant transfection controls was up-
regulated at 2 hps after LPS treatment compared to the vehicle controls. S3-siRNA effectively knocked down NLRC5
expression at 4 hps, and the expression of IFNA and IFNB (but not IL-6 and MHC class I) was also down-regulated at
4 hps in s3-siRNA transfected cells, compared to negative irrelevant transfection controls. Stimulation by LPS
appeared to relatively restore the decrease in NLRC5, IFNA, and IFNB expression, but the difference is not significant.

Conclusions: Functional characterization of chicken NLRC5 in an in vitro system demonstrated its importance in
regulating intracellular molecules involved in inflammatory response. The knockdown of NLRC5 expression
negatively mediates gene expression of IFNA and IFNB in the chicken HD11 cell line; therefore, NLRC5 likely has a
role in positive regulation of IFNA and IFNB expression. No direct relationship was found between NLRC5
knockdown and IL-6 and MHC class I expression. Future studies will further clarify the roles of NLRC5 and other
NLRs in infectious diseases of chickens and may increase the efficacy of antiviral vaccine design.

Background
The host innate immune system recognizes various
pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs) through
pattern-recognition receptors (PRRs) and triggers the
inflammatory response to defense against microorgan-
isms invasion [1]. There are three classes of PRRs in
vertebrates, Toll-like receptors (TLRs), nucleotide-bind-
ing oligomerization (NOD)-like receptors (NLRs), and
the retinoid acid-inducible gene-I (RIG-I)-like receptors
(RLRs) [1-6]. These molecules showed different subcel-
lular localization, for example, most TLRs identify

extracellular PAMPs, whereas NLRs and RLRs sense
intracellular PAMPs [7,8]. Recently, the NLRs have
gained attention because of their involvement in mediat-
ing innate immune responses to microbial invasion and
controlling innate immune pathways. To date, at least
22 members of the NLR family have been identified in
humans [9], and some of them have been well charac-
terized. For example, two members of the NLRC (NLR
containing a caspase-recruitment domain (CARD))
family, NLRC1 and NLRC2, recognize bacteria-derived
molecules and result in activation of downstream signal-
ing pathways, including NF-kB and mitogen-activated
protein kinase (MAPK)s, to induce production of
inflammatory cytokines [10,11]. NLRP1 and NLRP3
(NLR containing a pyrin domain) play key roles in
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activating caspase-1 inflammasomes as a response to
PAMPs and DAMPs, leading to maturation and secre-
tion of pro-inflammatory cytokines interleukin (IL)-1B
and IL-18 [12]. In addition, NLRC1, NLRC2, NLRP1,
NLRP3, and MHC class II transactivator (CIITA) are all
associated with susceptibility to chronic inflammatory
diseases [13-20].
Recently, NLRC5, a newly identified member of NLR

family, with the most evolutionary relationship to
NLRC1 and NLRC2 [21,22], has been implicated in reg-
ulation of the innate immune response [23]. NLRC5 is
highly expressed in lymphocytic and macrophage/mono-
cytic cell lineages [24] and immune tissues [9]. NLRC5
can be potently induced by interferon gamma (IFNG)
and modestly induced by the microbial-derived mole-
cules, lipopolysaccharide (LPS) and polyinosinic:polycy-
tidylic acid (poly (I:C)) [9]. The specific role of NLRC5
in acting as a regulator of proinflammatory pathways is
controversial [24]. NLRC5 is suggested to positively reg-
ulate the interferon (IFN) pathway in human cervical
carcinoma HeLaS3 cells and human acute monocytic
cell line, THP-1 [25]. Overexpression of NLRC5 leads to
the activation of IFN-specific response elements (ISRE)
in HeLa cells [25]. siRNA-mediated knockdown of endo-
genous NLRC5 decreased type I IFN pathway-dependent
responses mediated by Sendai virus and poly (I:C) in
THP-1 cells [26]. In contrast, overexpression of NLRC5
was shown to repress the activation of NF-kB-, type I
IFN-, and AP-1-dependent signaling pathways in human
embryonic kidney cell line HEK293T, and the knock-
down of NLRC5 increased secretion of proinflammatory
cytokines in mouse leukaemic monocyte macrophage
cell line, RAW264.7 [9]. Moreover, Cui et al. demon-
strated that NLRC5 negatively modulated NF-kB and
type I IFN signaling pathways and its absence resulted
in elevated expression levels of Tumor necrosis factor
(TNF) A, IL-6, and IL-1B [27]. In addition, opposite
effects have also been described for the role of NLRC5
as a transcriptional regulator of MHC class I expression.
It binds to the MHC class I promoter and up-regulates
MHC class I expression in lymphoid and epithelial cell
lines. NLRC5 was also proven to be required in the
pathway of efficient induction of MHC class I by IFNG
stimulation [28]. In contrast, knockdown of NLRC5 was
shown to increase cell surface expression of MHC class
I in RAW 264.7 cells, which indicated a negative role of
NLRC5 in regulating MHC class I expression [9]. There-
fore, the effects of NLRC5 in regulating immune-related
components and inflammatory responsive pathways are
very complex, and likely either cell type- or species-spe-
cific [24].
To date, no study on the functional role of NLRC5 in

chickens has been reported. In the current study, we
characterized the functions of NLRC5 gene in the

regulation of IFNA, IFNB, IL-6, and MHC class I by uti-
lizing RNA-interference technology and stimulation with
LPS from Salmonella typhimurium or poly (I:C) in the
chicken HD11 macrophage cell line. These specific
ligands were selected to complement and expand upon
our previously published studies [29-31]. The expression
levels, over time, for five genes were determined by
qPCR to elucidate the association of NLRC5 with IFNA,
IFNB, IL-6, and MHC class I. The present study reports
the initial characterization of chicken NLRC5 and its
roles in the regulation of innate immune response to
bacterial components. Our findings are novel and of sig-
nificant scientific value for a better understanding of
host response to infectious diseases in chickens.

Results and discussion
Expression of NLRC5, IFNA, IFNB, and IL-6 in negative
irrelevant siRNA transfection controls was up-regulated at
2 hours post LPS stimulation
The expression of NLRC5, IFNA, IFNB, and IL-6 was
significantly up-regulated, and MHC class I showed an
increasing trend, in LPS-treated HD11 cells compared
to vehicle controls at 2 hours post stimulation (hps)
(Figure 1). The expression of NLRC5 and IFNA after
LPS treatment at 2 hps was higher than 4 and 6 hps
(Figure 1a,b). IFNB and IL-6 genes expression at 2 hours
post LPS stimulation was higher than 4, 6, and 8 hps
(Figure 1c,d). MHC class I gene expression was also
higher at 2 hours post LPS treatment than these at 6
and 8 hours (Figure 1e). However, poly (I:C) had no
effect on gene expression, based upon lack of significant
difference between the poly (I:C) treated group and
non-poly (I:C)-treated controls at any time points in
negative siRNA transfected cells (data not shown),
which may be because of miscalculation in the dilution
of the stock resulting in the low concentration of poly
(I:C) used.
LPS and poly (I:C), as agonists of TLR4 and TLR3,

respectively, have been extensively used to mimic bac-
terial and viral infection to induce inflammation in host
innate immune response studies. In mammals, LPS is
recognized by LPS-binding protein (LBP)3 and trans-
ferred to another LPS binding protein CD14, which deli-
vers the LPS to a complex of myeloid differentiation
protein-2 (MD-2) and TLR4 [32]. The TLR4/MD-2/
CD14 complex transduces the LPS signal through the
recruitment of various adaptor molecules at the Toll/IL-
1R (TIR) domain of the TLR4 receptor, and triggers
downstream signaling events, such as activation of
nuclear factors, NF-kB and AP-1, and subsequent pro-
duction of proinflammatory cytokines and interferons
[33]. Two predominant intracellular pathways, the
MyD88-dependent and independent pathways are acti-
vated by TLR agonists to induce inflammatory responses
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[34]. The MyD88-dependent pathway utilizes MyD88
and TIRAP and results in activation of NF-kB and pro-
duction of the responsive immunoregulatory molecules,
such as IL-1, IL-2, IL-6, TNF, and IFNG [35,36].
MyD88-independent pathway, also called the TRAM/
TRIF-dependent pathway, induces phosphorylation of
IFN regulatory factor (IRF)3 and the subsequent produc-
tion of type I IFNs as well as a delayed NF-kB response

[37-39]. TLR4 is an unique member of TLR family,
which activates both the MyD88-dependent and the
independent pathways [40,41]. However, TLR3, the sen-
sor of poly (I:C), exclusively triggers the MyD88-inde-
pendent pathway, leading to production of inflammatory
cytokines such as TNF, IL-6, and IFNB [40-42].
Keestra et al. recently reported that a functional LPS-

induced MyD88-independent pathway is absent in

Figure 1 Gene expression of NLRC5, IFNA, IFNB, IL-6, and MHC class I after LPS treatment in negative siRNA transfection controls. HD11
macrophages were stimulated for 2, 4, 6 and 8 hours with 1 μg/ml LPS. Data are shown as the fold change in mRNA expression between LPS
treatment and vehicle-treatment for each gene. a: NLRC5; b: IFNA; c: IFNB; d: IL-6; e: MHC class I; RNA samples were assayed in triplicates by qPCR.
P values are flagged with asterisks when lower than 0.05(*) or 0.01 (**).
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chicken, based upon their observation of no change of
IFNB gene expression after LPS treatment (5 μg/ml of
Salmonella Enteritidis (SE) or Salmonella Gallinarum
(SG)-LPS) in chicken cells [43]. Interestingly, conflicting
results were obtained in the current study, as well as in
research recently reported by Esnault et al. [44]. Use of
different sources and doses of LPS may partly explain
the conflicting results among the studies. In the current
study, gene expression of IFNA, IFNB, and IL-6 was up-
regulated after Salmonella typhimurium (ST)-LPS treat-
ment (1 μg/ml) at 2 hps. These results indicate that LPS
stimulation induced elevated expression of type I IFN
genes (IFNA and IFNB) and also an NF-kB-reponsive
gene (IL-6). Similar results were reported by Esnault et
al. [44], who found that the expression of IFNA, IFNB
and IL-8 was strongly up-regulated in chicken epithelial
cell line (CLEC213) after E. coli (EC)-LPS (10 μg/ml) sti-
mulation between 4 hps and 24 hps. Collectively, these
studies suggest that specific gene expression patterns
after LPS stimulation are dependent upon the distinct
LPS sources and dosage.
Additionally, in the present study, LPS treatment up-

regulated the expression of the NLRC5 gene in chicken
HD11 macrophage cells at 2 hps. Although LPS and
poly (I:C) are considered to be moderate regulators of
NLRC5, the reported effects seem to be varied and
dependent upon the cell type tested. For example, in
mouse splenic B lymphocytes, LPS induced a moderate
increase in NLRC5 expression compared with IFNG,
which is a strong regulator of NLRC5 [9]. But in murine
bone marrow-derived macrophages (BMDMs), LPS
simulation did not alter NLRC5 mRNA expression,
whereas, poly (I:C) treatment increased its expression
[9]. In RAW 264.7 cells, LPS stimulation up-regulated
NLRC5 at mRNA and protein levels, peaked at 6 hours
post treatment, while only a weak increase of NLRC5
was observed after poly (I:C) stimulation [27].

S3-siRNA knocked down NLRC5 expression, and IFNA and
IFNB were down-regulated in s3-siRNA transfected cells
To further investigate the roles of NLRC5 in regulating
expression of type I IFNs and NF-kB responsive genes
in chickens, we utilized RNA interference to knock
down NLRC5 expression, and then treated cells with
LPS or poly (I:C), as well as a vehicle control. The gene
expression of type I IFNs (IFNA and IFNB), an NF-kB
responsive gene (IL-6), and also an antigen presentation
molecule (MHC class I) was quantified by qPCR. Of
three siRNAs designed, only s3-siRNA down-regulated
the expression of NLRC5 compared to negative irrele-
vant siRNA. NLRC5 expression was reduced by 65% at
4 hps (Figure 2a) with a transfection efficiency 75%.
Interestingly, IFNA and IFNB exhibited down-regulated
expression patterns consistent with that of NLRC5 in

s3-siRNA transfected cells (Figure 2b,c). Although gene
expression of NLRC5, IFNA, and IFNB in the s3-siRNA
LPS treatment group is not significantly higher than
that in s3-siRNA vehicle control group (P > 0.05), their
gene expression has numerically higher values in the s3-
siRNA LPS group (Figure 2), and it appeared that the
gene expression decrease is relatively alleviated after
LPS treatment. These results indicated that knockdown
of NLRC5 negatively modulated gene expression of
IFNA and IFNB in chicken HD11 cells. There was no
significant change in IL-6 and MHC class I gene expres-
sion in NLRC5 knocked-down cells.
NLRC5 is a highly conserved member of the NLR

family and has been reported to be involved in type I
IFN and NF-kB signaling pathways, as well as regulating
MHC class I [9,22-24,26-28]. However, the specific role
of NLRC5 in regulating inflammatory immune response
remains unsolved [24,45]. Cui et al. showed that NLRC5
is a negative modulator of NF-kB and the type I IFN
pathways. NLRC5 potently inhibited the NF-kB pathway
through blocking phosphorylation of two subunits of
IKK complex, IKKA and IKKB. It also repressed RLR-
mediated type I IFN response by interaction with RIG-I
and MDA5 [27]. Similar results have been reported that
NLRC5 overexpression resulted in down-regulation of
NF-kB and ISRE in the type I IFN-dependent pathway
in HEK293T cells [9]. NLRC5 knockdown in RAW264.7
cells induced secretion of proinflammatory cytokines,
such as TNF, IL-6, and IL-1B [9]. In contrast, Kuenzel
et al. reported that overexpression of NLRC5 in epithe-
lial cells induced greater mRNA levels of IFNA, PRKRIR,
and OAS1 [25]. siRNA-mediated knockdown of NLRC5
significantly impaired induction of IFNA in human fore-
skin fibroblasts cells (HEF) after cytomegalovirus (CMV)
infection [25], which indicates NLRC5 functions as a
positive regulator of type I IFN. The same conclusion
was proposed by Neerincx et al. [26], who showed that
NLRC5 knockdown reduced the secretion of IFNB in
THP-1 cells infected with Sendai virus, which predomi-
nately induces type I IFNs [46]. However, in the same
study, overexpression of NLRC5 failed to induce NF-kB,
IFNB, IRF3, IRF7, and ISRE in HEK293T cells, which
revealed that impact of NLRC5 on downstream path-
ways might depend on the specific cell type examined.
Cell-specificity of response was also supported by
Kumar et al. [23], who reported that there was no differ-
ence in expression of IFNB, IL-6, and IFNA between
wild type (WT) and NLRC5-deficient mice after infec-
tion with RNA viruses, DNA virus, and bacteria in
macrophages and dendritic cells. Expression levels of
TNFA, IL-6, and CCL5 in GM-CSF-induced bone mar-
row dendritic cells (GMDCs) after LPS treatment were
not different between NLRC5-deficient and WT mouse.
The authors suggested that NLRC5 may be not
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necessary for induction of inflammatory cytokines under
physiologic conditions after viral and bacterial infections
[23]. The roles of NLRC5 in inflammatory responsive
pathways appear to depend on the cell types or specific
species [24]. In the present study, expression of IFNA
and IFNB was down-regulated in NLRC5 knocked-down
HD11 cells. These results suggest that NLRC5 positively
regulates type I IFNs in the chicken HD11 macrophage
cell line. In addition, NLRC5 has been shown to regulate
MHC class I gene expression, but reports on the direc-
tion of gene regulation are controversial. NLRC5 was
reported to positively regulate the expression of MHC
class I gene through binding to the promoter region of
MHC class I in lymphoid and epithelial cell lines [28].
However, a conflicting effect was observed in RAW
264.7 cells, where knockdown of NLRC5 increased
expression of MHC class I on cell surface [9]. In the
present study, we detected expression of MHC class I,
but there was no significant difference between NLRC5
knocked-down HD11 cells and controls, regardless of
LPS or poly (I:C) treatment. These results indicate that
NLRC5 is not a major regulator of MHC class I in
chicken macrophages.

Conclusion
This is the first study reporting the role of NLRC5 in
regulating type I IFNs (IFNA and IFNB), an NF-kB
responsive gene (IL-6), and antigen presenting pathway
gene (MHC class I) in the chicken. The expression of
both IFNA and IFNB was down-regulated in NLRC5
knocked-down cells, and their expression was relatively
restored by LPS treatment (P > 0.05). The consistent
expression patterns between NLRC5 and IFNA and
IFNB indicates that NLRC5 is a positive modulator in
type I IFN pathway in chicken. In addition, we found
that ST-LPS treatment could induce IFNB expression in
the chicken HD11 macrophage cell line, although a
functional LPS-specific MyD88-independent pathway is
reportedly absent in chickens. Stimulation with LPS
from different sources and doses may be responsible for
differing reports on induction of IFNB expression.

Methods
Cell culture, siRNA transfection, and stimulation of cells
with LPS and poly (I:C)
The chicken HD11 macrophage cell line [47], was cul-
tured at 37°C and 5% CO2 concentration in RPMI1640

Figure 2 Gene expression of NLRC5, IFNA, and IFNB in s3-siRNA transfected HD11 macrophages cells after vehicle-treatment, LPS (1
μg/ml), and poly (I:C) (0.1 ng/ml) treatment at 4 hps. Data are shown as the fold change in expression for each gene between s3-siRNA and
negative siRNA transfections, among vehicle-treatment, LPS treatment, and poly (I:C) treatment. a: NLRC5; b: IFNA c: IFNB. RNA assays were carried
out in triplicates by qPCR. P values are flagged with asterisks when lower than 0.05 (*), 0.01 (**).
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medium (Sigma-Aldrich Co.) supplemented with 10%
heat-inactivated fetal calf serum, 10 mM HEPES, 0.1
mM non-essential amino acids, 2 mM glutamine, 1 mM
sodium pyruvate, 100 U/ml penicillin, 100 μg/ml strep-
tomycin, and 5 × 10-5 M 2-mercaptoethanol (pH 7.3).
Three siRNAs, named s1, s2, s3-siRNA, were designed
by using BLOCK-iT™ RNAi Designer (Invitrogen,
Carlsbad, CA). s1-siRNA: 5’-CAUGGACGU-
GUCAUCAGCUUCUAAA-3’, s2-siRNA: 5’-GGAC-
GUUUAUCAUGUUGCUAGCUGA-3’, s3-siRNA: 5’-
CAUAACACUGCAGUCCUGAGGUUUA-3’. Five siR-
NAs (s1-siRNA, s2-siRNA, s3-siRNA, mixture of s1, s2,
s3-siRNAs, and negative-siRNA) at 100 pM were used
to transfect cells by following the manufacturer’s
instructions for use of Lipofectamine™ RNAiMAX
(invitrogen). Transfection efficiency was evaluated by
using a positive control, BLOCK-iT™ Alexa Fluor® Red
Fluorescent after 6 hours of transfection under a fluor-
escent microscope. Twenty-four hours post transfection,
the HD11 cells were exposed to ST-LPS (1 μg/ml)
(Sigma-Aldrich Co.) or poly (I:C) (Invivogen, Carlsbad,
CA) (0.1 ng/ml), or vehicle as a control. At 2, 4, 6, and
8 hours post simulation, the cells were collected for
RNA extraction. Three biological triplicates were used
in each group.

RNA isolation and quantitative reverse transcriptase-PCR
RNA was isolated by using RNAqueous® Kit (Ambion,
Austin, TX) followed by DNA treatment using DNA-
free™ Kit (Applied Biosystems, Foster City, CA). The
expression of NLRC5, IFNA, IFNB, IL-6, and MHC class
I was quantified by qRT-PCR using QuantiTect SYBR
Green RT-PCR (Qiagen, Waltham, MA). The primers
for 28 s, IL-6, and MHC class I have been previously
reported [48,49]. The primers specific for the other
genes were as follows: NLRC5 (F-5’- TGAGCTA-
CACGTCAGGAAGGA-3’, R-5’-GCTCTGCAGAATG-
GACACAA-3’); IFNA (F-5’- GACAGCCAACGCCA
AAGC-3’, R-5’-GTCGCTGCTGTCCAAGCATT-3’);
IFNB (F-5’- CTGGATTGACCGCACACGCCA-3’, R-5’-
GGGAGCGCGTGCCTTGGTTTA-3’); Each reaction
was run in triplicate and in a final volume of 25 ul with
50 ng/μl or 75 ng/ul total RNA, 12.5 ul QuantiTect
SYBR Green master mix, 0.25 ul QuantiTect RT mix,
forward and reverse primers, and RNase-free water.
Samples were randomly assigned to PCR plates. The
slopes for genes were determined with 10-fold serial
dilutions. Adjusted cycle threshold (C(t)) values were
calculated by following equation: 40 - [C (t) sample
mean + (C(t) 28s median -C(t) 28s mean) * (gene slope/
28s slope)]. Data were analyzed with the JMP software
(SAS Institute, Cary, NC). The main fixed effects were
siRNA, treatment, time, and interactions of these effects.
Plate was included as a random effect. Multiple

comparisons of least squares (LS) means for siRNA,
treatment, and time effects were determined by the
Tukey-Kramer Honestly Significant Differences test
(JMP, SAS Institute, 2005). This test was selected
because it allows multiple comparisons among the dif-
ferent treatments (five siRNAs and three treatments
including LPS, poly (I:C), and non-treatment controls)
without dividing the whole data set, which results in a
more robust analysis. Differences were considered to be
statistically significant when the P value was less than
0.05. Results were described as fold-change determined
by 2-ΔΔCt method.
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