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Introduction: Accumulated evidence indicates that obesity is associated with
enhanced sympathetic activation. Hypothalamic leptin-mediated signaling may
contribute to the exaggerated sympathoexcitation of obesity. The goal of this
study was to investigate the “neuron–astrocyte” interaction affecting leptin-mediated
sympathoexcitation within the arcuate nucleus (ARCN) of the hypothalamus in
obese rats.

Methods and Results: Obesity was induced by high-fat diet (HFD, 42% of calories
from fat) in Sprague Dawley rats. Twelve weeks of HFD produced hyperleptinemia,
hyperlipidemia, and insulin resistance. In anesthetized rats, microinjections of leptin
into the ARCN induced increases in heart rate (HR), renal sympathetic nerve activity
(RSNA), and mean arterial pressure (MAP) in both control and HFD rats. However,
microinjections of leptin in HFD rats elicited higher responses of RSNA and arterial
pressure than control-fed rats. It also caused the inhibition of astrocytes within the
ARCN using an astrocytic metabolic inhibitor, fluorocitrate, and reduced leptin-induced
sympathetic activity and blood pressure responses. Moreover, the expression of the
leptin receptor in the ARCN of HFD-fed rats was significantly increased compared to rats
fed a control diet. Immunohistochemistry analysis revealed leptin receptor localization
from both neurons and astrocytes of the ARCN. HFD rats exhibited increased protein
expression of glial fibrillary acidic protein (GFAP) in the ARCN. We also found that
the expression of astrocyte-specific glutamate transporters and excitatory amino acid
transporter 1 (EAAT1) and 2 (EAAT2) were decreased within the ARCN of the HFD rats.
In cultured astrocytic C6 cells, 24 h of leptin treatment increased the protein expression
of GFAP and reduced the expression of EAAT1 and EAAT2.

Conclusion: The results suggest that central leptin signaling occurs via
neuron-astrocyte interactions in the ARCN and contributing to the exaggerated
sympathoexcitation observed in obese rats. The effects may be mediated by the
action of leptin on regulating astrocytic glutamate transporters within the ARCN of
the hypothalamus.
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INTRODUCTION

Accumulated evidence indicates that obesity is associated
with enhanced sympathetic activation (Kalil and Haynes,
2012; Head et al., 2014; Vaneckova et al., 2014; Hall
et al., 2019). Chronic sympathetic activation increases
cardiovascular risks, such as heart failure, hypertension,
arrhythmia, atherosclerosis, and subsequent mortality in obesity
(Corry and Tuck, 1999; Balasubramanian et al., 2019). The
central nervous system plays a critical role in integrating
peripheral afferent signals to regulate sympathetic outflow
and cardiovascular function (Prior et al., 2010; Ward et al.,
2011). The levels of circulating leptin have been found to
be elevated in the obese condition and therefore may be
related to the onset and maintenance of a hyper-sympathetic
state during obesity (Bell and Rahmouni, 2016). Central
leptin administration increases renal sympathetic nerve
activity (RSNA), arterial pressure, and heart rate (HR) in
conscious animals (Matsumura et al., 2000). The precise central
mechanisms linking obesity with sympathetic overactivation are
not entirely understood.

Leptin is an adipose-derived hormone that links to
sympathetic activation in obesity-related hypertension (Haynes
et al., 1997; Lim et al., 2013; Hall et al., 2019). Importantly,
leptin can cross the blood–brain barrier to interact with a leptin
receptor (OBR) in the hypothalamic nuclei. Central leptin
action mainly affects feeding, thermogenesis, and sympathetic
activation of the kidneys, hind limbs, and adrenal glands
(Rahmouni and Haynes, 2002). Leptin can exert pressor effects
through its action at the hypothalamic nuclei–the arcuate
nucleus (ARCN), paraventricular nucleus, and ventromedial
hypothalamus–resulting in sympathetic activation in animals
(Badoer and Ryan, 1999; Rahmouni and Morgan, 2007;
Habeeballah et al., 2016). The OBR is widely expressed in all
these hypothalamic nuclei (Ghamari-Langroudi et al., 2011).
Thus far, the central hypothalamic leptin-mediated pathways
have not been fully elucidated.

The hypothalamus, including the ARCN, is a heterogeneous
area comprised of different types of cells, including neurons,
astrocytes, oligodendrocytes, microglia, endothelial cells, and
ependymal cells (Thaler et al., 2010). The function of astrocytes
in the brain extends beyond providing structural and metabolic
support to the neurons. Astrocytes can also affect neuronal
activity in a variety of ways, including influencing the action
of glutamate and other neurotransmitters (Gordon et al., 2009).
Indeed, it has been recently revealed that astrocytes serve as
active mediators of various complex central mechanisms (Pan
et al., 2012; Marina et al., 2016). OBR has been found in both
neurons and astrocytes in the hypothalamus (Hsuchou et al.,
2009b) and is responsible for leptin-induced calcium signaling
in astrocytes (Hsuchou et al., 2009a). Further, it has been shown
that metabolic changes can alter OBR expression and astrocytic
activity in obese mice (Hsuchou et al., 2009a). Pan et al. have
reported that leptin actions on astrocytic cells played an essential
role in affecting metabolism and neuronal activity in obesity (Pan
et al., 2012). We, therefore, proposed that defining the role of
astrocytes on leptin signaling would provide an understanding

of the central mechanisms involved in the sympathetic over-
activation exhibited during HFD-induced obesity.

MATERIALS AND METHODS

This protocol was approved by the Institutional Animal Care
and Use Committee of the University of South Dakota and
was conducted in accordance with the guidelines of the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

High Fat Diet-Induced Obese Rats
Male Sprague Dawley rats (130–150 g, age 6–7 weeks) were
obtained from Envigo and housed in a room with a 12-h light-
dark cycle with free access to water. Rats were fed with the HFD
(TD 0.88137, 42% of calories are from fat, 42% of calories from
carbohydrate, 15% of calories from protein, Harlan) (n = 30). Rats
fed a standard diet served as non-HFD controls (n = 30). Body
weight, food consumption and blood glucose were monitored
weekly. The blood glucose sample was obtained by a nick on the
tail and a small drop of blood was collected to measure blood
glucose by a commercial handheld glucometer (Accu-Chek,
Roche).Using blood samples collected from the tail vein, levels of
plasma insulin, leptin (ALPCO, Salem, NH, United States), and
angiotensin II (LifeSpan BioSciences, Seattle, WA, United States)
were measured by commercial ELISA kits. A total of 33 plasma
samples (16 from control and 17 from HFD rats) were tested.
The absorbance was measured with a microplate reader at
450 nm (PerkinElmer, Waltham, MA, United States). The plasma
triglyceride level was measured by a quantification kit (BioVision,
Milpitas, CA, United States). The insulin sensitivity index was
calculated as 1/[log (fasting insulin)+ log (fasting glucose)].

Urinary norepinephrine excretion was measured as an
index of overall sympathetic nerve activity. After 12 weeks
of HFD, rats were placed in metabolic cages, and 24-h
urine was collected, and urine volume was measured. Urinary
norepinephrine concentration was measured using an ELISA kit
(LifeSpan BioSciences) and calculated as urinary norepinephrine
concentration multiplied by urine volume over a 24-h period.

Acute experiments and tissue collections were performed after
12 weeks of exposure to the HFD or control diet (18-week-
old rats).

In vivo Electrophysiological Studies
General Surgery for the Recording of Renal
Sympathetic Nerve Activity and Arterial Pressure
Rats were anesthetized with a cocktail of urethane (0.75–
1.5 g/kg, i.p) and α-chloralose (140 mg/kg, i.p). Adequate depth
of anesthesia was assessed by the absence of a corneal reflex
and paw withdrawal response to a noxious pinch. The femoral
vein was cannulated with PE20 tubing for administration of
additional anesthesia and 0.9% saline. The femoral artery was
cannulated and connected to the MacLab (ADInstruments,
Colorado Springs, CO, United States) for a computer-based
recording of arterial pressure and HR.

Frontiers in Neuroscience | www.frontiersin.org 2 November 2019 | Volume 13 | Article 1217

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01217 November 15, 2019 Time: 13:55 # 3

Liu and Zheng Central Leptin-Mediated Sympathetic Nerve Activity

The left kidney was exposed through a retroperitoneal flank
incision. A renal nerve bundle was isolated from fat and
connective tissue. The nerve bundle was placed on a bipolar
electrode and fixed with Wacker Silgel. The electrical signal
was amplified with a Grass amplifier (gain, 10,000) with high-
and low-frequency cutoffs of 1,000 and 100 Hz, respectively.
The rectified output from the amplifier was displayed, using the
PowerLab system to record and integrate the raw nerve discharge
(full-wave rectified and integrated with a 0.5 s time constant)
(Kleiber et al., 2008).

Basal nerve activity was determined at the beginning of the
acute experiment. The background noise was determined by the
RSNA recorded at the end of the experiment after a ganglionic
blocker hexamethonium (30 mg/kg, iv) injection. The value of
RSNA during the experiment was calculated by subtracting the
background noise from the actual recorded value. The changes of
RSNA were expressed as a percentage of the basal value of RSNA.

Microinjections Into the ARCN
An incision was made on the midline of the scalp. The
coordinates of the ARCN were 2.3 mm posterior to the bregma,
0.5 mm lateral to the midline, and 9.6–9.9 mm ventral to the dura
(Harlan et al., 2011; Kawabe et al., 2013). 30 min after the surgical
procedure, a microsyringe needle (0.2 mm OD) was inserted into
the ARCN for drug delivery. At the end of the experiment, blue
dye (2% Chicago blue, 30 nL) was injected into the brain for
histological verification.

Microinjection Experimental Protocols
Experiment 1: In the control and HFD groups (n = 8–9/group),
leptin (R&D Systems, Minneapolis, MN, United States) (50, 100,
and 200 ng in 50 nL yielding concentrations of 1, 2, and 4 mg/ml,
respectively) (Rahmouni and Morgan, 2007; Shi et al., 2015)
dissolved in the vehicle consisting of artificial cerebrospinal fluid
was microinjected into the ARCN. The responses of RSNA, mean
arterial pressure (MAP), and HR over the following 30 min were
recorded. Microinjections into the ARCN with 50 nL of vehicle
were also performed and recorded accordingly.

Experiment 2: In the separate groups of control and HFD
rats (n = 8/group), astrocytic metabolic inhibitor fluorocitrate
(20 mM, 1 nmol in 50 nL, MilliporeSigma) (Pan et al., 2011)
dissolved in the artificial cerebrospinal fluid vehicle was pre-
microinjected into the ARCN. A total of 30 min later, leptin
(200 ng in 50 nL) was microinjected into the ARCN. The
responses of RSNA, MAP, and HR over the next 30 min were
recorded. Microinjections into the ARCN of the vehicle (50 nL)
and, 30 min later, leptin (200 ng in 50 nL) were performed. The
responses of RSNA, MAP, and HR were recorded.

Immunohistochemistry
Under deep anesthesia with isoflurane, rats were perfused
through the left cardiac ventricle with heparinized saline followed
by 4% paraformaldehyde. The brain was removed, post-fixed
with paraformaldehyde, and then placed in 30% sucrose. Brain
sections of the ARCN (each section 30 µm thick) were cut
with a cryostat according to a stereotaxic atlas and preserved
in cryoprotectant.

The floating brain sections (control and HFD, n = 4/group)
were incubated with 10% normal donkey serum for 1 h and
then incubated in the primary antibody against OBR, (anti-
rabbit, 1:200∼500, Abcam, Cambridge, MA, United States) with
neuronal marker NeuN, (anti-mouse, 1:500, MilliporeSigma,
Burlington, MA, United States) or glial marker glial fibrillary
acidic protein (GFAP) (anti-mouse, 1:500, MilliporeSigma)
antibody overnight at 4◦C. Negative control for dual labeling
included the sections with NeuN or GFAP primary antibody only.
OBR block peptide and OBR siRNA (Supplementary Figure 1)
was used in the dual labeling staining to test the specificity of
the OBR primary antibody. On the second day, the sections were
incubated with Alexa Fluor 594 donkey anti-rabbit secondary
antibody and Alexa Fluor 488 donkey anti-mouse secondary
antibody (1:200, Jackson ImmunoResearch, West Grove, PA,
United States) for 2 h. After washing, the sections were mounted
on glass slides and cover slipped with Vectashield mounting
medium (Vector Laboratories, Burlingame, CA, United States).
The images of OBR with NeuN or GFAP immunofluorescence,
respectively, within the ARCN (sections from −2.3 to −2.8 mm
to bregma) were viewed by a Leica fluorescence microscope and
captured by a digital camera (Leica, Germany). Quantification
of the intensity of OBR fluorescence in the ARCN area was
done using NIH ImageJ software. Six sections of the ARCN were
averaged for each rat. The number of GFAP immunoreactive
(GFAP+) cells and the number of projections from GFAP+
cells were measured in five randomly chosen high-power (400X
magnification) fields within the ARCN using ImageJ software.

Micropunch of the ARCN of the Hypothalamus for
Protein Measurements
In the separate groups of control (n = 6) and HFD (n = 6), under
deep anesthesia with isoflurane, rats were sacrificed, and brains
were removed and frozen on dry ice. Serial coronal sections
(100 µm/section) of the ARCN (total 15 sections, from −2.0
to −3.5 mm to bregma) were cut with a cryostat according
to a stereotaxic atlas. The sections were bilaterally punched
using the Palkovits and Brownstein technique (Palkovits and
Brownstein, 1983). The punches were homogenized and placed
in 100 µl of radioimmunoprecipitation assay (RIPA) buffer
containing 1% protease inhibitor cocktail (Promega, Madison,
WI, United States), and protein samples were stored at−80◦C.

Western Blot Measurements
The total protein concentrations were measured with a
bicinchoninic acid assay kit (Pierce, Rockford, IL, United States).
Samples were adjusted to contain the same total protein
concentrations. 4× loading buffer was added, and samples
were loaded onto sodium dodecyl sulfate polyacrylamide
electrophoresis gel, subjected to electrophoresis, and transferred
to a polyvinylidene difluoride membrane (MilliporeSigma).
Then, the membrane was incubated with primary antibody
[rabbit anti-OBR (1:300, Abcam), mouse anti-GFAP (1:500,
MilliporeSigma), rabbit anti-excitatory amino acid transporter
1 (EAAT1), rabbit anti-EAAT2, rabbit anti-vesicular glutamate
transporter 2 (vGLUT2) (1:200, Cell Signaling, Danvers, MA,
United States), or mouse anti-β-actin (1:1000, Santa Cruz
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Biotechnology, Santa Cruz, CA, United States)] overnight.
After the incubation with secondary antibody conjugated
with fluorescent dye (1:10000, Thermo Fisher Scientific), the
membrane was visualized by the Odyssey Imaging System (LI-
COR Biosciences, Lincoln, NE, United States). The intensity of
the band was quantified using NIH ImageJ software. The protein
expression was calculated as the ratio of the intensity of the
protein to the intensity of β-actin.

In vitro Studies
GFAP Protein and Glutamate Transporter Levels in
Response to Leptin in Astrocytes
Stock cultures of the astrocytic cell line C6 were purchased from
American Type Culture Collection (ATCC CCL-107, Manassas,
VA, United States). Cells were grown in 60 mm culture dishes in
ATCC-formulated F-12K medium supplemented with 2.5% fetal
bovine serum and 15% horse serum, and they were maintained at
37◦C and 5% CO2 until 60–70% confluence before treatment with
leptin. Cells were then maintained in the medium without serum
for differentiation purposes. Subsequently, cells were treated
with leptin at the concentration of 25–200 ng/ml or vehicle for
24 h. Each treatment was performed for four times (n = 4).
Cultured cells prepared were subjected to immunohistochemistry
study for GFAP and OBR staining, protein extraction procedure,
and Western blot studies for GFAP, EAAT1, and EAAT2
protein measurements.

Statistical Analysis
All data are presented as Means ± SE. Statistical data
analysis was performed with Graph Pad Prism 7 (GraphPad
Software, La Jolla, CA, United States). For the dose response
studies in the electrophysiological experiments and in vitro
experiments, log dose-response linear analysis was used
first to assess the dose-dependent responses. Values of
P < 0.05 were considered as displaying a significant linear
trend. Then factorial one-way or two-way analysis of
variance (ANOVA) was used, followed by the Tukey post-
test or Sidak’s post-test for multiple comparisons when
appropriate, to assess the difference in response between
doses and the differences between experimental groups. Other
measurements were compared between the groups using two
tailed unpaired Student’s t tests. P < 0.05 was considered
statistically significant.

RESULTS

General Characteristics of Control and
HFD Rats
General characteristics of control and HFD rats used in
the experiments are summarized in Table 1. Twelve weeks
of HFD increased animal body weight, retroperitoneal fat
pad weight, and epididymal fat pad weight. The HFD rats
also had increased brown adipose tissue weight. The levels
of plasma leptin, insulin, and triglyceride were significantly
higher in the HFD rats than in control rats. Although
the plasma glucose levels were not significantly different
between the groups, the HFD rats had a lower mean insulin
sensitivity index. These data confirmed that 12 weeks of HFD
induced hyperlipidemia, hyperleptinemia, hyperinsulinemia, and
insulin resistance.

As can be seen in Table 1, the level of plasma angiotensin II
was significantly elevated, while the basal RSNA and 24-h urinary
norepinephrine levels were significantly increased in the HFD
group, suggesting that overall sympathetic activity was elevated.
The basal MAP was also significantly increased in the HFD rats
compared to control rats. There was no significant difference in
HR in the two groups.

Sympathetic Responses to Leptin
Injections Into the ARCN of the HFD Rats
In anesthetized rats, microinjections of leptin (50, 100, and
200 ng) into the ARCN induced dose-dependent increases
of RSNA [linear regression analysis, control: F(1,2) = 94.83,
R2 = 0.979, P = 0.010; HFD: F(1,2) = 43.05, R2 = 0.956,
P = 0.022], MAP [control: F(1,2) = 31.25, R2 = 0.940,
P = 0.031; HFD: F(1,2) = 48.51, R2 = 0.960, P = 0.020],
and HR [control: F(1,2) = 12.27, R2 = 0.890, P = 0.042;
HFD: F(1,2) = 25.95, R2 = 0.929, P = 0.036] in both control
and HFD rats (Figure 1). Leptin administration (200 ng) in
the ARCN of HFD rats elicited significantly higher increases
in RSNA and MAP (reaching RSNA: 46 ± 7%, 1MAP:
35 ± 5 mmHg) compared with control rats (1RSNA: 29 ± 5%,
1MAP: 22 ± 4 mmHg) [RSNA: F(7,7) = 5.656, P = 0.036;
MAP: F(7,7) = 2.265, P = 0.034]. There was no significant
difference in the increase in HR seen in control and HFD groups.
Vehicle injections did not affect the sympathetic responses
in either group.

TABLE 1 | General characteristics of control and HFD rats.

Control (n = 16) HFD (n = 17) Control (n = 16) HFD (n = 17)

Body weight (g) 415 ± 10 454 ± 17∗ Plasma glucose (mmol/L) 4.7 ± 0.6 5.5 ± 0.9

Retroperitoneal fat pad (g) 4.3 ± 0.5 8.7 ± 1.2∗ Plasma insulin (mU/L) 14.3+2.7 78.0 ± 15.6∗

Epididymal fat pad (g) 4.3 ± 0.2 9.0 ± 1.2∗ Insulin sensitivity index 0.54 ± 0.06 0.38 ± 0.04∗

Brown adipose tissue (g) 0.28 ± 0.03 0.61 ± 0.08∗ Plasma leptin (ng/ml) 358 ± 37 2577 ± 356∗

Plasma triglyceride (mmol/L) 1.1 ± 0.3 5.3 ± 1.3∗ Plasma angiotensin II (pg/ml) 92.5 ± 34.1 298.5 ± 31.4∗

Basal MAP (mmHg) 93 ± 4 103 ± 5 Basal heart rate (beat/min) 347 ± 26 366 ± 19

Basal Int. RSNA (µv.s) 2.2 ± 0.3 4.2 ± 0.4∗ 24 h urinary NE (µg) 2.0 ± 0.3 6.2 ± 0.8∗

Values are mean ± SE. ∗P < 0.05 vs. control group. MAP, mean arterial pressure; Int RSNA, integrated renal sympathetic nerve activity; NE, norepinephrine.
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FIGURE 1 | (A) Representative tracer of renal sympathetic nerve activity (RSNA), integrative RSNA (int.RSNA), mean arterial pressure (MAP), and heart rate (HR)
responses to microinjection of leptin in the ARCN of the control and HFD rat. (B) Mean changes in RSNA, MAP, and HR to microinjection of leptin (50, 100, 200 ng)
in the ARCN. ∗P < 0.05 vs. control group. aCSF: artificial cerebrospinal fluid.

Pre-inhibition of Astrocytes With
Astrocytic Metabolic Inhibitor
Fluorocitrate Reduced Leptin-Induced
Sympathetic Responses in the ARCN
Inhibition of astrocytes in the ARCN with the astrocytic
metabolic inhibitor fluorocitrate significantly inhibited leptin-
induced increases of RSNA, MAP, and HR in the ARCN in
both control and HFD rats (1RSNA: 12 ± 3% vs. 29 ± 5% in
control, 15 ± 6% vs. 46 ± 7% in HFD; 1MAP: 8 ± 2 mmHg
vs. 22 ± 4 mmHg in control, 10 ± 3 mmHg vs. 35 ± 5 mmHg in
HFD; 1HR: 11± 3 bpm vs. 18± 2 bpm in control, 11± 8 bpm vs.
22± 3 bpm in HFD, P< 0.05) (Figure 2). The HFD rats had more
reductions of RSNA, MAP, and HR responses to the leptin with
fluorocitrate microinjections. Fluorocitrate itself did not affect
RSNA, MAP, and HR responses in either group of rats (Figure 2).

Increased Leptin Receptor (OBR)
Expression in the ARCN of the HFD Rats
Immunohistochemistry staining confirmed the expression of
OBR within the ARCN in control and HFD rats (Figure 3).
The OBR immunofluorescent signal co-localized with neuronal

marker NeuN (Figure 3A) as well as with glial cell marker GFAP
(Figure 3B) within the ARCN. The immunofluorescent signal
for OBR was found to be increased in the ARCN from rats fed
on an HFD compared to control rats (P = 0.021, Figure 3C).
In addition, Western blot analysis showed the HFD rats had
a significantly higher protein level of OBR (ratio of intensity:
0.84± 0.08 vs. 0.39± 0.02, P < 0.001) in the ARCN compared to
the controls (Figure 3D).

Increased Astrocyte Structural Protein
(GFAP) Levels in the ARCN of the HFD
Rats
Western blot analysis showed the HFD rats had a significantly
higher protein level of GFAP (ratio of intensity: 0.97 ± 0.10
vs. 0.64 ± 0.06, P = 0.021) in the ARCN (Figure 4A). The
morphology of GFAP+ cells in the ARCN of HFD rats was
different from the controls (Figure 4B). Morphological analysis
demonstrated that there were increases in the number of
primary projections from GFAP+ cells in the ARCN of HFD
rats (P = 0.021). However, there were no significant changes
in the number of GFAP+ cells in the ARCN of HFD rats
(P = 0.665, Figure 4B).
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FIGURE 2 | (A) Representative tracer of RSNA, int.RSNA, MAP, and HR responses to microinjection of leptin with fluorocitrate in the ARCN of the control and HFD
rat. (B) Mean changes in RSNA, MAP, and HR to microinjection of leptin (200 ng) with and without fluorocitrate in the ARCN. # P < 0.05 vs. the leptin group without
fluorocitrate. +P < 0.05 vs. the FC + leptin group. FC: fluorocitrate.

Altered Glutamate Transporter Levels in
the ACRN of the HFD Rats
Western blot analysis showed the HFD rats had significantly
lower protein levels of astrocyte-specific glutamate transporters,
EAAT1 (ratio of intensity: 0.15 ± 0.03 vs. 0.34 ± 0.08, P = 0.026)
and EAAT2 (ratio of intensity: 0.50 ± 0.06 vs. 0.86 ± 0.14,
P = 0.031) in the ARCN (Figures 5A,B). There was no significant
difference in the level of vGLUT2 protein (ratio of intensity:
0.74 ± 0.05 vs. 0.80 ± 0.08, P = 0.497) in the ARCN in the HFD
rats (Figure 5C).

GFAP Protein and Glutamate Transporter
Levels in Response to Leptin in
Astrocytes (in vitro Study)
Immunohistochemistry staining revealed GFAP staining was
increased after 24 h of leptin treatment in the cultured astrocytic
C6 cells (Figure 6A). Western blot analysis showed increased
GFAP protein expression with leptin incubation (25–200 ng/ml)
[linear regression analysis, F(1,3) = 9.455, R2 = 0.759, P = 0.05]
increasing by 2.9 folds at a concentration of 200 ng/ml
[F(3,3) = 4.334, P < 0.001] (Figure 6B). After 24 h, in vitro
exposure to leptin (25–200 ng/ml) reduced EAAT1 protein
expression [linear regression analysis, F(1,3) = 2.442, R2 = 0.449,

P = 0.22], decreasing it by 38% at a concentration of 200 ng/ml
[F(3,3) = 1.34, P = 0.016] (Figure 7A). In vitro exposure to
leptin also reduced EAAT2 protein expression [linear regression
analysis, F(1,3) = 5.066, R2 = 0.628, P = 0.11], decreasing it by
39% at a concentration of 200 ng/ml [F(3,3) = 2.014, P = 0.022]
(Figure 7B) in the astrocytes. In vitro exposure of leptin had no
significant effects on the EAAT1 and EAAT2 protein expression
in a neuronal cell line CLU (Supplementary Figure 2).

Brain Histology
Supplementary Figure 3 depicts the brain histological
verifications for the injection sites. There was a total of 38
injections within the ARCN area. Among them, 19 injection sites
belonged to control group rats, and 19 injection sites belonged
to the HFD rats. There were five injections that missed the
ARCN area. Data from these five missed injections was excluded
from the analysis.

DISCUSSION

In the HFD obese rat model used in this study, we observed
the elevation of 24-h urinary norepinephrine excretion,
which suggests an increased overall sympathetic tone in
this HFD rat model. Twelve weeks of HFD also produced
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FIGURE 3 | (A) Immunofluorescent photomicrographs from the sections of the ARCN region stained for leptin receptor (OBR, in red), neuronal marker NueN (in
green), and 4′,6-diamidino-2-phenylindole (DAPI, in blue) in a control and an HFD rat (X200). Amplified images are shown in the right panel. Arrow indicates the
localization of OBR in the NeuN-labeled cell. (B) Immunofluorescent photomicrographs from the sections of the ARCN region stained for OBR (in red), glial marker
glial fibrillary acidic protein (GFAP, in green), and DAPI (in blue) in a control and an HFD rat (X200). Amplified images are shown in the right panel. Arrow indicates the
colocalization of OBR and GFAP. (C) Mean intensity of OBR staining signal in the ARCN of control and HFD rats. (D) Representative gel of OBR and mean protein
expressions in the ARCN of control and HFD rats. ∗P < 0.05 vs. control group.

hyperleptinemia, hyperlipidemia, hyperinsulinemia, and
insulin resistance in the rats. Hyperleptinemia, as well
as higher levels of insulin and angiotensin II, have been
reported to be associated with sympathoexcitation in obese
conditions (Hilzendeger et al., 2012; Xue et al., 2016; Hall et al.,
2019). The role of leptin in activating the sympathetic drive
through the central nervous system has been highlighted
in many reviews (Kalil and Haynes, 2012; Mark, 2013;
Head et al., 2014). The present study confirms the critical
role of leptin in relation to the sympathetic over-activation
in HFD obese rats.

Leptin, an adipokine, is able to elicit a myriad of physiologic
effects including, but not limited to, sympathetic activation and
blood pressure regulation. The ARCN in the hypothalamus
has been shown as an important gateway for the actions of
leptin signaling for controlling sympathetic activity (Dampney,
2011). In our animal studies, we observed that direct leptin

administration into the ARCN increased RSNA, MAP, and
HR. These results were consistent with our previous study
and other reports that centrally administered leptin increased
sympathetic nerve activity and blood pressure (Dunbar et al.,
1997; Rahmouni and Morgan, 2007; Zheng et al., 2017).
More importantly, we observed that OBR protein expression
in the ARCN was upregulated in the HFD rats, indicating
enhanced endogenous leptin signaling after HFD feeding.
Further, our electrophysiological study functionally confirmed
that central stimulation with leptin resulted in elevated
sympathetic activation in obese rats. Taken together, these results
suggest that the up-regulation of OBR and leptin signaling
within the hypothalamus could be one possible mechanism for
the enhanced leptin-mediated excitatory action on sympathetic
outflow elemental to the obese condition.

The hypothalamus including the ARCN is comprised of
different types of cells (Gordon et al., 2009). Our dual labeling
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FIGURE 4 | (A) Representative gel of GFAP and mean protein expressions in the ARCN of control and HFD rats. (B) Immunofluorescent photomicrographs from the
sections of the ARCN region stained for GFAP positive (GFAP+) cells in a control and an HFD rat (X400). Bottom panel shows the mean number of projects in
GFAP+ cells and mean number of GFAP+ cells. ∗P < 0.05 vs. control group.

FIGURE 5 | Representative gel and mean protein expressions of (A) excitatory amino acid transporter 1 (EAAT1), (B) EAAT2, and (C) vesicular glutamate transporter
2 (vGLUT2) in the ARCN of the control and HFD rats. ∗P < 0.05 vs. control group.

immunohistochemistry staining showed that both neurons and
astrocytes in the ARCN expressed OBR. Interestingly, in the
HFD obese rats, the expression of OBR was increased in the
ARCN. Furthermore, we found that the HFD rats had increased
levels of astrocyte structural protein GFAP and an increased
number of primary projection of GFAP+ cells in the ARCN.
This is consistent with other previous reports that increased
gliosis in the ARCN is related to the enhanced leptin signaling in
obesity (Pan et al., 2012). HFD-induced weight gain also results in
hypothalamic gliosis and changes in the glial coverage of neurons
and vasculature (Horvath et al., 2010). Our data provides further
evidence of the role of astrocyte involvement in the alteration
of leptin signaling. This may contribute to the leptin-mediated
sympathetic over-activation in the obese condition.

Astrocytes have recently emerged as an important constituent
of central sympathetic activation mechanisms (Park et al., 2009;
Guo et al., 2010). It is reported the astrocytes are potential
cellular substrates of angiotensin (1–7), mediating effects on
local metabolism and microcirculation in the rostral ventrolateral
medulla, resulting in changes in the activity of pre-sympathetic
neurons and blood pressure (Guo et al., 2010). Astrocytic GABA
transporters have been shown to regulate tonic GABA inhibitory
function, pre-sympathetic neuronal activity, and sympathetic
outflow from the paraventricular nucleus (Park et al., 2009).
Indeed, in our functional study, we observed that metabolic
inhibition of astrocytes significantly reduced leptin-induced
RSNA, MAP, and HR. Particularly in the HFD rats, there were
further reductions of RSNA, MAP, and HR after astrocytic
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FIGURE 6 | (A) Immunofluorescent photomicrographs from the cultured
astrocytic C6 cells stained for GFAP (green), OBR (red), and DAPI (blue)
with/without leptin treatment. Bar = 50 µm. (B). Representative gel and mean
protein expressions of GFAP in the C6 cells with leptin treatment. ∗P < 0.05
vs. control without leptin treatment.

inhibition. As described, rats in our experiments were pre-
inhibited with the gliotoxin fluorocitrate, a metabolic inhibitor
of reactive astrocytes. Fluorocitrate has been effectively used
in vivo and in vitro to study the effects of astrocyte function
on particular signaling pathways (Fonnum et al., 1997; Gordon
et al., 2005). In the brain, fluorocitrate is selectively taken up
by the astrocytes, blocking the activity of the enzyme aconitase,

and leading to depletion of ATP stores. We did not expect
fluorocitrate to produce precise changes to astrocyte remodeling.
However, we anticipated that using fluorocitrate would provide
a useful approach to determine the effects of altered astrocytic
function in the central nervous system. In the study, the injection
of fluorocitrate per se into the ARCN had no significant effects
on sympathetic activity and blood pressure. This may support
evidence that fluorocitrate does not cause significant direct effects
on the excitability of neurons in the ARCN. However, further
evidence needs to be provided by a direct neuronal activity
recording from the ARCN.

Astrocytes participate in neuroendocrine function partially
through the modulation of synaptic input density in the
hypothalamus (Garcia-Caceres et al., 2011). Leptin modulates
synaptic input in the hypothalamus, but whether astrocytes
participate in this action is not fully known. It is reported that
chronic leptin exposure increases astrocytic activation in the
hypothalamus (Garcia-Caceres et al., 2011). Some studies have
indicated astrocytic activity may modulate neuronal uptake and
leptin signaling in obese mice (Hsuchou et al., 2009a). In the
central nervous system, astrocytes participate in the control of
obesity by the upregulation of their associated OBRs. Progression
of obesity may be associated with a shift of the neuronal
predominant expression pattern to an astrocytic preference in
mice (Pan et al., 2008). In the HFD rats, we observed that
astrocyte structural protein GFAP was increased and that there
were morphologic changes in astrocytes in the ARCN, suggesting
astrocytes may play an important role in the pathology of obesity.

Glutamate, the excitatory amino acid, plays a central role in
astrocyte–neuronal interactions (Simard and Nedergaard, 2004)
and contributes to sympathetic activation (Li et al., 2003, 2008).
Glutamate is cleared from the neuronal synapses by astrocytes
via glutamate transporters, and it is then converted into
glutamine, which is released and taken up by neurons (Simard
and Nedergaard, 2004). Excitatory amino acid transporters,
EAAT1 and EAAT2, are the major glutamate transporters;
they are expressed predominantly in astrocytic cells and are

FIGURE 7 | Representative gel and mean protein expressions of panels (A) EAAT1 and (B) EAAT2 in the astrocytic C6 cells with leptin treatment. ∗P < 0.05 vs.
control without leptin treatment.
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responsible for glutamate uptake (Kim et al., 2011). EAATs
are responsible for regulating glutamate concentration in
the synaptic cleft. When the astrocyte-mediated clearance of
glutamate from the extracellular space is altered, it may cause
an increased concentration of the excitatory amino acid in the
extracellular space (Carney et al., 2014). Dysfunction of EAAT
and accumulation of excessive extracellular glutamate has been
implicated in the development of several neurodegenerative
diseases (Kim et al., 2011; Zhang et al., 2016). In the present
study, we observed reduced EAAT1 and EAAT2 expression in
the ARCN when the rats were chronically exposed to the HFD.
Additionally, our in vitro study showed that the expression
of both EAAT1 and EAAT2 was downregulated by leptin
stimulation in the cultured astrocytes. These results suggest that
astrocytes play important roles in the relationship of leptin
signaling within the ARCN. We propose that these important
roles may be due to the effects of EAATs on astrocytic glutamate
uptake. Therefore, in obese rats, reduced efficacy of EAATs in
the astrocytes may result in increased sympathetic activation of
leptin signaling from the ARCN. It is noted that Cano et al. (2014)
reported astrocytes from HFD mice showed longer and less
abundant projections accompanied by the upregulation of both
glutamate transporter 1 and astrocyte glutamate transporter in
the area of the hippocampus (Cano et al., 2014). The differential
responses of astrocytes from the hypothalamus and outside the
hypothalamus may be due to their origin in a specific brain area.

In the central nervous system, leptin has shown to exert its
effects on sympathetic activity and blood pressure through a
number of mediators, including glutamate (Ghamari-Langroudi
et al., 2011). Both leptin and glutamate are important
neuromodulators in the central nervous system. A higher
glutamatergic tone also has been shown in several hyper-
sympathetic disease conditions, such as chronic heart failure,
hypertension, and diabetes (Luo et al., 2002; Li et al., 2003,
2008). Previously, we have reported that central leptin–glutamate
signaling interactions contributed to sympathetic activation
(Zheng et al., 2017). The present study provides evidence that,
in the obese condition, there are alterations in the astrocytic
glutamate transporter expression in the ARCN. Furthermore, the
in vitro study indicates that leptin directly inhibits the expression
of EAATs, suggesting an important role for the involvement of
leptin–glutamate signaling in the obese condition.

CONCLUSION

These studies provide evidence that, within the hypothalamic
nuclei, leptin signaling via neuron–astrocyte interactions in the
ARCN may contribute to the exaggerated sympathoexcitation
observed in HFD obese rats. The effects are potentially mediated
by the actions of leptin on the regulation of astrocytic glutamate
transporters within the ARCN of the hypothalamus.
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