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carcinoma, but not all patients respond to

the treatment. Using imaging data and

transcriptome data from tumor biopsies,

Boldanova et al. develop a logistic

regressionmodel that predicts responses

to TACE.
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SUMMARY
Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage,
unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we
combine clinical, radiological, and genomics data in supervised machine-learning models toward the devel-
opment of a clinically applicable predictive classifier of response to TACE in HCCpatients. Our study consists
of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a
validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures,
primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regres-
sion decision support models consisting of tumor area and RNA-seq gene expression estimates for
FAM111B and HPRT1 yield a predictive accuracy of �90%. Reverse transcription droplet digital PCR (RT-
ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE.
INTRODUCTION

Transarterial chemoembolization (TACE) is the most widely used

treatment for intermediate-stage, unresectable hepatocellular

carcinoma (HCC).1 TACE consists of an intra-arterial infusion of

a cytotoxic agent followed by embolization of the tumor-feeding

blood vessels, resulting in a strong cytotoxic and ischemic effect

targeted to the tumor. In conventional TACE, chemotherapeutic

drugs such as doxorubicin, epirubicin, cisplatin, or miriplatin are

emulsioned with Lipiodol. In many centers, TACE is performed

with drug-eluting beads (TACE-DEB). The DEB occlude the small

tumor-feeding arterioles and obstruct arterial blood flow to the

tumor. The chemotherapeutic drug is then released over a

1-week period. The efficacy of TACE was demonstrated in 2 ran-

domized controlled trials,2,3 and more recently confirmed in a

large systematic review that included data from 10,108 pa-

tients.4 The objective response rate was 52%and overall survival

was 70% at 1 year, 52% at 2 years, and 32% at 5 years, with a

median overall survival of 19.4 months.4 These numbers indicate

that 30% of patients have a poor response to TACE and die

within the first year. However, 32% of the patients are alive after

5 years. This suggests that TACE may be very efficacious for a
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subgroup of patients. Tumor burden, invasion of the portal vein

and its main branches, liver function, and general performance

status are criteria to select patients for TACE.5 Even in a carefully

selected group of patients, however, response to TACE is vari-

able. Moreover, there are alternative treatment options for pa-

tients in the intermediate Barcelona Clinic Liver Cancer (BCLC)

stage B. Clearly, there is a medical need for predictive bio-

markers to guide treatment decisions.

We hypothesized that tumor-intrinsic characteristics aremajor

determinants of the response to TACE. We therefore analyzed

pretreatment tumor biopsies using total RNA and whole-exome

sequencing, in addition to standard clinical and radiological

measures. Our analysis focuses on the prediction of a complete

response to treatment at 3 months following TACE. We explored

the features that are most informative in predicting the response

to TACE in a discovery cohort of 33 tumors, 13 of which showed

complete response to TACE at 3 months. Using random forest

(RF) models of the discovery cohort, we identified the most infor-

mative features and tested ensembles of logistic regression (LR)

models against the validation cohort. The most informative gene

expression features were tested independently using reverse

transcription-digital droplet PCR (RT-ddPCR), which is more
s Medicine 2, 100444, November 16, 2021 ª 2021 The Author(s). 1
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A B Figure 1. Feature importance in predicting

response to TACE

(A) Boxplots showing distribution of tumor area for

responder and non-responder tumors (***p % 0.001

for Student’s t test).

(B) Feature importance scores from a random forest

model involving clinical and radiological measure-

ments in prediction of complete response to TACE at

3 months. The boxplots indicate the distribution of

scores for 500 bootstraps of training and testing sets

using the discovery cohort. Area_log10, log10 of

tumor area; Mpp, mean of positive pixels; AFP_pre,

pre-treatment a-fetoprotein (AFP) measurement at

the time of biopsy; AFP_post, post-treatment AFP

measurement 1–3 months after TACE; num_nod-

ules, number of TACEed nodules.
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readily accessible in the clinic. We report the distributions of the

most informative features for predicting response to TACE in

both the discovery and validation cohorts. The biological path-

ways associated with predictive features are described in the

context of carcinogenesis.

RESULTS

Patient clinical data and response to TACE
From May 2008 to July 2017, 30 HCC patients were included in

the discovery cohort: 11 (37%) patients with BCLC intermediate-

stage HCC and 19 patients (63%) with BCLC early-stage HCC.

The early-stage patients were treated with TACE because co-

morbidities precluded them from surgical treatment, because

local ablation therapies were not possible due to the location

of the tumor nodules, or because TACE was performed as a

bridge-to-transplant treatment. Most of the patients (83%)

were male and had cirrhosis of the liver (80%). Alcohol was the

main reason for the liver disease (50%), followed by chronic hep-

atitis C infection (23%). One patient had no liver disease; 77% of

the HCCs had Edmondson grade I or II and 23% grade III. The

diameter of the tumors ranged from 14 to 155 mm (average

49 mm, median 44 mm). From December 2016 to March 2020,

7 additional patients were included in a validation cohort. The

baseline characteristics of the 2 cohorts were consistent (Fig-

ure S1C). Patient and tumor characteristics are summarized in

Table S1.

In the discovery cohort, radiological complete responses

(CRs) were found in 39.4% of biopsied nodules in computed to-

mography (CT) scans obtained at 3 months after TACE. For the

subsequent data analysis, these tumors were classified as ‘‘re-

sponders,’’ and all others (including themodified Response Eval-
2 Cell Reports Medicine 2, 100444, November 16, 2021
uation Criteria in Solid Tumors (mRECIST)

categories partial response [PR], stable dis-

ease [SD], or progressive disease [PD]) as

‘‘non-responders.’’ Treatments, response

to TACE, and clinical follow-up of patients

in the discovery cohort are shown in Fig-

ure S1A. At the time of the last follow-up,

26 of the 30 patients were dead and 4

were alive (3 of them had received trans-
plants). The overall survival in the discovery cohort of patients

was 97%, 83%, 63%, and 43% at 6, 12, 18, and 24 months after

the baseline imaging. Treatments, response to TACE, and clinical

follow-up of patients in the validation cohort are shown in

Figure S1B.

Tumor area is predictive of response to TACE
The clinical and radiological information of the study patients at

baseline is summarized in Table S1. In a univariate analysis using

t test statistics, tumor area was the only feature that was signif-

icantly different between responder and non-responder tumors

(Figure 1A). In a multivariate analysis, we assessed the impor-

tance of these features in predicting response to TACE using

RF models. Overall, standard clinical features such as age,

sex, etiology of underlying liver disease, tumor stage, and grade,

as well as radiological metrics for HCC nodules, were poor pre-

dictors of response to TACE treatment, yielding a mean accu-

racy of 64% across the bootstrap resampling (Figure 1B).

Transcriptomic features are predictive of response to
TACE
When considering the whole transcriptome dataset covering

20,126 genes, the first 3 principal components of the normalized

count matrix can readily distinguish normal liver, non-tumor, and

tumor samples (Figure S2A). There is a hyperplane separating

normal liver and non-tumor samples and another that separates

tumors from paired non-tumor samples.

We next compared the transcriptome of tumors against their

paired non-tumor tissue. There are 341 significantly differentially

expressed genes when contrasting tumors versus non-tumors.

Using the normalized count matrix of these differentially ex-

pressed genes, projection in the first 2 principal components
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Figure 2. Transcriptomic features are predic-

tive of response to TACE

(A) Scatterplot of the first 2 principal components of

the RNA-seq gene expression matrix for signifi-

cantly differentially expressed genes between

responder and non-responder tumors. Expression

values were normalized using the variance stabiliz-

ing transformation implemented in DESeq2.

(B) Boxplot showing the distribution of projections

along the first principal component for responder

and non-responder tumors (***p % 0.001 for Stu-

dent’s t test).

(C) Heatmap showing hierarchically clustered

RNA-seq gene expression vectors for differentially

expressed genes between responder and non-

responder tumors. The responder tumor labels are

prefixed with ‘‘R_.’’ Expression values were

normalized using the variance stabilizing trans-

formation implemented in DESeq2 and scaled

before hierarchical clustering using Pearson dis-

tance and Ward D2 agglomeration implemented in

R version 4.0.3 using the heatmap.2 function from

the gplots package.
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reveals that the distance between paired non-tumor and tumor

samples is significantly greater for non-responder tumors (Fig-

ure S2B). Although there is a significant difference in the distribu-

tion of these projected distances (Figure S2C), it is not among the

most informative features in RF models for response to TACE

(Figure S2D).

Considering only tumor samples, differential expression anal-

ysis with a contrast of response versus non-response yields 289

significantly differentially expressed genes (Table S2). Decom-

position of the matrix of differentially expressed genes by

principal-component analysis (PCA) (Figure 2A) indicates a sig-
Cell Report
nificant separation of response and non-

response classes along the first principal

component (Figure 2B). Hierarchical clus-

tering of this gene expression matrix pro-

duces 2main clusters, which generally split

the response and non-response classes

(Figure 2C). RF models indicate that

FAM111B, hypoxanthine phosphoribosyl-

transferase 1 (HPRT1), and the projection

along the first principal component are

the most informative transcriptomic fea-

tures in predicting tumor response to

TACE (Figure S2D).

Expression of hypoxia and drug
efflux pathways are not correlated
with response to TACE
Among the genes differentially expressed

between responder and non-responder tu-

mors, there is an enrichment of Reactome

pathways6 related to cell cycle and divi-

sion, DNA repair, Golgi and endoplasmic

reticulum homeostasis, platelet produc-

tion, and major histocompatibility complex
(MHC) class II presentation (Figure 3). Strikingly absent are

several pathways with well-established links to HCC progres-

sion, namely the hypoxia-inducible factor 1a (HIF1a) hypoxia

pathway,7,8 the ABC efflux transporter family,9,10 and the targets

of Notch signaling.11,12 We further explored these pathways

based on gene sets from previous studies. We used a well-char-

acterized set of HIF1a target genes that form the core response

to hypoxia13 (Table S3). Although P-glycoprotein (ABCB1/

MDR1) is the canonical transporter for the efflux of chemothera-

peutics,14 we extended our search to the entire set of ABC trans-

porters, which were expressed in our dataset (Table S3). The set
s Medicine 2, 100444, November 16, 2021 3



Figure 3. Dotplot showing a subset of the most significantly en-

riched Reactome pathways among genes differentially expressed

between responder and non-responder tumors

p values were adjusted using false discovery rate control. The count indicates

the number of genes within the pathway that are differentially expressed.
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of Notch target genes was derived from a previous study11

(Table S3). Although none of the 3 pathways are significantly en-

riched among genes that are differentially expressed between

responder and non-responder tumors, subsets of the non-

responder tumors have expression values that fall outside the

range of expression observed for responder tumors in different

genes of these pathways (Figures S3A–S3C). However, we

observed a similar pattern for random subsets of expressed

genes (Figures S3D–S3F). Although there is no discernible

enrichment of differentially expressed Notch target genes, we

observed significant differential expression of several genes

involved in regulation of Notch signaling, specifically Cdk1,

Fos, and HMOX1 (Figures S3G–S3I).

Transcriptomic and radiological features accurately
predict response to TACE
RF models clearly indicate that the tumor area at baseline and a

small number of transcriptomic features are the most predictive

of response to TACE. LR models based on tumor area and the

expression of FAM111B and HPRT1 achieve �90% accuracy

in the discovery cohort, with less specificity than sensitivity (Fig-

ure 4A). A majority vote ensemble of 500 bootstraps of this LR

model using the RNA sequencing (RNA-seq)-derived expression

data of FAM11B and HPRT1 and tumor area correctly predicts

response to TACE for 7/8 tumors in the validation cohort

(data not shown). Apart from response to TACE, there was no

significant association between expression levels of these 2

transcripts and baseline characteristics such as BCLC stage or

underlying liver disease (data not shown). We next evaluated

the performance of similar LR decision support ensembles using

semiquantitative measures of FAM111B and HPRT1 at the pro-

tein level using immunohistochemical staining of tumor biopsies

(Figure S4A). The protein abundances were generally consistent

with the cognate RNA-seq gene expression measures; however,

the correlation with response to TACE was less significant (Fig-

ures S4B and S4C). We then evaluated the expression of

FAM111B and HPRT1 using RT-ddPCR, which is generally
4 Cell Reports Medicine 2, 100444, November 16, 2021
more accessible and cost-effective in the clinic than RNA-seq.

The RT-ddPCR gene expression estimates were consistent

with the RNA-seq data (Figure S4D). LR models based on the

RT-ddPCR data achieved only �80% accuracy in the discovery

cohort (Figure 4B); however, bootstrapped ensembles also

correctly predicted response to TACE for 7/8 tumors in the vali-

dation cohort.

DISCUSSION

Treatment allocation for patients with HCC is currently based

largely on radiological staging criteria, liver function, and general

performance status.5 The widely used BCLC staging system

classifies patients into 5 stages and allocates the different treat-

ment modalities according to these stages. However, within a

given stage, several treatment options are available, and there

is anurgentmedical need for additional criteria that guide theallo-

cation of thedifferent treatmentswithin aBCLCstaging category.

TACE is the first treatment of choice for patients in BCLC stage B

(intermediate stage). TACE is highly effective in �30% of pa-

tients,4 but for the other 70%, alternative therapies may be a bet-

ter choice. This question has become even more topical with the

increasing number of new systemic combination treatments that

are being explored in clinical trials15 or have even been shown to

be effective.16 In the present study, we investigated whether mo-

lecular characteristics extracted from the analysis of treatment-

naive tumor biopsies could predict response to TACE.

Genomic analyses have revealed that the telomerase reverse

transcriptase (TERT) promoters CTNNB1 (encoding b-catenin)

and TP53 (encoding p53) are frequently mutated in HCC, while

genes involved in other critical processes, such as oxidative

stress response, chromatin remodeling, and hepatocyte differ-

entiation, are recurrently mutated but in <10% of HCCs.17–19

We investigated whether genomic analysis of tumor biopsies

could predict the response to TACE. The whole-exome

sequencing and variant analysis of our set of pretreatment tumor

biopsies yielded a sparse matrix of known cancer mutations

(Table S4). Genomic information, however, was not useful for

response prediction. Even among the most frequent mutations,

there is no discernible distinction between responder and non-

responder classes (Table S4).

The transcriptomic data readily distinguish tumor response to

TACE, however (Figure 2), confirming our hypothesis that tumor

intrinsic characteristics regulate response to treatments. We ex-

pected to find an upregulation of pathways known to confer

resistance to hypoxia or chemotherapy. However, gene expres-

sion patterns of hypoxia, Notch, and drug efflux pathways do not

generally distinguish responder and non-responder tumors. It is

conceivable that these pathways are predominantly regulated on

a post-transcriptional level and could be assessed by proteomic

profiling. Intriguingly, several non-responsive tumors fit our ex-

pectations: non-responsive tumor D359 has a high expression

of 14 HIF1 target genes; tumors C710 and B854b have a high

expression of 9 and 8 different ABC transporters, respectively;

and B702b and A915b have a high expression of 7 and 6 targets

of Notch signaling, respectively. More complex decision tree

models may be able to capture these signals for response

prediction from larger cohorts. Although the targets of Notch
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Figure 4. Transcriptomic and radiological features accurately pre-

dict response to TACE

(A) Violin plots showing the distribution of accuracy, sensitivity, and specificity

scores for logistic regression (LR) models using tumor area at baseline, and

RNA-seq gene expression measures of FAM111B and HPRT1. The gene

expression measures were normalized using the variance stabilizing trans-

formation implemented in DESeq2, followed by scaling for use in the LR

models. The violin plots indicate the distribution of scores for 500 bootstraps of

training and testing sets of the discovery cohort.

(B) Violin plots showing the distribution of accuracy, sensitivity, and specificity

scores for LR models using tumor area at baseline and RT-ddPCR gene

expression measures of FAM111B and HPRT1. The gene expression mea-

sures were calculated as the average of 2 technical replicates followed

by scaling for use in the LR models. The violin plots indicate the distribution

of scores for 500 bootstraps of training and testing sets of the discovery

cohort.
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signaling are not predictive of response to TACE, several regula-

tors of Notch signaling were significantly differentially expressed

between responder and non-responder tumors (Figure S3G–

S3I). Cdk1 is directly implicated in Notch signaling via phosphor-

ylation of the Notch intracellular domain,20 Fos is linked to Notch

signaling via cross-talk with AP-1,21 and HMOX1 is linked to

Notch signaling via cross-talk with Nrf2.22,23

Family with sequence similarity 111 member B (FAM111B) en-

codes a protein with a trypsin-like cysteine/serine peptidase

domain. Causative mutations in FAM111B have been identified

in patients with congenital poikiloderma.24 The molecular func-

tion of FAM111B is not entirely clear. In multiple myeloma, it

has been identified as a target gene of TP53,25 and in the human

adenocarcinoma cell line A549, FAM111B was shown to

degrade the cell-cycle inhibitor p14.26 Furthermore, FAM111B

expression was significantly correlated with clinical progression

and poor prognosis in lung adenocarcinoma.25,26 It is therefore

conceivable that in HCC, FAM111B is a surrogate marker for

the subclass of TP53 mutant HCCs. In reanalyzing The Cancer

Genome Atlas (TCGA) dataset on HCC,17 we found a significant

increase in FAM111B expression in TP53-mutated tumor sam-

ples (data not shown).

HPRT plays a central role in the purine salvage pathway and is

widely regarded as a housekeeping gene. However, HPRT

expression on the mRNA and protein levels is induced by

HIF1a.27 HPRT is most likely a critical pathway that helps pre-

serve the purine nucleotide resources of the cell under hypoxic

conditions. One may speculate that HPRT expression is a surro-

gate marker for tumor cell adaptation to hypoxia, adaptations

that protect against the ‘‘embolization arm’’ of TACE.

Given the significant separation of the transcriptomic profile

between responder and non-responder tumors, we combined

transcriptomic data with clinical data in an LR analysis to identify

the most important features that correlate with treatment

outcome. Clinicians are well aware of the fact that increasing tu-

mor size reduces the chance of complete response to TACE. Not

surprisingly, tumor area was one of themost informative features

in our analysis, and tumor area alone in an LRmodel yields an ac-

curacy of�75% in predicting response to TACE in the discovery

cohort samples. Adding the expression values of just 2 tran-

scripts increased this value to �90%. The two patients 10 and

13 exemplify the relative contribution and importance of the

components of the predict response to TACE (PRETACE) algo-

rithm. In these patients, 2 tumor nodules were treated and

showed discrepant responses. In patient 10, the 2 nodules did

not differ in size, but in their transcriptome (samples C737 and

C738; Figure 2C). However, in patient 13, the 2 nodules have

closely related transcriptional profiles (samples C696 and

C697; Figure 2C), but C696 is larger than C697. Since RNA-

seq from tumor biopsies may not be feasible for the next several

years in a routine setting, we explored alternative methods for

quantification of HPRT1 and FAM111B. Clinically most useful

would be an immunohistochemical staining of histopathological

sections. Both proteins can be detected, and their expression

can be assessed in a semiquantitative approach (Figures S4A

and S4B). However, compared to the quantification of the

gene transcripts, immunohistochemistry was less accurate.

We next explored the usefulness of RT-ddPCR. LRmodels using
Cell Reports Medicine 2, 100444, November 16, 2021 5
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RT-ddPCR and tumor area (Figure 4B) were overall less accurate

in discovery cohort compared to the RNA-seq-based models

(Figure 4A) but equally accurate in predicting response to

TACE in the validation cohort. Of note, ddPCR has been proven

to provide reproducible absolute quantification across different

platforms28 and laboratories.29 We therefore propose to imple-

ment RT-ddPCR quantification in our PRETACE algorithm.

There are several non-response tumors (B766b, B904b,

C168b, and C696) that cluster with response tumors at the level

of gene expression (Figure 2C). These non-response tumors do

not have extremely large tumor areas; however, one of these pa-

tients had extensive comorbidities. We can only speculate why

these tumor nodules with a ‘‘responder’’ profile did not respond

to TACE, but it could have been due to technical failure of the

TACE procedure.

In conclusion, the LR model PRETACE using tumor area and

expression values of HPRT1 and FAM111B accurately predicts

the response of HCC tumor nodules to TACE. It is a first proof-

of-principle that the molecular analysis of HCC tumor biopsies

allows us to predict response to treatment. We propose that tu-

mor biopsy-based approaches be explored to identify predictive

biomarkers of response to other treatment modalities as well.

Limitations of the study
The study has several limitations. The sample size of the cohorts

is small, and we cannot exclude a selection bias. However, our

findings are well supported statistically in both the discovery

and the validation cohorts. The study is also not powered to

analyze the impact of radiological response to TACE at time

point 3 months on overall survival. Kaplan-Meier analysis re-

vealed a hazard ratio of 0.60 in favor of TACE responders, but

the result was statistically not significant (Figure S1D). Neverthe-

less, clinical experience strongly suggests that non-response to

TACE is associated with poorer prognosis unless patients

receive an effective second-line therapy.
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Antibodies

Polyclonal rabbit anti-human FAM111B

Antibody

Invitrogen Cat#PA5-58474; RRID:AB_2641223

Monoclonal rabbit anti-human HPRT

antibody

abcam Cat#ab109021; RRID:AB_10866312

Biological samples

Tumor and Non-Tumor liver biopsy tissue University Hospital Basel This paper

Critical commercial assays

ZR-Duet DNA and RNA MiniPrep Plus kit Zymo Research, Irvine, CA Cat#D7003

SureSelectXT Clinical Research Exome Agilent Technologies Cat#5190-7339

SureSelect Human All Exon V6+COSMIC Agilent Technologies Cat#5190-9308

TruSeq Stranded Total RNA Library Prep Kit

with Ribo-Zero Gold

Illumina Cat#20020599

QX200 ddPCR EvaGreen Supermix Bio-Rad Cat#1864034

QX200 Droplet Generation Oil for EvaGreen Bio-Rad Cat#1864005

DG8 Cartridges for QX200/QX100 Droplet

Generator

Bio-Rad Cat#1864008

DG8 Gaskets for QX200/QX100 Droplet

Generator

Bio-Rad Cat#1863009

PCR Plate Heat Seal, foil, pierceable Bio-Rad Cat#1814040

ddPCR 96-Well Plates Bio-Rad Cat#12001925

MultiScribe Reverse Transcriptase Invitrogen Cat#4311235

Random hexamers Roche Cat#11034731001

RNase Inhibitor Applied Biosystems Cat# N8080119

10 mM dNTSs Promega Cat# U1515

Deposited data

RNA-sequencing data (41 tumors and 37

adjacent non-tumor tissue and 15 liver

biopsies with normal histology)

This paper European Genome-phenome Archive:

EGAS00001005558

Whole-exome sequencing data (122 tumors

and 115 adjacent non-tumor liver tissues)

Ng et al., unpublished data European Genome-phenome Archive:

EGAS00001005073

Oligonucleotides

FAM111B – forward, 50-CTGGCATAAGA

AAGTGTAGCAGCA-30
This paper N/A

FAM111B – reverse, 50-GGGCTGAGTAG

ATACTCTCGCTG-30
This paper N/A

HPRT1 – forward, 50-ACATTGTAGCCCT

CTGTGTGC-30
This paper N/A

HPRT1 – reverse, 50-AATCCAGCAGGT

CAGCAAAGA-30
This paper N/A

Software and algorithms

mint LesionTM 3.0 software Mint Medical GmbH,

Heidelberg, Germany

https://mint-medical.com

GraphPad Prism 9.2.0 GraphPad Software, San Diego https://www.graphpad.com

STAR 2.7.1a Dobin et al., 201330 N/A

R 4.1.0 https://cran.r-project.org/ N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 1.32.0 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

N/A

scikit-learn 0.24.1 https://scikit-learn.org/ N/A

Other

PRETACE Python code This paper https://github.com/gfucile/PRETACE

Report
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Markus H.

Heim (markus.heim@unibas.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data

Sequencing data have been deposited at the EuropeanGenome-Phenome Archive and are publicly available as of the date of pub-

lication. Accession numbers are listed in the Key resources table.

Code

Software versions and sources and a link to the PRETACE Python code repository are listed in the Key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

From May 2008 to July 2017, 30 HCC patients undergoing TACE (Table S1) and 15 control patients with no histopathological liver

disease (4 female and 11 male, median age 48 (range 30-62) and 54 (range 33-80), respectively) at the University Hospital Basel

were included in our study. The patients undergoing diagnostic tumor and/or liver biopsy at the University Hospital Basel agreed

to donate additional biopsies for research purposes. Written informed consent was obtained in accordance with the study protocol

approved by the ethics committee of the Northwestern part of Switzerland (authorization number EKNZ 2014-099). The indication for

TACE was provided by the institutional multidisciplinary gastrointestinal tumor board. Computed tomography (CT) scans and

biopsies of tumors and liver parenchymawere obtained prior to treatment. Tumor stagingwas done according to the Barcelona Clinic

Liver Cancer (BCLC) classification system.31

METHOD DETAILS

CT imaging
All patients underwent dynamic CT consisting of four acquisitions: unenhanced, arterial phase (AP), portal venous phase (PVP) and

3-min delayed phase (DP). CT scans were performed using a 128-slice (SOMATOM Definition AS+ or SOMATOM Definition Edge,

Siemens Healthineers, Erlangen, Germany) or a 256-slice (SOMATOM Definition Flash, Siemens Healthineers) scanner system.

Following the unenhanced scan, 1.2 mL/kg of 370 mg I/ml Iopromide (Ultravist� 370, Bayer Pharma) or 370 mg I/ml Iopamidol (Iopa-

miro� 370, BraccoS.p.A.)were injected intravenously. Usingbolus tracking technique, AP imageswere acquired18 s after reachingan

enhancement of 100 HU in the descending aorta at the level of the celiac trunk. PVP and DP images were obtained 70 and 180 s after

reaching the scan initiation threshold, respectively. CT imaging was done at baseline prior to TACE, and after TACE every 3 months.

Image datasets of all patients and time points were imported into mint LesionTM 3.0 software (Mint Medical GmbH, Heidelberg,

Germany; commercially available) for post-processing. Every lesion was manually segmented on arterial phase images in axial plane

(slice thickness 1.5 mm) according to mRECIST 1.1 criteria32 by one radiologist with two years of experience in abdominal imaging

(JV). All segmentations were subsequently reviewed by one staff radiologist specialized in abdominal imaging with > 15 years of

experience (DTB) and one staff radiologist specialized in abdominal imaging and interventional radiology with > 15 years of experi-

ence (CJZ). Disagreements were resolved by consensus. For each tumor nodule, short and long axis were measured (mm) and the

largest area was calculated (mm2). CT texture analysis of each segmented ROI was performed automatically by mint LesionTM soft-

ware based on gray-level histograms and included the following parameters: entropy, kurtosis, skewness, mean of positive pixels

(MPP) and uniformity of positive pixel distribution (UPP).
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TACE procedure
TACE procedures were performed or supervised by two interventional radiologists with > 15 and > 10 years of experience. The right

femoral artery was punctured using the Seldinger technique and a 4-French Cobra catheter was inserted into the celiac trunk and

common hepatic artery, respectively. In case of variant vascular anatomy, also the superior mesenteric artery was catheterized.

To visualize feeding arteries of the tumor, digital subtraction angiography was performed and feeding vessels were superselectively

intubated with a highly flexible 2.4-French microcatheter. For the following embolization, Doxorubicin-coated 100-300 mm beads

were slowly injected under fluoroscopic guidance. The total applied dose per patient was between 100 to 150 mg Doxorubicin. If

stasis in the feeding vessel and disappearance of tumor staining was observed earlier, injection was stopped at a lower total Doxo-

rubicin dose, respectively. A closing Dyna-CT was obtained to assess residual staining of treated lesions and vessel blockage.

Radiological response assessment
Response of a biopsied HCC lesion to treatment with TACE as per mRECIST 1.1 criteria was calculated automatically after manual

segmentation of the enhancing portions of each lesion on arterial phase images at baseline and all follow-ups. mRECIST 1.1 criteria

are: Complete response (CR) = disappearance of any intratumoral arterial enhancement; Partial response (PR) = at least a 30%

decrease in the sum of diameters of viable tumor (arterial phase enhancement); Stable disease (SD) = any cases that do not qualify

for either partial response or progressive disease; Progressive disease (PD) = an increase of at least 20% in the sum of the diameters

of viable (enhancing) tumor. If a lesion did not achieve CR or progressed at the post-therapeutic follow-ups, the institutional multi-

disciplinary gastrointestinal tumor conference decided the next therapeutic step.

Biopsy procedure
Biopsies were taken from tumor lesions and from non-tumor liver parenchyma using an US-guided coaxial technique as previously

described.33 In 3 cases we obtained biopsy of the 2 different tumor nodules of the same patient, in 1 patient we obtained 2 biopsies of

the same large tumor. 15 normal biopsies frompatients (4 female, median age 48 (range 30-62); 11male,median age 54 (range 33-80)

without HCC and with normal liver values were included in the RNaseq analysis as ‘normal liver’.

Histology/pathology
Liver biopsies used for routine diagnostic histopathology were processed using standard procedures. Histopathological evaluation

was performed by L.M.T., an experienced board-certified pathologist specialized in liver pathology. Tumors were graded according

to the Edmondson grading system.34 To be included in the study, tumor biopsies were required to contain > 50% tumor tissue, and

non-tumor liver parenchyma samples had to be completely free of cancer cells. Immunohistochemical staining was performed on

4 mm thick sections. Tissue sections were deparaffinized, and subsequently subjected to heat-induced epitope retrieval for 20 mi-

nutes in citrate buffer (pH6.0 for HPRT1) and EDTA buffer (pH9.0 for FAM111B). Slides were then stained using anti-FAM111B (In-

vitrogen PA5-58474; dilution 1:600) and anti-HPRT-1 (Abcam EPR5299; dilution 1:750) on a Leica Bond III IHC staining system (Mut-

tenz, Switzerland) using DAB as chromogen. Images were acquired using an Olympus BX46 microscope (Figure S4A). The

expression of tissues was evaluated and scored by two board certified pathologists (L.M.T., C.E.) who were unaware of the clinical

data. Each tumor was scored semi quantitively for each staining by multiplying the proportion of positive cells (%) and the staining

intensity score (0, none; 1, weak; 2, moderate; 3, strong).

RNA and DNA extraction
Snap frozen biopsies were crushed in liquid nitrogen, subsequent genomic DNA and total RNA were extracted using the ZR-Duet

DNA and RNA MiniPrep Plus kit (Zymo Research) according to the manufacturer’s instructions. RNA isolation included a DNase

digestion according to the Zymo kit instructions.

Next-generation sequencing
RNA-Seq libraries (TruSeq Stranded Total RNA Ribo-Zero Gold Kit) were sequenced on an Illumina HiSeq 2500 at the Genomics Fa-

cility Basel. For whole exome sequencing (WES), whole-exome capture was performed using the SureSelectXT Clinical Research

Exome (Agilent Technologies) or SureSelect Human All Exon V6+COSMIC (Agilent Technologies) platforms according to the manu-

facturer’s guidelines. Sequencing was performed on an Illumina HiSeq 2500 at the Genomics Facility Basel according to the man-

ufacturer’s guidelines. Paired-end 101-bp reads were generated.

Reverse-transcription digital droplet PCR (RT-ddPCR)
For RT-ddPCR, 250 ng RNA were reverse transcribed using MultiScribeTM Reverse Transcriptase (RT) (Thermo Fischer Scientific)

and random hexamer primers (Roche) in a 25 mL reaction volume according to the manufacturer’s instructions. Reactions omitting

the RT enzyme or the RNA template served as negative controls. 2 ml of RT reaction (or water as negative control) was used for ddPCR

in a total volume of 20 ml of 1x QX200 ddPCR EvaGreen Supermix (Bio-Rad, #1864034) and primers (50 nM each). Droplets were

generated in the QX200 Droplet Generator (Bio-Rad) with EvaGreen compatible oil (Bio-Rad, #1864006) following the device’s in-

struction manual. Amplification was performed in 96-well plates (Bio-Rad, #12001925) on a C1000 Touch Thermal Cycler (Bio-

Rad) using the recommended cycling conditions for EvaGreen Supermix (5 min at 95�C, followed by 40 cycles of 95�C for 30 s
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and 60�C for 1 minute, then 1 cycle of 4�C for 5 min and 95�C for 5 min, and a final step of 5 min at 95�C; ramp rate 2�C/sec). After
overnight incubation at 4�C, the plate was analyzed in theQX200Droplet Reader (Bio-Rad), and the absolute copy numbers per 20 ng

input RNA for each transcript were calculated with the QuantaSoft (Bio-Rad) software. The following primers were used for FAM111B

and HPRT1 specific ddPCR: FAM111B – forward, 50-CTGGCATAAGAAAGTGTAGCAGCA-30; reverse, 50-GGGCTGAGTAGATAC

TCTCGCTG-30; HPRT1 – forward, 50-ACATTGTAGCCCTCTGTGTGC-30; reverse, 50-AATCCAGCAGGTCAGCAAAGA-30. Primer

specificity was confirmed by analyzing the ddPCR products on a 2% agarose gel. Each primer pair produced a single sharp band

of the expected size.

QUANTIFICATION AND STATISTICAL ANALYSIS

Deep sequencing data analysis
Sequences were aligned against the NCBI human GRCh38 assembly using STAR30 version 2.7.1a in 2-Pass mode, with an average

mapping rate of 85% for uniquely mapped reads corresponding to an average of 47 million aligned reads per sample. Counts were

summarized at the gene level using featureCounts from the Subread package using strand information and the NCBI GRCh38

annotations.35 Differential expression was assessed using the DESeq2 Bioconductor package,36 specifically the Wald test for sig-

nificance of GLM coefficients. We used a significance threshold of 1.5 fold (0.67 log2-fold) change and adjusted P values < 0.05.

Variance stabilizing transformation as implemented in DESeq2 was used as a normalization scheme for principal components anal-

ysis and hierarchical clustering. Validation cohort samples were normalized as an ensemble with the discovery cohort for the final

models presented in this study. Principal Components Analysis (PCA) was conducted in R using the prcomp function without scaling.

Heatmaps were generated using the heatmap.2 function in R, with Pearson distance andWard D2 agglomeration of row-scaled VST

counts.

Pathway enrichment analysis was conducted in R using the ClusterProfiler37 and ReactomePA6 packages using hypergeometric

tests.

For whole exome sequencing, sequence alignment and single nucleotide variants and indels analysis were performed exactly as

described.33

Random forest and logistic regression analysis
Random Forest (RF) and Logistic Regression (LR) classifiers were developed using the Python scikit-learn library. Selecting subsets

of the most informative features was based on an outlier analysis of the distribution of RF model feature importance metrics (Gini

impurity index). Training and testing sets were split at 40% and 60% of the discovery dataset, respectively. Given the relatively small

number of samples, the accuracy and generalizability of the models were assessed based on bootstrap resampling (n = 500). The

class labels were balanced for each resampling, such that the difference was less than 15% of the total number of labels in the

training set (corresponds to 6 or 7 of each sample class out of 33 tumors in discovery cohort). Exhaustive grid search for parameter

optimization indicated that pruning should not be used, and generally the RF models behaved similarly across a wide range of num-

ber of trees. Feature vectors were scaled for LR models. The validation set of 8 tumors was evaluated after development of an

ensemble classifier obtained from bootstrap resampling of the discovery cohort. A Jupyter Notebook including the Python code

used to train the LRmodels against the discovery cohort and test against the validation cohort has been provided (see Key resources

table). This code (‘‘PRETACE’’ = Predict REsponse to TACE) can be used to classify additional samples provided the RNA-Seq

expression values are normalized with the discovery cohort samples as per this study using the samples deposited in the EGA

(EGAS00001005558).

Statistical analysis of baseline characteristics and patient survival
Fishers’s exact tests, chi square tests,Mann-Whitney tests and survival analysis were performed usingGraphPadPrism version 9.2.0

for macOS, GraphPad Software, San Diego, California USA, https://www.graphpad.com.
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