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Abstract  

Background 

Estimation of the fraction and contagiousness of undocumented novel coronavirus 
(COVID-19) infections is critical for understanding the overall prevalence and 
pandemic potential of this disease. Many mild infections are typically not reported 
and, depending on their contagiousness, may support stealth transmission and the 
spread of documented infection.   

Methods 

Here we use observations of reported infection and spread within China in 
conjunction with mobility data, a networked dynamic metapopulation model and 
Bayesian inference, to infer critical epidemiological characteristics associated with 
the emerging coronavirus, including the fraction of undocumented infections and 
their contagiousness.   

Results 

We estimate 86% of all infections were undocumented (95% CI: [82%-90%]) prior to 
the Wuhan travel shutdown (January 23, 2020). Per person, these undocumented 
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infections were 52% as contagious as documented infections ([44%-69%]) and were 
the source of infection for two-thirds of documented cases. Our estimate of the 
reproductive number (2.23; [1.77-3.00]) aligns with earlier findings; however, after 
travel restrictions and control measures were imposed this number falls 
considerably. 

Conclusions 

A majority of COVID-19 infections were undocumented prior to implementation of 
control measures on January 23, and these undocumented infections substantially 
contributed to virus transmission. These findings explain the rapid geographic spread 
of COVID-19 and indicate containment of this virus will be particularly challenging. 
Our findings also indicate that heightened awareness of the outbreak, increased use 
of personal protective measures, and travel restriction have been associated with 
reductions of the overall force of infection; however, it is unclear whether this 
reduction will be sufficient to stem the virus spread. 
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The novel coronavirus that emerged in Wuhan, China (COVID-19) at the end of 2019 
quickly spread to all Chinese provinces and, as of February 6, 2020, to 24 other 
countries1,2. Efforts to contain the virus are ongoing; however, given the many 
uncertainties regarding pathogen transmissibility and virulence, the effectiveness of 
these efforts is unknown.   

The fraction of undocumented but infectious cases is a critical epidemiological 
characteristic that modulates the pandemic potential of an emergent respiratory 
virus3−6. These undocumented infections often experience mild, limited or no 
symptoms and hence go unrecognised, and, depending on their contagiousness and 
numbers, can expose a far greater portion of the population to virus than would 
otherwise occur. Here, to assess the full potential of COVID-19, we use a model-
inference framework to estimate the contagiousness and proportion of 
undocumented infections in China during the weeks before and after the shutdown of 
travel in and out of Wuhan. 

Methods 

Metapopulation Model 

We developed a mathematical model that simulates the spatio-temporal dynamics of 
infections among 375 Chinese cities. The model incorporates information on human 
movement within the following metapopulation structure: 

!"#
!$
= −'"#(#

)

*#
− +'"#(#

,

*#
+ 𝜃 ∑ 0#1"1

*12(1
)3 − 𝜃 ∑ 01#"#

*#2(#
)3   [1] 

!4#
!$
= '"#(#

)

*#
+ +'"#(#

,

*#
− 4#

5
+ 𝜃 ∑ 0#141

*12(1
)3 − 𝜃 ∑ 01#4#

*#2(#
)3   [2] 

!(#
)

!$
= 𝛼 4#

5
− (#

)

7
       [3] 

!(#
,

!$
= (1 − 𝛼) 4#

5
− (#

,

7
+ 𝜃 ∑

0#1(1
,

*12(1
)3 − 𝜃∑ 01#(#

,

*#2(#
,3   [4] 

𝑁< = 𝑁< + 𝜃∑ 𝑀<33 − 𝜃∑ 𝑀3<3     [5] 

where 𝑆<, 𝐸<, 𝐼<A, 𝐼<B and 𝑁< are the susceptible, exposed, documented infected, 
undocumented infected and total population in city i. Note that we define patients 
with symptoms severe enough to be confirmed as documented infected individuals; 
whereas other infected persons are defined as undocumented infected individuals. 
We specified a rate parameter, β, for the transmission rate due to documented 
infected individuals. The transmission rate due to undocumented individuals is 
reduced by a factor 𝜇. In addition, 𝛼 is the fraction of documented infections, Z is the 
average latency period and D is the average duration of infection. The effective 
reproduction number (𝑅4) is calculated as 𝑅4 = 𝛼𝛽𝐷 + (1 − 𝛼)𝜇𝛽𝐷 (see 
Supplementary Appendix for details). Spatial coupling within the model is 
represented by the daily number of people traveling from city j to city i (𝑀<3) and a 
multiplicative factor, 𝜃, which is greater than 1 to reflect underreporting of human 
movements (see below). We assume that individuals in the 𝐼<A group do not move 
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between cities. A similar metapopulation model has been used to forecast the spatial 
transmission of influenza in the United States7. 

Travel Data 

Daily numbers of travelers between 375 Chinese cities during the Spring Festival 
period (“Chunyun”) were derived from human mobility data collected by the Tencent 
Location-based Service (LBS) during the 2018 Chunyun period (February 1 – March 
12, 2018) 8. Chunyun is a period of 40 days – 15 days before and 25 days after the 
Lunar New Year – during which there are high rates of travel within China. To 
estimate human mobility during the 2020 Chunyun period, which began January 10, 
we aligned the 2018 Tencent data based on relative timing to the Spring Festival. 
For example, we used mobility data from February 1, 2018 to represent human 
movement on January 10, 2020, as these days were similarly distant from the Lunar 
New Year. During the 2018 Chunyun, a total of 1.73 billion travel events were 
captured in the Tencent data; whereas 2.97 billions trips are reported8. To reconcile 
these two numbers, we include the parameter 𝜃 in the model system. 

Inference and Model Initialization 

To infer COVID-19 transmission dynamics during the early stage of the outbreak, we 
simulated observations from January 10-23, 2020 (i.e. the period before the initiation 
of travel restrictions) using an iterated filter-ensemble adjustment Kalman filter (IF-
EAKF) framework9-11. With this combined model-inference system, we estimated the 
trajectories of the four model state variables (𝑆<, 𝐸<, 𝐼<A, 𝐼<B) for all 375 cities, while 
simultaneously inferring the six model parameters (Z, D, 𝜇, 𝛽, 𝛼, 𝜃). The initial prior 
ranges of the model parameters were drawn from uniform distributions of the 
following ranges: 2	𝑑𝑎𝑦𝑠 ≤ 𝑍 ≤ 5	𝑑𝑎𝑦𝑠, 2	𝑑𝑎𝑦𝑠 ≤ 𝐷 ≤ 5	𝑑𝑎𝑦𝑠, 0.2 ≤ 𝜇 ≤ 1, 0.6 ≤ 𝛽 ≤
1.5, 0.02 ≤ 𝛼 ≤ 0.8, 1 ≤ 𝜃 ≤ 1.75. 

For the outbreak origin, Wuhan city, the initial exposed population, 𝐸VBWXY, and initial 
undocumented infected population, 𝐼VBWXYB , were drawn from a uniform distribution 
[0, 𝑆𝑒𝑒𝑑\X]]. The documented infected population in Wuhan 𝐼VBWXYA  on January 10 
was set to zero. Although infections were reported prior to January 10, these cases 
were sporadic and the EAKF adjustment can account for the effects of these early 
infections (by selecting elevated exposed and unreported infection levels). For other 
cities, we defined 𝐶< as the number of travelers from Wuhan to city 𝑖 on the first day 
of Chunyun. The initial exposed, documented infected and undocumented infected 
populations were set to 𝐸< = 𝐶<𝐸VBWXY/𝑁VBWXY, 𝐼<A = 0 and 𝐼<B = 𝐶<𝐼VBWXYB /𝑁VBWXY. 

To account for delays in infection confirmation, we also defined an observation 
model using a Poisson process. Specifically, for each new case in group 𝐼<A, a 
reporting delay 𝑡! (in days) was generated from a Poisson distribution with a mean 
value of 𝑇!. In fitting both synthetic and the observed outbreaks, we performed 
simulations with the model-inference system using different fixed values of 𝑇! 
(4	𝑑𝑎𝑦𝑠 ≤ 𝑇! ≤ 12	𝑑𝑎𝑦𝑠) and 𝑆𝑒𝑒𝑑\X] (500 ≤ 𝑆𝑒𝑒𝑑\X] ≤ 6000). The best fitting 
model-inference posterior was identified by log-likelihood. Full details of the data and 
methods, including synthetic testing and sensitivity analyses, are provided in the 
Supplementary Appendix. 
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Modelling epidemic dynamics after January 23 

Finally, we also modelled the transmission of COVID-19 in China after January 23, 
when greater control measures were effected. These control measures included 
travel restrictions imposed between major cities and Wuhan; self-quarantine and 
contact precautions advocated by the government; and more available rapid testing 
for infection confirmation12-13. These measures along with changes in medical care-
seeking behaviour due to increased awareness of the virus and increased personal 
protective behavior (e.g. wearing of facemasks, social distancing, self-isolation when 
sick), likely altered the epidemiological characteristics of the outbreak after January 
23. To quantify these differences, we re-estimated the system parameters using the 
metapopulation model-inference framework and city-level daily cases reported 
between January 24 and February 8. As inter-city mobility was restricted, we set 𝜃 =
0. In addition, to represent reduced person-to-person contact and increased infection 
detection, we updated the initial priors for 𝛽 and 𝛼 to [0.2, 1.0] and [0.2, 1.0], 
respectively (see Supplementary Appendix for more details). 
Results 

Epidemiological Characteristics before January 23, 2020 

We first tested the model-inference framework using synthetic outbreaks generated 
by the model in free simulation. These simulations verified the ability of the model-
inference framework to simultaneously estimate the six target model parameters 
(see Supplementary Appendix, Figures S1-S8).  

We next applied the system to the observed outbreak before the travel restrictions of 
January 23 – a total of 811 documented cases throughout China. Figure 1 shows 
simulations of reported cases generated using the best-fitting model parameter 
estimates. The distribution of these stochastic simulations captures the range of 
observed cases well. In addition, the best-fitting model captures the spread of 
COVID-19 to other cities in China (Figure S9). Our median estimate of the overall 𝑅4 
is 2.23 (95% CI: 1.77−3.00), indicating a high capacity for sustained transmission of 
COVID-19 (Table 1). This finding aligns with other recent estimates of the 
reproductive number for this time period6,12-14. In addition, the median estimates for 
the latent and infectious periods are approximately 3.77 and 3.45 days, respectively. 
Further, we find that, during January 10-23, only 14% (95% CI: 9–26%) of total 
infections in China were reported. This estimate reveals a very high rate of 
undocumented infections: 86%. This finding is independently corroborated by the 
infection rate among foreign nationals evacuated from Wuhan (see Supplementary 
Appendix). These undocumented infections are estimated to have been half as 
contagious per individual as reported infections (µ = 0.52; 95% CI: 0.44 – 0.69). 
Other model fittings made using alternate values of 𝑇! and 𝑆𝑒𝑒𝑑\X] produced similar 
parameter estimates (Figure S10). 

The Impact of Undocumented Infections during January 10-23 

Using the best-fitting model (Table 1, Figure 1), we estimated 18,829 (95% CI 
[3,761, 38,808]) total new COVID-19 infections (documented and undocumented 
combined) during January 10-23 in Wuhan city.  86.3% of all infections (95% CI 
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[81.9%, 90.1%]) were infected from undocumented cases. Nationwide, the total 
number of infections during January 10-23 was 28,898 (95% CI [5,534, 59,491]) with 
86.4% (95% CI [82.0%, 90.1%]) infected from undocumented cases.  

To highlight further this impact of contagious, undocumented COVID-19 infections on 
overall transmission and reported case counts, we generated a set of hypothetical 
outbreaks using the best-fitting parameter estimates but with 𝜇 = 0, i.e. the 
undocumented infections are no longer contagious (Figure 2).  We find that without 
transmission from undocumented cases, reported infections during January 10-23 
are reduced 66.4% across all of China and 64.0% in Wuhan. Further, there are fewer 
cities with more than 8 cumulative documented cases: only 1 city with more than 8 
documented cases versus the 10 observed by January 23 (Figure 2). This finding 
indicates that contagious, undocumented infections facilitated the geographic spread 
of COVID-19 within China. 

Epidemiological Characteristics after January 23, 2020 

The results of inference for the January 24-February 8 period are presented in Table 
2, Figure S11 and Table S1.  Control measures are continually shifting, so we show 
estimates for both January 24 – February 3 (Period 1) and January 24 – February 8 
(Period 2).  The best-fitting model for both periods has a reduced reporting 
delay,	𝑇! , of 5 days (vs. 10 days before January 23), consistent with more rapid 
confirmation of infections. Estimates of both the latency and infectious periods are 
relatively unchanged; however, 𝛼, 𝛽 and 𝑅4 have all shifted considerably. The 
contact rate, 𝛽, drops to 0.51 (95% CI: 0.39 – 0.69) during Period 1 and 0.34 (95% 
CI: 0.27 – 0.48) during Period 2, less than half the estimate prior to travel 
restrictions. The reporting rate, 𝛼, is estimated to be 0.71 (95% CI: 0.55 – 0.85), i.e. 
71% of infections are documented during Period 1, up from 0.14 prior to travel 
restrictions, and is nearly the same in Period 2. The reproductive number is 1.51 
(95% CI: 1.17 – 2.10) during Period 1 and 1.00 (95% CI: 0.73 – 1.38) during Period 
2, down from 2.23 prior to travel restrictions. While the estimate for the relative 
transmission rate, 𝜇, is similar to before January 23, the contagiousness of 
undocumented infections, represented by 𝜇𝛽, is substantially reduced, possibly 
reflecting that only very mild and asymptomatic infections remain undocumented. 

Discussion 

Our findings indicate that a large proportion of COVID-19 infections were 
undocumented prior to the implementation of travel restrictions and other heightened 
control measures in China on January 23, and that a large proportion of the total 
force of infection was mediated through these undocumented infections (Table 1). 
This high proportion of undocumented infections, many of whom were likely not 
severely symptomatic, appears to have supported the rapid spread of the virus 
throughout China. Indeed, suppression of the infectiousness of these undocumented 
cases in model simulations reduces the total number of documented cases and the 
overall spread of COVID-19 (Figure 2).   

Our findings also indicate that a radical increase in the identification and isolation of 
currently undocumented infections would be needed to fully control COVID-19.  
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Increased news coverage and awareness of the virus in the general population have 
already likely prompted increased rates of seeking medical care for respiratory 
symptoms. In addition, awareness among healthcare providers, public health officials 
and the availability of viral identification assays suggest that capacity for identifying 
previously missed infections has increased. Further, general population and 
government response efforts have increased the use of face masks, restricted travel, 
delayed school reopening and isolated suspected persons, all of which could 
additionally slow the spread of COVID-19.   

Combined, these measures are expected to increase reporting rates, reduce the 
proportion of undocumented infections, and decrease the growth and spread of 
infection. Indeed, estimation of the epidemiological characteristics of the outbreak 
after January 23, indicate that government control efforts and population awareness 
have reduced the rate of spread of the virus (i.e. lower 𝛽, 𝜇𝛽, 𝑅4) and increased the 
reporting rate. The overall reduction of the effective reproductive number is 
encouraging; however, the control efforts have yet to critically and clearly reduce 𝑅4 
below 1.   

Importantly, the situation on the ground in China is changing day-to-day. New travel 
restrictions and control measures are being imposed on new populations in different 
cities, and these rapidly varying effects make certain estimation of the 
epidemiological characteristics for the outbreak difficult. Further, reporting 
inaccuracies and changing care-seeking behavior add another level of uncertainty to 
our estimations.  While the data and findings presented here indicate that travel 
restrictions and control measures have reduced COVID-19 transmission 
considerably, whether these controls are sufficient for reducing 𝑅4 below 1 for the 
length of time needed to eliminate the disease locally and prevent a rebound 
outbreak once control measures are relaxed is unclear.  Further, similar control 
measures and travel restrictions would have to be implemented outside China to 
prevent re-introduction of the virus.   

Our findings underscore the seriousness and pandemic potential of COVID-19. The 
2009 H1N1 pandemic influenza virus also caused many mild cases, quickly spread 
globally, and eventually became endemic. Presently, there are four, endemic, 
coronavirus strains currently circulating in human populations (229E, HKU1, NL63, 
OC43). If the novel coronavirus follows the pattern of 2009 H1N1 pandemic 
influenza, it will also spread globally and become a fifth endemic coronavirus within 
the human population.  

Many characteristics of the COVID-19 remain unknown or uncertain. Consequently, 
care should be taken when interpreting our estimates. For instance, after January 
23, we assume a complete travel shutdown with no inter-city human mobility; 
however, the degree and initial date of travel restrictions has varied among cities. 
Our estimates may therefore represent an upper-bound of the potential impact of 
travel restriction on COVID-19 transmission. Further studies accounting for 
heterogenous travel interventions are warranted.   
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Tables 

Table 1. Best-fit model posterior estimates of key epidemiological parameters for 
simulation with the full metapopulation model during January 10-23, 2020 (𝑆𝑒𝑒𝑑\X] =
5000, 𝑇! = 10 days). 

Parameter Median (95% CIs) 
Transmission rate (β) 1.10 (0.97, 1.21) 

Relative transmission rate (µ) 0.52 (0.44, 0.69) 
Latency period (Z) 3.77 (3.31, 4.13) 

Infectious period (D) 3.45 (2.91, 3.84) 
Reporting rate (α) 0.14 (0.09, 0.26) 

Basic reproductive number (RE) 2.23 (1.77, 3.00) 
Mobility factor (θ) 1.34 (1.24, 1.44) 

 

Table 2. Best-fit model posterior estimates of key epidemiological parameters for 
simulation of the model without travel between cities during January 24 – February 3 
and January 24 – February 8 (𝑆𝑒𝑒𝑑\X] = 5000 on January 10, 𝑇! = 10	days before 
January 24, 𝑇! = 5	days between January 24 and February 8). 
 

Parameter 
January 24 – February 3 

(Median (95% CIs) 
January 24 - February 8 

(Median (95% CIs) 
Transmission rate (β) 0.51 (0.39, 0.69) 0.34 (0.27, 0.48) 

Relative transmission rate (µ) 0.49 (0.38, 0.60) 0.43 (0.29, 0.67) 
Latency period (Z) 3.49 (3.35, 3.68) 3.50 (3.23, 3.77) 

Infectious period (D) 3.50 (3.28, 3.64) 3.51 (3.19, 3.82) 
Reporting rate (α) 0.71 (0.56, 0.81) 0.71 (0.56, 0.85) 

Effective reproductive number 
(RE) 1.51 (1.17, 2.10) 1.00 (0.73, 1.38) 
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Figures 

 
Fig. 1. Best-fit model-inference fitting (𝑆𝑒𝑒𝑑\X] = 5000, 𝑇! = 10 days) to daily reported 
cases in all cities (A), Wuhan city (B) and Hubei province (C). The blue box and whiskers 
show the median, interquartial range, and 95% credible intervals are derived from 300 
simulations using the best-fit parameters.  The red ‘x’s are daily reported cases. The 
distribution of estimated 𝑅4 is shown in (D).  

 
Fig. 2. Impact of undocumented infections on the transmission of COVID-19. 
Synthetic outbreaks generated using parameters reported in Table 1 are compared 
for 𝜇 = 0.52 (red) and 𝜇 = 0 (blue). 
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