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To create new enzymes and biosensors from scratch, precise control
over the structure of small-molecule binding sites is of paramount
importance, but systematically designing arbitrary protein pocket
shapes and sizes remains an outstanding challenge. Using the NTF2-
like structural superfamily as a model system, we developed an enu-
merative algorithm for creating a virtually unlimited number of de
novo proteins supporting diverse pocket structures. The enumerative
algorithmwas tested and refined through feedback from two rounds
of large-scale experimental testing, involving in total the assembly of
synthetic genes encoding 7,896 designs and assessment of their sta-
bility on yeast cell surface, detailed biophysical characterization of 64
designs, and crystal structures of 5 designs. The refined algorithm
generates proteins that remain folded at high temperatures and ex-
hibit more pocket diversity than naturally occurring NTF2-like pro-
teins. We expect this approach to transform the design of small-
molecule sensors and enzymes by enabling the creation of binding
and active site geometries much more optimal for specific design
challenges than is accessible by repurposing the limited number of
naturally occurring NTF2-like proteins.

protein design | high-throughput screening | NTF2-like proteins | protein
pockets

Proteins from the NTF2-like structural superfamily consist of an
elongated β-sheet that, along with three helices, forms a cone-

shaped structure with a pocket (Fig. 1A). This simple architecture
is highly adaptable, as evidenced by the low-sequence homology
among its members, and the many different functions they carry
out (1). Natural NTF2-like proteins have been repurposed for new
functions through design (2–4), further showing the adaptability of
this fold. General principles for designing proteins with curved
β-sheets have been elucidated, and used to design several de novo
NTF2-like proteins (5).
De novo design of protein function starts with an abstract de-

scription of an ideal functional site geometry (for example, a catalytic
active site), and seeks to identify a protein backbone conformation
with geometry capable of harboring this site. The extent to which the
ideal site can be realized depends on the number and diversity of
backbone conformations that can be searched (6, 7). A promise of
de novo protein design is to generate a far larger and more diverse
set of designable backbones for function than is available in the
largest public protein structure database, the Protein Data Bank
(PDB) (8, 9). This has been achieved for protein–protein binding
due to the simplicity of small globular proteins (10). However,
protein structures with pockets are considerably more complex, and
since only a small number of de novo designed pocket-containing
proteins have been characterized, this vision has not yet been real-
ized for small-molecule binder or enzyme design. Here we develop a
rule-based algorithm, akin to those used in generative design (11)
that generates NTF2-like protein structures, exploring structure
space by enumerating all possible combinations of high-level struc-
tural parameters that describe this fold. This algorithm samples the
structural space available to the NTF2 fold systematically and widely,
and the generated protein models surpass native NTF2-like proteins
in pocket diversity.

Results
De novo protein design is a two-step process: First, a protein
backbone conformation is generated, and second, low-energy amino
acid sequences for this backbone are found by combinatorial side-
chain packing calculations. In Rosetta (12, 13), new backbones can
be constructed by Monte Carlo assembly of short peptide fragments
based on a structure “blueprint,” which describes the length of the
secondary structure elements, strand pairings, and backbone torsion
ranges for each residue (14, 15). Because this process is stochastic,
each structure generated is distinct. We previously showed that
NTF2-like proteins can be designed from scratch using this approach
(5), but the diversity and number of designs to date (on the order of
tens) is too limited to provide pockets for arbitrary function design.
For a given blueprint, the resulting set of structures is generally more
homogeneous than that observed in naturally occurring proteins
within a protein family, where differences in secondary structure
lengths and tertiary structure give rise to considerable diversity.
Hence while large numbers of backbones can be generated for a
particular blueprint, for example those previously used to design
NTF2-like proteins, the overall structural diversity will be limited.

The NTF2 Enumerative Algorithm. To access a much broader range
of protein backbones, we sought to develop an algorithm that
samples a wider diversity of structures than natural NTF2-like
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proteins by carrying out backbone sampling at two levels (Fig. 1B).
At the top level, sampling is carried out in the space of high-level
parameters that define the overall properties of the NTF2 fold:
For example, the overall sheet length and curvature, the lengths of

the helices that pack on the sheet, the placement of the pocket
opening, and the presence or absence of C-terminal elements
(Fig. 1C). We then convert each choice of high-level parameters
into structure blueprint/constraints pairs (hereon referred to

Fig. 1. High-level description of the NTF2 enumerative algorithm. (A) Canonical NTF2-like structural elements, labeled on the structure of scytalone
dehydratase from Magnaporthe grisea (PDB ID 1IDP). (B) Overview of enumerative algorithm. At each stage of hierarchical backbone assembly, high-level
parameters and local structure variation are sampled. (C) Examples of fold parameters sampled at the higher levels, and structures representing two extreme
values for each.
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simply as blueprints), which guide backbone structure sampling at
successive stages of fold assembly (see next paragraphs) (Fig. 1B).
In total, there are 18 high-level fold parameters (SI Appendix,
Table S1), and each unique combination gives rise to a specific
blueprint. At the lower level, backbone structures are generated
according to these blueprints through Monte Carlo fragment as-
sembly; the blueprints dictate the secondary structure and torsion
angle bins of the fragments, as well as a number of key residue–
residue distances (SI Appendix, Figs. S1–S4). In a final sequence
design step, for each generated backbone, low-energy sequences
are identified through combinatorial sequence optimization using
RosettaDesign.
We generate structure blueprints from the high-level param-

eters using a hierarchical approach (Fig. 1B). First, the four main
strands of the sheet are constructed, then helix 3 and the frontal
hairpin, finally, the two N-terminal helices. If the backbone to be
assembled has a C-terminal helix, it is added in a fourth step.
In the first step, the length and curvature of the sheet are the

primary high-level parameters sampled (Fig. 1 C, Top andMiddle).
For each choice of high-level sheet length and curvature param-
eters, compatible sets of low-level parameters (secondary structure
strings and angle and distance constraints) are generated to guide
Rosetta fragment assembly. The translation from sheet length to
secondary structure length is straightforward as longer strands
generate longer sheets. To realize a specified sheet curvature,
bulges are placed at specific positions on the edge strands, where
they promote sheet bending (5, 16, 17). Bulges are specified by a
residue with α-helical ɸ/Ѱ torsion values in the blueprint, leading
to a backbone protuberance with two adjacent residues pointing in
the same direction. As shown in Fig. 1A, there are always at least
two bulges on the NTF2 sheet, delimiting the base and arms, and
marking the axes at which the sheet bends. An additional bulge
can exist on the long arm, further bending the sheet. To control
the degree of bending centered at these points, angle constraints
are placed on Cα carbons on center strands, at positions adjacent
to bulges (SI Appendix, Fig. S1). Not all combinations of sheet
length and curvature values are compatible with a closed pocket-
containing structure: For example, long sheets with low curvature
cannot generate a cone-shaped structure. These incompatibilities
are identified by attempting to construct sheet structures (as de-
scribed above) across the full parameter space, and then assessing
the success in generating a pocket-containing structure. (Note:
The region with no solutions at the bottom left of Fig. 3A reflects
the incompatibility of long sheets and low curvature with the
formation of a pocket; See SI Appendix, Table S2 for the complete
set of rules dictating high-level parameter combinations).
The range of possibilities for helix 3 and the frontal hairpin,

which are generated next, is limited by the geometric properties of
the sheet constructed in the first step. In order to determine which
parameter combinations lead to folded proteins, we generated and
evaluated backbone structures based on a wide variety of param-
eter combinations, and extracted the following rules. Structures
where the sheet does not protrude outwards beyond the pocket
opening require longer loops between helix 3 and strand 3 (SI
Appendix, Fig. S2A). Conversely, sheets that protrude outwards
over the opening of the pocket require shorter loops between helix
and strand 3, to avoid placing helix 3 too far from the rest of the
structure (SI Appendix, Fig. S2A). The length of helix 3 is coupled
to the torsional angles of the loop that connects it to strand 3, such
that hydrogen bonds form between the backbone of the loop and
the C terminus of helix 3 (SI Appendix, Fig. S2B and Table S3).
Independent from helix 3 length and its connection to strand 3, the
length of the frontal hairpin strands (two possible values: four or six
residues) depends on the length of the sheet base: Narrow sheet
bases allow only short hairpins, as all positions on strand 1 must be
paired to strand 6 (SI Appendix, Fig. S2C).
Stage 3, the construction of the N-terminal helices, is likewise

constrained by the geometric properties of the structure built so

far. If the distance between the bulge on strand 6 and the loop
connecting helix 3 with strand 3 is more than 25 Å, then helix 1
and 2 are elongated by a full turn (4 amino acids) to close the
cone described by the sheet (SI Appendix, Fig. S3). The con-
straints that control the placement of H1 and H2 are adapted
based on the shape of the current structure in order to position
H1 and H2 such that good side-chain packing is favored during
sequence design, and occluding backbone polar atoms on the
outward-facing edge of S3 is avoided (SI Appendix, Fig. S3).
In cases where the backbone to be assembled has a C-terminal

helix (has_cHelix = True), if the pocket opening is, like in most
native NTF2-like proteins, between the frontal hairpin and H3
(Opening = Classic), the C-terminal helix is set to eight residues
long and rests against the long arm. If the opening is set to be
between the termini of H1 and H2, and H3 (Opening = Alter-
native), then the C-terminal helix length is set to 11 residues
long, and closes the space between H3 and the frontal hairpin
(Fig. 1B and SI Appendix, Fig. S4).
This four-step blueprint building procedure is implemented in a

Python script that samples over the high-level degrees of freedom
incorporating the logic described in the preceding paragraphs,
and the improvements described throughout the remainder of
the paper.

High-Throughput Characterization of the Known De Novo NTF2 Structure
Space. The design of large pockets in de novo NTF2-like proteins is
challenging and requires strategies to compensate for the loss of
stabilizing core residues that would otherwise fill the space occupied
by the pocket. Before setting out to experimentally sample the full
range of structure space accessible to the enumerative algorithm, we
chose to characterize the sequence and structure determinants of
stability in the region of NTF2 space explored in our previous work
(5), and its immediate vicinity. We generated 2,709 new NTF2-like
proteins belonging to the blueprints previously described, plus a few
variations (9 different blueprints) (SI Appendix, Fig. S5 and Table
S4). We adapted a high-throughput stability screen based on
folding-induced protease resistance on yeast cell surface, originally
developed for small (<43 amino acid) domains (18) to the much
larger (105 to 120 residues) NTF2-like protein family. This required
optimizing current methods (19) for efficiently splicing long oligo-
nucleotides (230 bases) from oligonucleotide arrays to form longer
genes by limiting pairing promiscuity and, therefore, the number of
chimeric design combinations (Materials and Methods).
A fifth (578, 21%) of the tested designs were stable (stability

scores above 1), while only 2% of scrambled controls (randomly
selected design sequences scrambled such that the hydrophobicity
pattern is maintained) passed this stability threshold (Fig. 2A). All
tested blueprints had representatives among the stable sequences
(SI Appendix, Fig. S6). Analysis of the sequences and structures of
the stable designs revealed several broad trends. There was a
marked depletion of hydrophilic residues in positions oriented
toward the protein core (SI Appendix, Fig. S7), suggesting that the
stable proteins identified in this first round experiment are likely
folded as modeled, but may not be able to accommodate a pocket
with polar amino acids, limiting their potential to be designed for
general function. A logistic regression model trained to distinguish
between designs with stability scores above or below 1.0 identified
total sequence hydrophobicity (see “hydrophobicity” feature def-
inition in SI Appendix, Supplementary Methods), Rosetta energy
(“score_res_betacart”), and local sequence-structure agreement
(fragment quality, see “avAll”) as key determinants of stability (SI
Appendix, Fig. S8).
The importance of overall hydrophobicity is in agreement with

the observed per-position amino acid enrichments, and suggests the
composition or size of the designed protein cores is suboptimal.
While Rosetta optimizes local sequence-structure agreement at
single positions [p_aa_pp and rama_prepro energy function terms
(20)], overall secondary structure propensity depends on stretches
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of several residues and cannot be decomposed in pairwise or single
body energies. The detection of local sequence-structure agreement
as a feature of stable designs suggests the design protocol produces
sequences with suboptimal local sequence-structure relationship.
We selected 17 designs with a stability score above 1 for more

thorough biophysical characterization (SI Appendix, Supplementary
Methods). Seven of these expressed in soluble form in Escherichia
coli, and were found to be folded by CD spectroscopy. Six of seven
remained folded up to 95 °C, and had two-state unfolding tran-
sitions in guanidine hydrochloride denaturation experiments (SI
Appendix, Figs. S9 and S10 and Table S5). The remaining 10 de-
signs did not express or formed higher-order oligomers (SI Ap-
pendix, Table S5), indicating stability score values above those of
most scrambles are no guarantee of soluble expression and folding
in E. coli cytoplasm; aggregation is likely suppressed on yeast
cell surface.
We obtained crystal structures for two of the above-mentioned

hyperstable proteins with de novo NTF2 blueprints not charac-
terized before (Fig. 2 B and C and SI Appendix, Fig. S11A). The
crystal structure and model of design Rd1NTF2_04 are in close
agreement both in terms of Cα atom positions and most core side-
chain rotamers (Fig. 2B and SI Appendix, Fig. S11B). In contrast,
the structure of design Rd1NTF2_05 shows a two-residue register
shift between strands 5 and 6 relative to the design (Fig. 2C),
which results in a flatter sheet and a smaller core, a shorter strand
5, and longer strand 6. While the overall shape of the structure
and the relative orientations of the hydrophobic residues in strand
5 and 6 are preserved (Fig. 2C), the structure deviations would be
significant for a designed functional pocket. The identification of a
design that is stable but has a structure different from its model
provides an opportunity to discover determinants of structural
specificity not captured by the design method.
We hypothesized that the disagreement between model and

structure for design Rd1NTF2_05 originates from a lack of core
interactions favoring the modeled high sheet curvature around
residue 94, as well as from lack of consideration of negative design
in the sequence choice for the 5/6 strand hairpin, which allows the
shortening of strand 5. We identified several mutations that could

favor the modeled sheet curvature and strand register. Mutations
D101K and L106W near the strand 5/6 connection make favorable
interactions in the context of the designed conformation, and the
replacement of leucine 106 with a large tryptophan side chain is
incompatible with the observed crystal structure (SI Appendix, Fig.
S12). Mutation A80G, at the most curved position of strand 4,
favors bending by removing steric hindrance between the alanine
80 side chain and the backbone at position 66, but leaves a void in
the core, which modeling suggests should be rescued by I64F (SI
Appendix, Fig. S12) (see description in refs. 6 and 21). A phenyl-
alanine side chain at position 64 makes favorable interactions in
the designed conformation, and is likely to not fit in the core and
be exposed in the observed conformation. Finally, the rigidity
imparted by proline in position 94 limits the Ramachandran an-
gles to those compatible with the designed conformation, as well
as preventing strand 5 and 6 pairing beyond residue 92.
Experimental characterization of the Rd1NTF2_05 fivefold

mutant showed a higher ΔG of unfolding than the original design
(SI Appendix, Fig. S13), and its crystal structure is in close
agreement with the model (Fig. 2D). The side chains at the five
mutated positions were in the exact designed conformation,
supporting our structural hypothesis and the incorporation of
negative design to increase structural specificity (Fig. 2 D, Right).
The fivefold mutant also displays a large cavity, present in the
design, a unique example of a de novo-designed monomeric
NTF2 with a large pocket that does not require additional sta-
bilizing features, such as a disulfide bond or a dimer interface (SI
Appendix, Fig. S14). We incorporated the principles used to
improve the design Rd1NTF2_05 in the enumerative algorithm
to increase the probability that the generated designs fold
as modeled.

High-Throughput Characterization of New Regions of NTF2 Structure
Space Explored by the Enumerative Algorithm. Armed with the in-
sights from high-throughput characterization of known de novo
NTF2 structural space, we set out to design proteins from hundreds
of backbone blueprints created using our enumerative algorithm
that explore a much larger structure space. We incorporated the

Fig. 2. High-throughput screening and structural characterization of de novo NTF2-like proteins. (A) Round 1 stability score distributions. Designs are more
likely to have stability scores above 1.0 than scrambled sequences. (B) Crystal structure and computational model of design Rd1NTF2_04 (PDB ID code 6W3G);
the protein backbone is in very close agreement. (C) Crystal structure and model of design Rd1NTF2_05 (PDB ID code 6W3D), showing significant differences
between model and structure. Strands 5 and 6 are shifted two residues relative to each other (bold numbers, Left), resulting in a smaller space in the concave
side of the flattened sheet (magenta sphere and dashed line, Right). (D) Crystal structure and model of design Rd1NTF2_05 fivefold mutant (PDB ID code
6W3F), showing agreement between model and structure for backbone and mutated side chains. As in C, a magenta circle and lines show how the concave
side and sheet curvature fold as designed.
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lessons learned in the sequence design stage, with the goal of
generating more stable and diverse designs that fold as modeled. To
address the low sequence hydrophobicity, we added an amino acid
composition term to the Rosetta energy function to favor sequences
with 30% nonalanine hydrophobic amino acids on average, with
different hydrophobicity targets for core, interface, and surface
positions. We increased the consistency of the predicted and design
target secondary structure by increasing sampling (SI Appendix, Fig.
S15). Finally, guided by the experience with design Rd1NTF2_05,
we incorporated steps in the design process that detect strand
curvature ranges that require glycine placement to reduce strain.
We used this improved method to generate a second round of
designs exploring a much larger set of 1,503 blueprints. These de-
signs span a wide range of pocket volumes that are modulated by
sheet length and curvature (Fig. 3A, x and y axes). There are two
main modes by which the specification of sheet structure by the
high-level parameters modulates pocket volume. First, as sheets of
similar length become more curved, the helices come closer to the
sheet, resulting in smaller pocket volumes (SI Appendix, Fig. S16).
Second, as sheets with similar curvature elongate, they wrap around
the concave face and extend the pocket outwards (SI Appendix, Fig.
S16). The “sheet periodic table” in SI Appendix, Fig. S16A shows
how the high-level parameter values can be arranged to track
pocket volume. The rest of the high-level parameters have less
impact on pocket volume (SI Appendix, Fig. S17).
Due to gene length limitations, we were able to test designs for

323 unique parameter combinations of the possible 1,503; these
yield proteins of 120 amino acids or less in length. We synthesized
genes for 5,188 proteins generated from these 323 blueprints, and
subjected the designed proteins and scrambled versions to the
protease stability screen. The increased protease resistance of the
scrambled sequences likely reflects their increased hydrophobicity
(SI Appendix, Fig. S18). Roughly one-third (29%) of the designs
had stability values above those of most scrambled sequences
(Fig. 3B) (98% of all scrambles have stability score <1.55), a larger
fraction than the 21% of stable designs in the initial screen, in-
creasing our dataset of stable NTF2-like designs from a total of
578 to 2,077. These stable designs belong to 236 different pa-
rameter combinations, a very large increase over the 9 combina-
tions in the previous round, with most of the missing combinations
having fewer than 10 initial samples (SI Appendix, Fig. S19). The
new parameter combinations result in structural features not
sampled before, such as a secondary bulge on the long arm, new
H3–S3 connections, and elongated frontal hairpins. The pocket
volume distribution of stable designs is very similar to the distri-
bution for all tested designs (Fig. 3C), suggesting that pocket
volume is not a limiting factor, and spans most of the native NTF2
range (SI Appendix, Fig. S20). Stable designs not only sample the
native pocket volume range, but also the native range for several
other pocket properties (SI Appendix, Fig. S21). The amino acid
identities in stable designs show much lower levels of enrichment
and depletion at individual positions than in the first round of
high-throughput screening (SI Appendix, Fig. S22); in particular,
polar amino acids are not depleted in core positions (SI Appendix,
Fig. S22), suggesting that polar residues are likely better tolerated
in pocket positions perhaps due to the improved core packing
resulting from the optimized sequence design protocol.
With the large increase in diversity in the second round, the

stable designs created by the enumerative algorithm span a very
wide range of structures. To visualize the space spanned by our
generated structures compared to native NTF2 structures, we used
the uniform manifold approximation and projection (UMAP) al-
gorithm (22) to project similarity in backbone structure [TM-score
(23)] into two dimensions (see Fig. 4 and SI Appendix, Fig. S23 for
plots generated using different UMAP hyperparameters). The
grouping of structures with similar features in different map re-
gions provides an indication of which model parameters lead to
novel NTF2 structures (SI Appendix, Fig. S24). Inspection of the

map shows that our algorithm samples most of the native space, as
well as completely uncharted regions. Most native proteins form
clusters that overlap with de novo ones, likely reflecting overall
structural similarity between these, with differences that can be
attributed to loop structure: Native NTF2-like proteins often
have long, heterogeneous loops, while our designs tend to have
short, homogeneous loops. The subset of designs tested by
high-throughput screening sample a wide range of structures
within the accessible protein length, and stable representatives
from the 236 unique NTF2 parameter combinations are found
across the sampled space (Figs. 3A and 4). Overall, the number
and diversity of de novo-designed NTF2-like structures is con-
siderably larger than that of the NTF2 structures in the PDB.
A logistic regression model trained on stability of second-round

designs suggests the lessons from the first round of high-throughput
screening proved effective, and provides new suggestions for im-
provement (SI Appendix, Supplementary Information Text and Fig.
S25). Features based on the high-level parameters of the enu-
merative algorithm (e.g., H3 length, sheet curvatures, sheet length,
and hairpin length) did not contribute significantly to stability
prediction, suggesting stable proteins can be designed across all of
the considered structural space (SI Appendix, Supplementary
Information Text).
We biochemically characterized 37 stable designs from the

second round of high-throughput screening; 43%, similar to the
41% in round 1, expressed solubly in E. coli and had CD spectra
consistent with the folded state (the remaining 20 second-round
designs did not express or formed higher-order oligomers) (SI
Appendix, Table S6). Most of the folded designs retained their
folded state CD spectrum above 95 °C (SI Appendix, Figs. S26 and
S27 and Table S6). The length of helix 3 in two of the second-
round stable designs, Rd2NTF2_06 and Rd2NTF2_19, is the
longest of the values we allowed, supporting the designability of
this feature despite it being slightly disfavored by the stability
model (SI Appendix, Supplementary Information Text and Fig. S25).
Overall, the folded designs sample a wide range of pocket shapes
and sizes (SI Appendix, Fig. S21).
More than half of the designs we attempted to express in E. coli

did not express or formed soluble aggregates, indicating that a high
stability score does not necessarily translate to folding in E. coli
cytoplasm. While stability score has no significant correlation with
ΔGunfolding for these larger proteins, it has some capacity to dis-
criminate designs that fold from those that do not (SI Appendix, Fig.
S28C). Nine out of nine designs with low stability scores that we
attempted to express in E. coli did not fold, supporting the use of
stability score as a metric to improve the design of these pocket-
containing proteins. In an attempt to improve the power of the
stability score to predict folding and stability of proteins expressed in
E. coli, we trained an alternative unfolded state protease-resistance
model based on the protease resistance of scrambled sequences (SI
Appendix, Supplementary Methods and Fig. S28 D and E). As
expected, this model predicts NTF2 scrambled sequence stability
better than the published unfolded-state model, but using it to
recalculate stability scores did not lead to better prediction of
ΔGunfolding or folding in E. coli (SI Appendix, Fig. S28 B and C).
For two of the folded hyperstable designs (Rd2NTF2_20 and

Rd2NTF2_16), we obtained high-resolution crystal structures.
Overall, the crystal structures are very close to the computational
design models (Fig. 3 D–G). Both designs feature structural ele-
ments that were not present in the known de novo NTF2 structural
space. Rd2NTF2_20 has an extended connection between H3 and
S3, recapitulated in the crystal structure (Fig. 3D), which enables
the use of a short helix 3. Rd2NTF2_16 features two new structural
elements, a bulge on the long arm (in addition to the ones flanking
the base), and an extended frontal hairpin, both recapitulated in the
crystal structure (Fig. 3F). The additional bulge enables higher
curvature on the long arm, contributing significant diversity to long-
arm structure, which is further increased by allowing different bulge
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Fig. 3. Characterization of second-round designs. (A) De novo NTF2 designs sorted by sheet structure and ordered by sheet curvature and length. Each
quadrant is colored by the average pocket volume of designs belonging to it. Orange frames denote quadrants for which stable designs were identified. Black
frames denote designs were tested, but no stable design was identified. (B) Stability score of algorithm designs (orange), compared to controls (gray) and
designs from the initial screening (blue). (C) Volume distribution of stable and unstable designs. (D) Crystal structure of stable design Rd2NTF2_20 (PDB ID
code 6W3W), which features a new, elongated helix three-strand connection. Despite significant differences between the model and structure in the
N-terminal helices, the new loop and the sheet are well recapitulated. (E) Core rotamers of Rd2NTF2_20. TYR101 (red, sticks) shows a significant deviation
from the model, and enables the change in location of helix 1. In contrast, PHE61 and GLY77 interact as modeled, showing the glycine rescue feature can be
designed from scratch. (F) Crystal structure of stable design Rd2NTF2_16 (PDB ID 6W40), which has a secondary bulge and an elongated frontal hairpin,
features not designed before. Both of these features are recapitulated in the crystal structure. As in Rd2NTF2_20, but not as dramatic, the Rd2NTF2_16 crystal
structure presents significant deviations from the model in the N-terminal helices. (G) Surface rendering of the model and crystal structure of Rd2NTF2_16,
showing the shallow pocket formed by the long arm and the frontal hairpin is recapitulated by the crystal structure.
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placements. The extended hairpin, which is only designable when
the base is sufficiently long, extends the pocket outwards, thereby
increasing its volume. In the case of Rd2NTF2_16, the combination
of these features yields a protein with a shallow groove instead of a
pocket (Fig. 3G). The ability to generate proteins with shallow
grooves with two open ends should enable design of binding sites
for polymers, such as peptides or polysaccharides. The properties of
the pockets in the crystal structures obtained in this work (SI Ap-
pendix, Table S7) span a broad range (SI Appendix, Fig. S22),
confirming the ability of the enumerative algorithm to generate a
diversity of pocket geometries.
The accuracy of the Rd2NTF2_20 and Rd2NTF2_16 compu-

tational models follows directly from the insights gained in the
first large-scale design round. Both proteins feature a glycine on
strand 4, enabling high curvature between the base and the long
arm, as described for the design Rd1NTF2_05 fivefold mutant,
and consequently incorporated in the enumerative algorithm. In
order to implement the glycine placement on strand 4 as gen-
erally as possible, the design protocol searches for large hydro-
phobic side chains to fill the void left by the glycine. In
Rd2NTF2_20, this is achieved by a phenylalanine in the same
conformation as the one observed in the design 0589 fivefold
mutant, while in Rd2NTF2_16 a void is left in the core. Unlike
design Rd1NTF2_05, in the Rd2NTF2_20 and Rd2NTF2_16
crystal structures the highly curved sheet conformation is in close
agreement with the model. In addition to generally supporting
the models created by the enumerative algorithm, the two crystal
structures provide information to improve the design method (SI
Appendix, Supplementary Information Text and Fig. S29). The

ability to design and properly model the sheet in de novo NTF2-
like proteins is of great importance, as this structural element is
the most involved in pocket structure.
Most of the 1,503 possible high-level parameter combinations

yield proteins that are too long to be encoded by assembling two
240-base pair oligonucleotides (the limit of what can be syn-
thesized at very large scale). To explore the parameter space that
generates these longer proteins, we characterized 10 designs that
are predicted to be stable by a logistic regression model trained
on the second high-throughput screening experiment data, and
have large pockets (500 to 1,200 Å3). Two of the 10 were mo-
nomeric and remained folded above 95 °C, a success rate similar
to that of the biochemical characterization of designs identified
in the second high-throughput experiment, suggesting that de
novo NTF2-like proteins longer than 120 amino acids with large
pockets are also designable using the enumerative algorithm (SI
Appendix, Figs. S30 and S31 and Table S8).
The goal of widely sampling NTF2 structural space is to pro-

duce structurally diverse pockets that can, in turn, harbor diverse
binding and active sites. Most effective methods to design such
sites do not rely on finding a preformed pocket with side chains
of the correct identity, in perfect arrangement and configuration.
Instead, they evaluate the ability of the protein backbone to
harbor a binding site—represented as a precalculated constel-
lation of side chains—for the small-molecule ligand or substrate
of interest (6, 7). Because of this focus on backbone structure
rather than complete atomic structure, we choose to analyze the
utility of the NTF2-like proteins we generate in terms of the
diversity of the backbone positions lining the inside of the cone

Fig. 4. Global comparison of de novo designed and native NTF2 structures. TMscores were computed for all pairs of structures, and the resulting distance
map was projected into two dimensions using UMAP. For the de novo designs, each parameter combination is represented by a single structure randomly
selected from the ensemble generated for that combination. Structurally similar proteins are closer together; the designs span a larger range of structural
variation than the native structures.
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formed by the backbone. The enumerative algorithm outputs,
alongside each model generated, a list of positions near the opening
of the cone, which exclude loops, and whose Cα-Cβ vectors point
toward the concave side of the sheet (Materials and Methods). We
can compare the geometric diversity of these positions to the po-
sitions lining the pockets of native proteins, as detected by CLIP-
PERS (24) (SI Appendix, Supplementary Methods). SI Appendix, Fig.
S32 shows the distributions of three parameters (angles α, β, and
distance D; defined in SI Appendix, Supplementary Methods and Fig.
S32A), which describe the geometry of pocket positions around the
pocket center of mass. Aside from differences that can be attributed
to the heuristics used for choosing pocket positions (see further
analysis in SI Appendix), the set of de novo proteins sample ge-
ometry space more thoroughly than native NTF2-like structures (SI
Appendix, Fig. S32 B–F).
To further compare pocket geometries of our de novo-generated

structures to those of native NTF2 proteins, we binned the Cα-Cβ
vectors lining each pocket based on their coordinates, and used
UMAP (22) to project these features into two dimensions for vi-
sualization. Maps without and with loop positions are shown in SI
Appendix, Fig. S33 A and B, respectively; in the former, the de novo
designed and native distributions overlap (we do not match the loop
variation in native structures in our designs); the structure and se-
quence of loops can be crucial for de novo-designed protein stability
and folding (this work and refs. 15, 18, 25, and 26) and controlling
complex loop structures, either by designing them from scratch or
by mutation, can be challenging (27, 28). See SI Appendix, Fig.
S33 C and D for UMAP hyperparameter exploration. The distri-
bution of Cα-Cβ geometries in the native and de novo proteins sets,
and grouping of structures by these features, show that our de novo
models sample geometry space more thoroughly than native NTF2-
like proteins, suggesting scaffolds better suited for de novo design of
binding and active sites may be found among our de novo models.

Suitability of Designed Scaffolds for Harboring Small-Molecule Binding
Sites. To probe the capability of the designed proteins to host
binding sites, we chose a set of 50 ligands from protein–small-
molecule complexes in the PDB, docked them into designed
and native NTF2 scaffolds using RIFDOCK (6), and designed the
surrounding amino acids to make favorable interactions with the
docked ligand (Materials and Methods and SI Appendix, Figs. S34
and S35). In these calculations, we used all second-round, stable
de novo models, and native NTF2 structures with pockets larger
than 30 Å3 (790 and 64, respectively). By limiting the docking and
design calculations to these 790 de novo NTF2 models, we are
conservatively assessing only the diversity associated with the de
novo proteins experimentally demonstrated to be stable. Because
RIFDOCK and other binding site design algorithms only take into
account the scaffold backbone, the existence of a pocket in the
model is not a requirement, but for this in silico experiment we
limit the designable positions to those lining the pocket designed
by Rosetta (selected by CLIPPERS using the full-atom model), to
provide a conservative estimate of the quality of binding sites that
can be designed in these scaffolds (less conservative approaches to
binding site design are described in Discussion).
After docking and design, we investigated whether the pocket

with the most favorable interactions was based on a de novo or
native NTF2-like protein for each ligand. The predicted binding
energy scales with the size of the ligand; for a ligand size-
independent measure, we calculated the mean and standard
deviation (SD) of protein interaction energy for all designs for
each ligand, and computed z-scores for each individual design
[z = (interaction energy −mean)/SD)]. As a summary statistic for
comparing the docks in native and designed proteins, we used
the difference in z-scores of the lowest energy (most favorable)
de novo designed protein dock and the lowest energy native
protein dock. Larger positive Δz-scores indicate a larger advan-
tage of the best de novo scaffold over the best native scaffold.

Despite the conservative choice of de novo designs, the de novo
proteins provide a better (lower ligand interaction energy)
pocket for 76% of all tested ligands (38 of 50), without obvious
biases in ligand molecular weight, charge, chemical groups, or
hydrophobicity (Fig. 5 and SI Appendix, Figs. S36 and S37). As
controls for this docking test, we included two small molecules in
the ligand set that are bound by the native NTF2 scaffolds (PDB
ligand codes EQU and AKV, bound by 1OH0 and 2F99, re-
spectively) and found that native-like poses are recovered when
the bound ligand conformer found in the crystal structure is used
(SI Appendix, Fig. S38). The de novo scaffold with the largest
number of top ranking docks is Rd2NTF2_03, one of the designs
found to be folded and highly stable (SI Appendix, Fig. S39). The
observed advantage of de novo structures in binding site scaf-
folding should increase with the number of de novo designed
structures generated, while the rate of growth of the native set is
limited to what has been sampled by evolution.
As the overarching goal of this work is to expand the set of

available protein structures with pockets, we generated a final set
of scaffolds that incorporates all of the lessons from previous ex-
periments. Improvements in the enumerative algorithm, both in
sequence design and backbone generation resulted in increased
diversity (1,619 unique parameter combinations) and improved
stability-related metrics (see SI Appendix, Supplementary Methods
and Figs. S33, S34, and S40 for pocket diversity). We have made
this set of 32,380 scaffolds (20 models with different sequences per
parameter combination) available for general use as starting
points for ligand binding and enzyme design.

Discussion
Our enumerative algorithm may be viewed as encoding the “pla-
tonic ideal” of the NTF2-like structural superfamily along with a
method for essentially unlimited sampling structures belonging to
it, in a fashion directly tied to pocket structure. In terms of
Structural Classification of Proteins–Extended (SCOPe) cate-
gories (29), each combination of top-level parameters can be
thought of as a protein family, and the set of all combinations, the
de novo NTF2-like structural superfamily. Whereas in our previ-
ous work four NTF2 structure blueprints were manually con-
structed, the new enumerative algorithm samples through over
1,600 unique blueprints that result in well-formed backbones. This
represents a qualitative jump in the structural diversity that can be
achieved for complex folds by de novo protein design.
Our experience in developing the enumerative algorithm for

NTF2-like structures suggests guidelines for developing similar
enumerative algorithms for other folds. First, determine the
common structural elements that are part of all proteins in the
target family: each stage of our algorithm builds one of such
elements for the NTF2 fold. Second, identify a subset of ele-
ments that together form a central hub: In NTF2-like proteins,
the hub is the curved sheet, and all stages use it as a reference
point. Third, analyze how the properties of the elements covary
due to larger structural constraints: For example in de novo
NTF2-like proteins, at stage 2, the length of strands 1 and 2 is
limited by the width of the sheet base, and the length of helix 4
and its connection to the sheet are dictated by the shape of the
sheet. Fourth, simplify and adapt structural elements and their
connections to rules that are well understood: We base the sheet
construction on previously described principles, limit the length
and torsions of many structural elements to a few easy-to-pair
options, and make use of the knob-socket packing description
(30) to arrange structural elements relative to each other (SI
Appendix, Fig. S3). Even with these simplifications, the combi-
nation of relatively simple elements leads to a high level of
structural diversity.
The generative approaches to de novo protein structure design

so far described in the literature, rule- or model-based, either
focus exclusively on helical structures (31–33), are not geared
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toward atomic-detail modeling and design (34), or sacrifice fine-
grained structural control for structural diversity (35). Machine-
learning–based generative models show considerable promise
(35, 36), but have not yet been applied to the direct generation of
full atomic structures with specific features of interest, as we do
here for scaffolds containing a varied geometry of binding
pockets. We hope the experimental data generated in this work
will aid the development of models that more efficiently produce
protein structures with finer control over atomic detail and
greater diversity.
We provide several sets of de novo NTF2 models, and an al-

gorithm to generate an unlimited number of them, to help the
community address the challenge of finding an ideal scaffold in
which to design a binding or active site. Because our algorithm
can sample NTF2 space at different structural resolutions, we
propose a hierarchical strategy to find the best-fitting scaffold for
binding a specific ligand: First, use RIFDOCK to quickly dock
and design binding sites on a set of scaffolds that sample a wide
range of high-level parameters, and select a subset of parameter
combinations that fit the ligand most favorably. Then, use the
enumerative algorithm to create more models with these high-
level parameter combinations, sampling the selected subspace

more deeply, and dock and design with more exhaustive RIFDOCK
settings. We should note that, as indicated by the differences be-
tween the experimental structures we obtained and their compu-
tational models, after a binding or active site is designed in a de
novo NTF2 model, protein structure refinement and/or evaluation
by independent measures, such as molecular dynamics simula-
tions, is advisable to increase the likelihood that the desired active
or binding site is recapitulated in the protein structure (37). Up to
now, protein design for a specific function has relied either on
searching through the scaffolds in the PDB, or generating small
variations of a limited set of de novo scaffolds. Our approach now
enables going far beyond both approaches by searching through an
essentially unlimited set of generated scaffolds.
The experimental characterization of many of our designs shows

that the enumerative algorithm samples a wide range of feasible
structure space, and that designs usually fold as modeled. The
insights we gained in learning to produce these diverse proteins
can be harnessed to improve the success rate in future protein
design efforts. Furthermore, our approach could be implemented
for other protein folds to expand structural diversity even further.
In combination with existing docking and design methods, the
enumerative algorithm here presented should open the door to

Fig. 5. Comparison of de novo designs to native structures for ligand docking and design. Following docking and design into our de novo designed and
native protein scaffolds, ligand binding energies were computed and converted to z-scores. The y axis is the difference between the z-scores obtained for the
best designed and best native scaffolds; higher values indicate that the best design had a more favorable binding energy and hence was a better scaffold for
the ligand. Ligands are arranged along the x axis in order of Δz-score. In each panel bars are colored by ligand properties, from top to bottom: molecular
weight (Da), charge at pH 7.5, and hydrophobicity (LogP).
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design of novel functions by eliminating the limitations imposed by
current protein structural databases, and enabling scaffold gen-
eration custom-tailored to function.

Materials and Methods
Enumerative Algorithm for Proteins from the NTF2-like Superfamily. All code
can be downloaded from GitHub (https://github.com/basantab/NTF2Gen).

The NTF2Gen repository contains all of the tools for de novo design of
NTF2-like proteins. The main script is CreateBeNTF2_backbone.py, which
manages the construction of NTF2 backbones, followed by Design-
BeNTF2.py, which designs sequence on a given backbone generated by the
previous script. To generate backbones from a specific set of parameters, use
CreateBeNTF2PDBFromDict.py. The fundamental building blocks of the
backbone generation protocol are Rosetta XML protocols (included in the
repository) that are specialized instances of the BlueprintBDRMover Rosetta
fragment assembly mover. All checks and filters mentioned in Results pre-
vious to design are implemented either in the XML files or the Python
scripts. Additional backbone quality controls are run after each step (SI
Appendix, Supplementary Methods). The design script is also based on a set
of XML protocols, one for each of three stages. The glycine placement in
highly curved strand positions and the selection of pocket positions are
managed by DesignBeNTF2.py (see the BeNTF2seq/Nonbinding directory).
Pocket positions are selected by placing a virtual atom in the midpoint be-
tween the H3–S3 connection and the S6 bulge, and choosing all positions
whose Cα-Cβ vector is pointing toward the virtual atom (the Vatom-Cα-Cβ

angle is smaller than 90°), excluding positions in loops, and their Cα is closer
than 8 Å, this information is stored in the each model PDB file under the
PDB-Info labels, with the tag “Pckt”.

De Novo NTF2 Backbone Generation and Sequence Design for the First Round
of High-Throughput Screening. Backbones were constructed as described in
Marcos et al. (5). For families not described in said paper (i.e., BBM2nHm* de-
signs), the same backbone construction algorithms were used, but parameters
were changed accordingly. Scripts for producing all these backbones can be
found at https://github.com/basantab/NTF2Analysis, NewSubfamiliesGeneration.
The sequence design protocol for the first round of designs can be found in the
above-mentioned GitHub repository. Briefly, the design protocol begins by
generating four different possible sequences using the Rosetta FastDesignmover
in core, interface, and surface layers separately. Then, random mutations are
tested, accepting only those that improve secondary structure prediction without
worsening score, introducing Ramachandran outliers, or worsening the shape
complementarity between helices and the rest of the protein.

Design of Gene Fragments for Multiplex Gene Assembly. In order to obtain full-
length genes from fragments synthetized in DNA microarrays, they must be
assembled from halves, as described in Klein et al. (19). To generate highly
orthogonal overlaps, we generated DNA sequences using DNAWorks (38),
then split the gene in half and altered the composition of around 20 over-
lapping nucleotides to have as low homology as possible with other halves in
the pool, while maintaining an adequate melting temperature, GC content,
and staying below the maximum oligonucleotide length (230 nucleotides).
This optimized version of the algorithm described in Klein et al. (19) can be
found at https://github.com/basantab/OligoOverlapOpt.

Protease-Based High-Throughput Stability Screening. The protease-based
high-throughput stability screening was carried out as described in Rocklin
et al. (18). Briefly, genes encoding for thousands of different de novo NTF2
sequences cloned in the pETCON2 vector, which has the protein of interest
expressed as a chimera of the extracellular wall yeast protein AgaII, on its C
terminus, connected by a “GS” linker of alternating glycine and serine. The
protein of interest is followed by a myc-tag (EQKLISEEDL). This library is
transformed in yeast for surface display in a one-pot fashion using electro-
poration. Different aliquots of the yeast culture are then subject to in-
creasing concentrations of trypsin and chymotrypsin, and labeled with an
anti-myc tag antibody conjugated to fluorescein. Cells still displaying full
proteins (myc-tag–labeled) after this treatment are then isolated by FACS.
Deep-sequencing of the sorted populations reveals which sequences are
protease-resistant and to what degree, providing an estimate for folding
free energy. The metric reported by this assay is the stability score, an esti-
mate of how much protease is necessary to degrade a protein over that
expected if the protein was completely unfolded. A stability score of 0 in-
dicates that the protein is degraded by the same amount of protease as
expected if it was unfolded, (i.e., it is likely completely unfolded). A stability

score of 1 indicates that 10 times more protease is required to degrade the
protein than expected if it was completely unfolded.

LASSO Logistic Regression Model Training on Stability Data. To identify features
that predict stability, we trained LASSO (Least Absolute Shrinkage and Selection
Operator) logistic regression models (39) using the features described in SI
Appendix, Tables S9–S16, after normalization. A logistic regression model
predicts the probability of a binary outcome using a logistic function that de-
pends on a weighted summation of features. By sampling a series of L1 regu-
larization values, we obtained models with varying degrees of parsimony, and
for each of those L1 values we also generated different random partitions of
our dataset. This way, for each L1 value we obtained models with a spread on
accuracy, which we used for selecting an L1 regularization value that maximizes
accuracy and minimizes complexity (i.e., the number of features with weight
different from 0). The simplest measure of the importance of each feature is the
magnitude of the assigned coefficient.

The data and code for this analysis derived from the first high-throughput
experiment can be found at https://github.com/basantab/NTF2analysis, Protea-
seAnalysisExp1/LassoLogisticRegression.ipynb. Analysis of data from the second
high-throughput experiment can be found at: https://github.com/basantab/
NTF2analysis, ProteaseAnalysisExp2/LassoLogisticRegression_new_version.ipynb.

Crystallography Data Collection and Analysis Metrics. To prepare protein
samples for X-ray crystallography, the buffer of choice was 25 mM Tris,
50 mM NaCl, pH 8.0. Proteins were expressed from pET29b+ constructs to
cleave the 6xHis tag with tobacco etch virus (TeV) protease. Proteins were
incubated with TeV protease (1:100 dilution) overnight at room tempera-
ture and cleaved samples were loaded to a Ni-NTA column preequilibrated
in 25 mM Tris, 50 mM NaCl, pH 8.0+30 mM Imidazole. Flow-through was
collected and washed with one to two column volumes. Proteins were fur-
ther purified by FPLC size-exclusion chromatography using a Superdex 75 10/
300 GL (GE Healthcare) column, and specific cleavage of the 6xHis tag was
verified by SDS/PAGE.

Purified proteins were concentrated to ∼10 to 20 mg/mL for screening
crystallization conditions. Commercially available crystallization screens
were tested in 96-well sitting or hanging drops with different protein:pre-
cipitant ratios (1:1, 1:2, and 2:1) using a mosquito robot. When possible,
initial crystal hits were grown in larger 24-well hanging drops. Obtained
crystals were flash-frozen in liquid nitrogen. X-ray diffraction data sets were
collected at the Advanced Light Source. Crystal structures were solved by
molecular replacement with Phaser (40) using the design models as the
initial search models. The structures were built and refined using Phenix (41,
42) and Coot (43). Crystallization conditions and data collection and re-
finement statistics can be found in the SI Appendix, Supplementary Methods
and Table S17.

UMAP Embedding of NTF2 Designs. UMAP (22) is a dimension reduction technique
widely used for visualization of high-dimensional data. We obtained the code
for running UMAP by following instructions in https://umap-learn.readthedocs.
io/en/latest/. For generating the embedding, UMAP requires a distance measure
between points, for which we provided 1-TMscore between all analyzed struc-
tures. We ran UMAP in a Jupyter notebook with different metaparameter
combinations and verified that the general cluster structure was conserved
among all of them, and that structural features were reflected in the groupings.
The code and files necessary for generating the UMAP-related figures can be
found in the GitHub repository https://github.com/basantab/NTF2analysis,
UMAP_embedding and Pocket_position_vector_analysis.

Ligand In Silico Docking Test. The goal of the ligand in silico docking test is to
provide an estimate of how de novo NTF2-like proteins compare to native
ones in terms of their ability to harbor arbitrary binding sites. We used
RIFDOCK (6) for simultaneous docking and design based on a set de novo
and native protein backbones. As RIFDOCK only uses backbone coordinates
and a list of pocket positions to dock the ligand and design a binding site
around it, it can be used in a sequence-agnostic way. We selected and
prepared (see ligand preparation in SI Appendix, Supplementary Methods) a
subset of 50 ligands from all nonpolymeric PDB ligands (Ligand Expo, ligand-
expo.rcsb.org) using k-means clustering on physical and chemical features
(see SI Appendix, Fig. S30, and the 50_ligand_table.html file at https://
github.com/basantab/NTF2analysis/tree/master/ligandInSilicoDockingTest).
The number of ligands tested was limited to 50 for computational tracta-
bility, as RIFDOCK uses a significant amount of resources per ligand and
scaffold: >3 h in 32 cores and 64 GB of RAM on average per ligand, to
generate the initial rotamer interaction field (RIF), and ∼2 h in 32 cores
using >20 GB of RAM, per ligand for docking in a subset of 12 scaffolds. As
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NTF2-like native representatives, we selected 64 structures with pockets
(pockets detected and defined as described in the SI Appendix, Supple-
mentary Methods) from the SCOPe2.05 database (described in SI Appendix,
Supplementary Methods). In order to provide a conservative estimate of
pocket diversity and aid computational tractability, we limited the set of de
novo designs used for docking to those stable (stability score > 1.55) and
with detectable pockets in the concave side of the sheet (>25% overlap
between CLIPPERS-detected pocket and backbone-based pocket positions,
and >30 Å3 volume), resulting in 790 different de novo sequences (see
https://github.com/basantab/NTF2analysis “ligandInSilicoDockingTest” for
relevant files). Pocket residues were detected using CLIPPERS, as described in
SI Appendix, Supplementary Methods, and only positions lining the pocket
of the scaffolds this way, including loops, were considered for binding site
design by RIFDOCK. We generated five binding site designs per scaffold per
ligand, and sorted them by “packscore,” a measure of favorable Van der
Waals interactions and hydrogen bonds, with bonuses for bidentate (one
side chain contacting two hydrogen-bonding ligand atoms) interactions. We
measured the capacity of de novo scaffolds to accommodate binding sites
better than natives by subtracting the best (lowest) de novo packscore
z-score from the best native packscore z-score, as described in the main text.

Data and Code Availability. The atomic coordinates have been deposited in the
Protein Data Bank, www.wwpdb.org (PDB codes: 6W3D, 6W3F, 6W3G, 6W3W,

and 6W40). In order to facilitate reproducibility, improvement, further analysis
and use of the models and information in this work, we have made all relevant
data and code publicly available on basantab/NTF2Analysis and basantab/
NTF2Gen GitHub repositories (GitHub repositories: https://github.com/basantab/
NTF2Gen and https://github.com/basantab/NTF2analysis). All sequences, PDB
models, analysis scripts, and data tables for the first high-throughput experi-
ments can be found in the ProteaseAnalysisExp1 folder of NTF2Analysis, and
ProteaseAnalysisExp2 for the second high-throughput experiment. The set of
32,380 scaffolds, available for general use as starting points for ligand binding
and enzyme design, is available in the BeNTF2seq/design_with_PSSM/final_set
folder in the basantab/NTF2Gen GitHub repository.
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