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Neighborhood Emission Mapping 
Operation (NEMO): A 1-km 
anthropogenic emission dataset in 
the United States
Siqi Ma    & Daniel Q. Tong   

We present an unprecedented effort to map anthropogenic emissions of air pollutants at 1 km spatial 
resolution in the contiguous United States (CONUS). This new dataset, Neighborhood Emission 
Mapping Operation (NEMO), is produced at hourly intervals based on the United States Environmental 
Protection Agency (US EPA) National Emission Inventories 2017. Fine-scale spatial allocation was 
achieved through distributing the emission sources using 108 spatial surrogates, factors representing 
the portion of a source in each 1 km grid. Gaseous and particulate pollutants are speciated into model 
species for the Carbon Bond 6 chemical mechanism. All sources are grouped in 9 sectors and stored in 
NetCDF format for air quality models, and in shapefile format for GIS users and air quality managers. 
This dataset shows good consistency with the USEPA benchmark dataset, with a monthly difference 
in emissions less than 0.03% for any sector. NEMO provides the first 1 km mapping of air pollution over 
the CONUS, enabling new applications such as fine-scale air quality modeling, air pollution exposure 
assessment, and environmental justice studies.

Background & Summary
Emission, or the release of gases and particles from the Earth’s surface into the atmosphere, is the starting point 
of many Earth system processes responsible for some of the greatest environmental challenges today, such as 
air pollution, acid deposition, and climate change1–3. The World Health Organization (WHO) estimates that 
exposure to ambient air pollution has been associated with 7 million premature deaths per annum, making it the 
single largest environmental risk today4. In the United States, over one third of the population lives in areas not 
attaining the health-based National Ambient Air Quality Standards (NAAQS) for ozone (O3) and/or fine partic-
ulate matter (PM2.5)5. Air quality and public health managers have an important task to protect public health by 
alerting the population when forecasts predict the exceedance of the NAAQS, which critically depends on the 
accurate prediction of the timing, location, and severity of unhealthy air quality episodes6,7.

Air quality models used for forecasting and policy studies rely on detailed mapping of emission sources to 
predict spatio-temporal variations of air pollution. Air pollutants can be directly emitted (primary) or formed in 
the atmosphere through chemical/physical processes (secondary)8. While PM2.5 can have both primary and sec-
ondary origins, O3 is mostly formed through photochemical reactions in the troposphere9,10. Consequently, the 
collocation of emitted pollutants and their precursors, that affects the chemical transformations, localized dis-
persion and deposition, is a major factor controlling the variability of concerned atmospheric constituents11–13. 
Better spatially resolved emission data allows further improvement of atmospheric composition prediction for 
air quality early warning and management14–16. Chemical transport models can provide the knowledge of ver-
tical atmospheric constituents as priori for the retrievals of satellite products17–20. As technology advances, the 
instruments are able to observe at higher spatial resolution, requiring a priori information at a finer resolution as 
well. Similarly, fine resolution emission and concentration data can provide new insight into population expo-
sure to air pollution21–23.

Numerous approaches have been utilized to map greenhouse gases and air pollutants at high spatial res-
olution. A global CO2 emission dataset with 1 km resolution was developed by using the satellite observed 
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nighttime lights24, and a global ammonia emission inventory with 0.1° resolutions was created with updated 
emission factors and data products25. Within the US, the DAtabase of Road Transportation Emissions (DARTE) 
provides annual emissions of on-road CO2 over the contiguous United State (CONUS) at 1 km resolution based 
on the roadway-level and emission factors26. The Vulcan v3.0 CO2 emissions data was generated at 1 km and 
hourly resolution which includes various anthropogenic source sectors27. Additionally, a sub-neighborhood 
(~100 m) surface NO2 dataset over the CONUS was presented using land-use regression (LUR) models along 
with observational and modeling data28,29. These datasets usually focus on a single emission species, and are 
often inadequate for some applications, such as air quality modeling. A high-resolution emission dataset that 
contains all co-emitted major air pollutants is desirable to support various applications in air quality modeling, 
public health, and environmental management.

In this study, we present a new high‐resolution anthropogenic emission dataset, called the Neighborhood 
Emission Mapping Operation (NEMO), that maps all major sources in the CONUS. It includes the emissions 
from nine sectors, accounting for 854 individual source types, based on the 2017 National Emissions Inventory 
(NEI). The emission data are mapped at 1 km spatial gridding and at hourly intervals. These air pollutants are 

Sector Type Sector Description
Spatial/Temporal 
resolution Related surrogate code

afdust nonpoint Anthropogenic fugitive dust emissions County/Annual 240, 304, 306, 308, 310, 340

ag nonpoint Agricultural ammonia sources County/Annual 100, 310

nonpt nonpoint Nonpoint sources not in other sectors County/Annual
100, 150, 170, 180, 190, 239, 240, 244, 
271, 300, 306, 307, 308, 310, 319, 320, 
505, 535, 650, 711, 801

np_oilgas nonpoint Nonpoint oil and gas-production-related sources County/Annual
670, 671, 672, 674, 678, 679, 681, 683, 
685, 687, 691, 692, 693, 694, 695, 696, 
697, 698, 699

rail nonpoint Locomotive sources on railroads County/Annual 100, 261, 271

rwc nonpoint Residential wood combustion sources County/Annual 100, 300

non-road mobile On-land mobile sources not on roads or railroads County/Monthly 100,261, 304, 305, 306, 307, 308, 309, 310, 
320, 321, 350, 850, 860

on-road mobile On-land mobile sources that drive on roads County/Monthly 100, 242, 244

airports point Airport emissions Lonlat/Annual NEI Latitude/Longitude

Table 1.  Overview of NEI2017 inventory used for the emission processing.

Fig. 1  Procedures to generate the 1 km NEMO emission dataset. The rectangles represent input/output files, 
and the rounded-corner rectangles indicate the tools/programs/models used for the processes. SA v4.4 is the 
Spatial Allocator version 4.4, a tool used to create spatial surrogates. ST v5 is the Speciation Tools version 5 used 
to create chemical speciation profiles. The other programs, including spcmat, temporal, smkinv, mrggrid and 
smkmerge, are tools provided by the Sparse Matrix Operator Kennel Emission (SMOKE) package.
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further split into chemical species consistent with the Carbon Bond 6 (CB6) chemical mechanism, so that the 
data can be used to drive air quality models such as the Community Multiscale Air Quality (CMAQ) model30 
and the Weather Research and Forecast with chemistry (WRF-chem) model. The data are available in the 
NetCDF format, and annual data are also provided in the shapefile format for VOCs, NOx, CO, SO2, NH3, and 
PM2.5. In addition, a web-based data portal has been set up to provide online emission data services for inter-
ested users. This, to our knowledge, is the first effort to map all major air pollutants at 1 km resolution for the 
entire CONUS. The dataset, along with the data access, is expected to enable new applications such as fine-scale 
air quality modeling, air pollution exposure assessment, and environmental justice studies.

Methods
The anthropogenic emissions in this dataset are generated based on the 2017 National Emissions Inventory 
(NEI2017) from the US Environmental Protection Agency (US EPA). Since the NEI only provides aggregate 
emissions for each county, four steps were taken to generate the high-resolution emission dataset, including 1) 
spatial allocation; 2) chemical speciation; 3) temporal allocation, and 4) merging. These four steps are imple-
mented by the Sparse Matrix Operator Kernel Emissions (SMOKE) model31, and the configuration files (usually 
called profiles) used for the allocation and speciation in SMOKE can be generated with various tools or provided 
by the ancillary datasets from US EPA. The information of the emission inventory and other data and tools is 
described as follows.

Base emission inventories.  The NEI2017 (version 2017gb) compiled by US EPA is used to develop the 
high-resolution emission dataset. There are hundreds of individual emission sources in NEIs, which are grouped 
into nine emission sectors, including six nonpoint sectors, two mobile sectors, and the point sector (Table 1). Each 
emission source is identified by a unique source classification code (SCC). Except the point source, all sources 
are provided at county level. For each county, the NEI lists the annual amounts of emitted air pollutants, includ-
ing fine and coarse particulate matter (PM2.5 and PM10), nitrogen oxides (NOx), carbon monoxide (CO), sulfur 
dioxide (SO2), ammonia (NH3), and volatile organic compounds (VOCs). Point sources are represented as the 
individual facilities (energy, industrial, and manufacturing facilities), usually at specific latitude/longitude coor-
dinates, rather than as county or tribal aggregates. In NEI2017, all point sectors are treated as elevated sources, 
so in this dataset we only consider the airports sector, which has surface level of emissions and can be processed 
into two-dimension gridded files. The Motor Vehicle Emissions Simulator (MOVES) version 2014b generates 
county-level emission factors from on-road mobile sources, which include monthly county-level emissions from 
motorized vehicles that are normally operated on public roadways. In addition, emissions from nonroad sources, 
such as nonroad engines and equipment, construction equipment, and agricultural engines, are also calculated 
by the nonroad component of the EPA’s MOVES model (MOVES-Nonroad). For the estimated emission records, 
quality assurance (QA) has been implemented and reviewed by EPA and state, local, and tribal agencies. Detailed 
information about the emission inventory is provided in the NEI2017 Technical Support Document (TSD)32 and 
all the inventory files, as well as the emission processing platform, can be downloaded from EPA FTP33.

Chemical speciation.  Some of the pollutants (namely NOx, VOCs, PM2.5 and PM10) in the emission inven-
tory cannot be directly used by chemical transport models, unless distributed into model species of a specific 
chemical mechanism. The model species can be individual chemical compounds (explicit species) or groups of 
species (lumped species). In the NEI2017, we use the Carbon Bond 6 (CB6) chemical mechanism34 to split gase-
ous pollutants (NOx and VOCs), and the Aerosol 7 (AERO7) aerosol mechanism35 to split particulate pollutants 
(PM2.5 and PM10) into required model species.

Chemical speciation of the pollutants is achieved using detailed chemical profiles that allocate an aggregate 
pollutant to required model species. For VOCs, the speciation profiles generally have two types, “CRITERIA” 
and “INTEGRATE”. “CRITERIA” means all model species are speciated from the total VOC emissions in 
NEI. This VOC speciation approach is applied to point sources and several area sources that are not included 
in the Hazardous Air Pollution (HAP) inventory. The other VOC speciation approach, called Integration or 
“INTEGRATE”, is used for onroad, offroad and some area source sectors. This approach aims to integrate two 

Feature NEMO Dataset 1 NEMO Dataset 2

Format NetCDF shapefile

Base year 2017

Sectors Anthropogenic fugitive dust (afdust), agriculture (ag), non-point (nonpt), oil and gas operations (np_oilgas), 
onroad, nonroad, rail, residential wood combustion (rwc), and airports

Temporal resolution hourly, monthly, annual annual

Spatial resolution 1 km × 1 km

Grid projection Lambert Conformal Conic projection

Variables

Model species for Carbon 
bond 6 (hourly and 
monthly), VOCs, NOx, 
SO2, CO, NH3, PM2.5 
(annual)

VOCs, NOx, SO2, CO, NH3, PM2.5

Supported models CMAQ, WRF-chem

Table 2.  Information of NEMO emission dataset.
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NEIs, NEI2017 and HAP NEI, for select VOC HAPs. For these HAPs, the HAP NEI is generally considered a 
better data source than speciated VOC in NEI2017. Five VOC HAPs, including naphthalene (NAPH), benzene 
(BENZ), acetaldehyde (ALD2), formaldehyde (FORM) and methanol (MEOH) collectively called NBAFM, 
are explicitly represented in the CB6 chemical mechanism. The “INTEGRATE” profiles are used to subtract 
NBAFM from the total VOC during the speciation processes to avoid double counting emissions. For instance, 
in the airports sector, the NEI2017 provides the total VOC emission named as “VOC” and no integration is 
needed for the chemical speciation. All the model species are speciated from the “VOC” in the NEI2017. In 
contrast, the onroad and offroad emission inventory provides specific emissions for HAP species (i.e., NBAFM) 
and the VOC emissions that exclude those species. Therefore, these HAP will be removed from the criteria VOC 
mass, and the profiles are generated by removing the specified HAP species from the “CRITERIA” profiles, and 
then renormalizing. Detailed information of the use of HAP along with NEI VOC, called “HAP-CAP integra-
tion”, and the integration status for each emission sector can be found in the Table 3-4 of the TSD for the 2016 
NEI Collaborative36.

The speciation profiles for most emission sectors can be created by the Speciation Tools37 on the basis of 
SPECIATE database38 which is developed and maintained by the Office of Research and Development (ORD) of 
US EPA. The only exception is that the speciation profiles of the mobile sources (on-road and non-road sectors, 
other than for California) are generated by the Motor Vehicle Emissions Simulator (MOVES)39. Similar to the 
VOC, the speciation information of PM is also supported by the SPECIATE and can be generated using the 
Speciation Tools and MOVES. For NOx, the speciation is based on a NO2 weight factors, speciating total NOx 
into NO, NO2, and/or HONO. The speciate profiles for different emission sources and locations are differenti-
ated by the SCC and county/state, managed through a cross-reference file that links SCC for each county/state 
to a specific speciation profile. In NEI2017, the speciation profiles for the CB6 mechanism are already prepared 
by EPA, which are created based on the SPECIATE5.0 database33.

Fig. 2  Annual emission of volatile organic compounds (VOC), their emission distribution frequency diagrams, 
diurnal variations, and portions of speciated model species of total VOC. The data are generated based on 
NEI2017.
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Temporal allocation.  NEI provides annual totals but models require the information of finer temporal 
variations (monthly, weekly, daily and hourly). Distributing aggregated emissions to a finer (hourly) temporal 
resolution to meet the model requirement is realized by the temporal allocation process. For the source sectors 
with annual emission records (Table 1), three temporal allocation profiles (annual-to-month, month-to-day, and 
diurnal) are applied. For the sectors with monthly emission records, the annual-to-month allocation will not 
be used. The temporal allocations are also based on the profile files which are obtained in several ways. The 
temporal profiles of most sectors are created based on the operational data from different agencies/industries, 
such as the Federal Aviation Administration (FAA) operations and performance data for airports sector and 
Association American Railroads (AAR) Rail Traffic data for rail sector. For some sectors, the temporal variations 
of the emissions are also controlled by meteorological conditions. Therefore, the meteorology-based temporal 
profiles are developed using a tool called “gentpro” using the weather data. These weather-adjusted profiles are 
applied to three sectors: anthropogenic fugitive dust, residential wood combustion, and agriculture. The tempo-
ral allocation of on-road sources is based on a combination of traditional temporal profiles and the influence of 
meteorology. The on-road inventory used in this study is in the Flat File 2010 (FF10) format processed from the 
MOVES outputs; therefore, the temporal profiles for this format are derived from MOVES and supported in the 
platform33. The temporal profiles for each source and county/state are assigned using a cross-reference file that 
links Federal Information Processing System (FIPS) code/SCC/pollutant to different monthly/weekly/diurnal 
temporal profiles.

Spatial distribution.  A major challenge to develop a neighborhood level emission dataset is how to spatially 
distribute the county-level emission aggregate from NEI into locations at finer scale. In this study, county-level 
emissions from nonpoint and mobile sources are spread among the grid cells intersecting the county by using 
spatial distribution profiles (namely spatial surrogates). A spatial surrogate ratio is a value greater than zero and 
less than or equal to unity that specifies the fraction of the emissions in an area (usually a county) that should be 

Fig. 3  Annual emission of fine particulate matter (PM2.5), their emission distribution frequency diagrams, 
diurnal variations, and portions of speciated model species. The data are generated based on NEI2017.

https://doi.org/10.1038/s41597-022-01790-9


6Scientific Data |           (2022) 9:680  | https://doi.org/10.1038/s41597-022-01790-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

allocated to a particular model grid cell (a 1 km2 square in this case). As the area of a given county may fall into 
several grid cells, spatial surrogates need to be used to indicate the fraction of the county’s emissions assigned 
to each grid cell. These surrogates are created based on geographic information systems (GIS) shapefiles which 
include the geographic information, such as population/housing, roadways, and land cover (Supplementary 
Table 1) which act as weight factors when calculating different types of surrogate ratios. A spatial surrogate ratio 
file includes the grid description, surrogate code, FIPS, column/row number of the model grid, and spatial sur-
rogate ratio (spatial factor).

In this study, the spatial surrogates for the 1 km × 1 km grids were generated using a surrogate generating tool 
Spatial Allocator (SA) coupled with the PostgreSQL database management system. The SA, developed by the 
University of North Carolina Community Modeling and Analysis System (CMAS), is a suite of tools to create 
input files for weather and air quality models. More specifically, the surrogate tools of SA were used to create a 
large set of spatial surrogates, and to merge and gap-fill these surrogates when necessary. The source code and 
scripts, as well as detail documentation of the SA tools can be downloaded from the CMAS center40. The pro-
cedures can be summarized in five steps: (1) Install the Spatial Allocator41 along with PostgreSQL software, and 
collect shapefile data from the EPA42 or commercial vendors; (2) Activate PostgreSQL server, create a database 
and load the shapefile data into database; (3) Generate a table representing the modeling grid in the database; 
(4) Generate surrogate files using SA tools; (5) Gap-filling, normalization, and quality assurance. For the con-
tiguous United States (CONUS), a total of 108 spatial surrogates were prepared, including 12 U.S. census-based 
surrogates, 24 transportation surrogates (roadways, railways, bus terminals and idling), 17 landcover surrogates, 
20 surrogates for building footprints, 23 surrogates that describe oil and gas well production, 6 surrogates for 
shipping and ports, and 6 for other industrial and commercial activities like refineries and tank farms, airports, 
golf courses, mines, and timber. The surrogate information and relevant shapefile data used for our dataset are 
provided in Supplementary Table 1.

Generating 1 km emission dataset.  With the base emission inventories, chemical speciation, temporal 
profiles and spatial surrogate ratios, we generate the 1 km emission dataset using the SMOKE model version 4.7 
for all nine anthropogenic emission sectors. This process takes four steps. First, the chemical profiles are used to 
speciate NOx, VOCs, PM2.5 and PM10 into required chemical species for each source/location. Next, all emission 
records are distributed to 1-hour intervals from the 2017 annual or monthly total emissions using SCC‐specific 
temporal profiles. Third, the spatial surrogate ratios are used to distribute county-level emissions into 1 km × 1 km 
grids. Finally, all gridding, speciation, and temporal matrices are combined to create model-ready emission data 
at 1 km horizontal resolution and hourly intervals in the netCDF format.

For each of the emission sectors, the above processes are repeated, so that the combined datasets are gen-
erated for each sector. The gridded emission will be stored by sectors and can be merged using a SMOKE tool 
(mrggrid) as needed, depending on the needs of the model simulation. The flow chart in Fig. 1 depicts the 

Fig. 4  Temporal variations and sector contribution of seven representative species in NEMO and comparison 
to the NEI2017 benchmark dataset: (a) monthly variations of VOCs, NOx, CO, SO2, PM2.5, particulate organic 
carbon (POC) and particulate elemental carbon (PEC) emission in NEMO; (b) the difference (%) from the 
benchmark; (c) contribution by each emission sector (c) and (d) their differences (%) from the benchmark.
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steps for generating the emission data and Table 1 shows the emission sectors that this dataset includes. For the 
all-sector merged emission data, we also convert the data into the Shapefile format, so that users may be able to 
visualize the data along with other maps (such as highways and street maps).

Fig. 5  Surface anthropogenic NOx emissions from the benchmark (12 km) and NEMO (1 km) datasets in 
five metropolitan cities, Atlanta (a,b), DC (c,d), Houston (e,f), Los Angeles (g,h) and New York City (i,j). The 
brown lines indicate the state/interstate roadways, the black lines with vertical short lines mean the railways, the 
symbols with plane indicate the locations of airports and the marks with ferry indicate the locations of ferries 
and ports.
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Data Records
Table 2 summarizes the information of the generated 1 km emission dataset. This emission dataset is stored in 
two formats: NetCDF for modeling and analysis, and Shapefile for use with GIS software. Both formats have the 
same emission sectors with 1 km2 resolution. The NetCDF format contains hourly, monthly, and annual data 
while the Shapefiles only include annual emissions. Additionally, the NetCDF provides the model species for 
CB6 mechanism in the hourly and monthly data files while the shapefiles include integrated species like VOCs, 
NOx, PM2.5, and three inorganic gases, SO2, CO, and NH3. Figures 2 and 3 shows the example of the annual 
emission distributions of VOC and PM2.5, along with their frequency diagrams, as well as the diurnal variations 
and the proportions of each speciated model species from VOC and PM2.5. The datafiles of monthly and annual 
emissions that are available on figshare43, while the hourly emission data are stored on our data server at George 
Mason University44 because of the large file sizes.

Technical Validation
Comparison with the EPA benchmark dataset.  Here we compared the NEMO dataset against the 
12 km × 12 km emission, generated using the spatial surrogates provided by US EPA in NEI2017, a benchmark 
dataset widely used in research and regulatory modeling. Figure 4 depicts the monthly emissions over CONUS 
of the NEMO dataset and the differences with those of 12 km. We found that the 1 km × 1 km emissions of each 
variable are almost identical to those of the benchmark dataset, although slightly lower (<−0.02%) than the latter. 
The differences between 1 km and 12 km datasets are more significant during summertime when the monthly 
emissions are higher than in other seasons (Fig. 4a). Figure 4 also shows the percentage differences of particulate 
matter are usually higher than those of the gases and the largest difference appears in black carbon (PEC) of July 
with a value of −0.02%. The sector-specific emissions in Fig. 4c,d show that most variables in the nonroad sector 
and particulate matters in the anthropogenic fugitive dust sector have larger underestimations. The difference 
in the emissions of other sectors are between 0.001% and 0.01%. In general, our dataset is consistent with the 
benchmark emissions.

NOx emissions over five large cities.  Next, we compare the NOx emissions over five metropolitan areas 
to that of the benchmark dataset. NOx is a key precursor to tropospheric ozone and particulate nitrate. Figure 5 
shows the annual emissions of NOx from 12 km and 1 km dataset. We overlay the emission map with geograph-
ical information including roads, airports, ferries, and main cities as a measure to validate the accuracy of the 
spatial allocation. The results show that the NEMO dataset can capture high emissions in urban areas that follow 
the benchmark pattern. The 1 km distribution can also reflect the fine features of emissions over highways and 
other major roads. At airports, ultra-high NOx emissions are shown at corresponding locations. In addition, the 
1 km distributions create much clearer coast-pattern emissions over cities like New York City and Los Angeles 
compared to the benchmark. These results show that the spatial distribution of the 1 km emission dataset is more 
consistent with the geographical features in the real world. The increase of resolution (144 times finer than the 
benchmark) in comparison to the 12 km product provides the desirable information to map air pollutant emis-
sions at neighborhood level.

Usage Notes
The NEMO data are available in the NetCDF format at hourly, monthly and annual intervals. The shapefile for-
mat of NEMO is only available for the annual aggregated emissions, although finer temporal resolution can be 
generated from the NetCDF files. Each hourly emission file includes 5397 columns, 3177 rows, 35 gas species, 
20 aerosol species, and 25 time steps which needs a longer time for processing. We recommend using double 
precision for data analysis and processing. For convenience, we also provide a web-based data portal45 to prepare 
anthropogenic emissions within the CONUS domain according to the user’s requirements.

Code availability
Code used for calculating monthly and annual emission is written in Fortran and available from Zenodo46. The 
Spatial Allocator version 4.4 and SMOKE version 4.7 are used for data processing which can be obtained from 
CMAS webpage40.
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