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ABSTRACT

The enrichment of duplicate genes, and there-
fore paralogs (proteins coded by duplicate genes),
in multicellular versus unicellular organisms
enhances genomic functional innovation. This
study quantitatively examined relationships among
paralog enrichment, expression pattern diversifica-
tion and multicellularity, aiming to better understand
genomic basis of multicellularity. Paralog abun-
dance in specific cells was compared with those
in unicellular proteomes and the whole proteomes
of multicellular organisms. The budding yeast,
Saccharomyces cerevisiae and the nematode,
Caenorhabditis elegans, for which the gene sets ex-
pressed in specific cells are available, were used as
uni and multicellular models, respectively. Paralog
count (K) distributions [P(k)] follow a power-law
relationship [P(k) / k�a] in the whole proteomes of
both species and in specific C. elegans cells. The
value of the constant a can be used as a gauge of
paralog abundance; the higher the value, the lower
the paralog abundance. The a-value is indeed lower
in the whole proteome of C. elegans (1.74) than in
S. cerevisiae (2.34), quantifying the enrichment of
paralogs in multicellular species. We also found
that the power-law relationship applies to the prote-
omes of specific C. elegans cells. Strikingly, values
of a in specific cells are higher and comparable to
that in S. cerevisiae. Thus, paralog abundance in
specific cells is lower and comparable to that in uni-
cellular species. Furthermore, how much the ex-
pression level of a gene fluctuates across different
C. elegans cells correlates positively with its paralog
count, which is further confirmed by human
gene-expression patterns across different tissues.
Taken together, these results quantitatively and
mechanistically establish enrichment of paralogs

with diversifying expression patterns as genomic
and evolutionary basis of multicellularity.

INTRODUCTION

Multicellularity is a fundamental phenomenon in basic
biological and biomedical researches. Evolutionary and
genomics analysis of this phenomenon must take into con-
sideration protein paralogy, homologous proteins
encoded in the same genome. Paralogs result from
genomic duplication events, sometimes duplication of
the whole genome. Duplicate genes subsequently accumu-
late additional mutations. The major evolutionary advan-
tage is the potential for the duplicate genes to acquire new
functionality through these mutations, even though the
mutations also lead to loss of duplicate genes, sometimes
resulting in the formation of pseudogenes (1–4). This
genetic duplication and subsequent diversification
process is a major driving force of genomic evolution.
Consequently, paralogs are abundant in genomes.
Moreover, paralog abundance is greater in the genomes

of multicellular species, as there is a positive correlation
between paralog abundance and organism complexity (5).
Paralogs are observed to be more abundant in eukaryotic
than in prokaryotic genomes due to higher rates of gene
duplication. They are further enriched in multicellular
species due to higher retention rates of duplicate genes
(5). Even though all the genes are encoded in the same
genome in a multicellular organism, different sets of
genes are expressed in different developmental stages
and in different cell types. It is generally believed that di-
versification of tissue/cell distribution patterns of paralo-
gous proteins is vital for evolutionary emergence and
maintenance of multicellularity (6,7). However, a concise
quantitative framework to describe, and to explain, the
relationship between paralog enrichment and multicellu-
larity remains yet to be developed.
The genome is, on the other hand, often referred to

as the ‘book’ of life. One obvious reason is that it
consists of simplistic strings created from a restricted
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alphabet (A, T, C and G), just as an English book is
composed of linear strings of the 26-letter English
alphabet. Perhaps not coincidentally, in early days of bio-
informatics, linguistics analysis techniques, such as the
‘hidden Markov models’ (HMMs) modeling method,
were integral to the development of biological sequence
analysis approaches (8). And we use another parallel
between genomic sequences and English language to
help introduce an important concept for this study,
power-law distribution. A well-known phenomenon in lin-
guistics is the Zipf’s law, which states that the word count
(K) distribution [P(K)] in English literature follows a
power-law distribution [P(K) / K�a]. The power-law dis-
tribution turned out to be common in biology as well.
Examples include the distribution of connectivity in bio-
chemical networks (9,10), protein domain counts as well
as the number of times two domains co-occur in a protein
(11,12). A comparative study of biological sequences and
English literature found that protein domain counts in the
yeast S. cerevisiae follows a similar power-law distribution
as English word counts (13). Additionally, the power-law
distribution was found, in 1998, to apply to paralog
counts in bacterial and the yeast S. cerevisiae (14). We
were interested in testing whether the power law applies
to paralog counts in multicellular genomes as well, effect-
ively treating paralogs as biological equivalent of multiple
occurrence of a word in the literature. We were further
interested in testing whether the power-law distribution
provides a concise quantitative framework to quantify
and explain paralog enrichment in multicellular species.
The nematode Caenorhabditis elegans and the yeast

Saccharomyces cerevisiae proteomes have been sufficiently
characterized so that it is now possible to get comprehen-
sive lists of all of their protein coding sequences.
Additionally, gene sets that are expressed in specific cells
in C. elegans have been reported (15,16) and successfully
used in biochemical network research (17), thus providing
a model system to test differential expression patterns
across different cell types as a genomic mechanism for
enrichment of paralogs in multicellular species.
Caenorhabditis elegans and S. cerevisiae were therefore
chosen in this study as models for multi and unicellular
species, respectively. All-against-all BLAST searches were
performed for the proteomes of C. elegans and
S. cerevisiae, respectively, to identify paralogous protein
pairs in the respective proteomes. The paralog count (K)
distribution [P(K)] was found to follow a power-law rela-
tionship [P(K) / K�a]. The value of the exponent constant
a was then used as a gauge of paralog abundance in sub-
sequent analysis of the relationship among paralog enrich-
ment, paralog expression pattern diversification and
multicellularity.

MATERIALS AND METHODS

Proteome sequences

Proteome sequences for the yeast S. cerevisiae were down-
loaded from the S. cerevisiae Genome Database (SGD)
(18,19). Open reading frames (ORF) annotated as
dubious ORFs were eliminated from the dataset.

Translated protein coding sequence data for C. elegans
were retrieved from the WormBase database (20).
Proteomic sequences include both confirmed and pre-
dicted ORFs. Human proteome sequences were down-
loaded from the NCBI RefSeq database (21).

List of specific C. elegans cells and retrieval of their
gene-expression data

This study needed to use gene-expression data of homo-
geneous cell populations. We chose the gene-expression
data from the Genome BC C. elegans Gene Expression
Consortium (http://elegans.bcgsc.bc.ca/) in Canada (15).
The data was generated with the serial analysis of gene-
expression (SAGE) technique (22). The resource provides
data for tissue and cell types as well as developmental
stages. Data for different developmental stages was not
used, because a development stage represents a mixture
of multiple tissue and cell types. The goal of this study
is to study genes expressed in specific cell types or highly
homogeneous populations.

The C. elegans cells whose gene-expression datasets
were retrieved for this study are listed in Table 1. A
total of 12 gene-expression datasets were selected,
representing cells of eight functional categories. With
the exception of the gonad cells, the cells were isolated
using the Fluorescence Activated Cell Sorting (FACS)
technique.

BLAST-based paralog identification and visualization
of power-law distributions

First, an all-against-all protein BLAST was performed for
the S. cerevisiae proteome using an E-value threshold of
1E� 30. The stand-alone BLAST+ program was used
(23). This stringent threshold matches only proteins with
high alignment scores, ensuring that only well aligned se-
quences with extensive homology are counted as paralogs.
After parsing this data, the number of paralogs, K, was
calculated for each protein. Proteins are binned, with a bin
size of 2, based on their paralog counts. The number of
proteins in each bin [P(k)] was counted. A linear log–log
plot {log[P(k)] versus log(k)} was created with this data to
facilitate the visualization of the power-law distribution; a
linear relationship is expected. Changing bin size did not
disrupt linearity of the log–log relationships observed in
this study. Next, the same procedure was performed for
the whole C. elegans and human proteomes, respectively.
For individual C. elegans cell types, the procedure was
similar. But paralogs were counted using only the subset
of genes expressed in the corresponding cell types. All data
were processed using the Perl scripting language.

Quantification of gene expression-level fluctuation
across different cell types

Coefficient of variation (CV) is a standard statistical meas-
urement of fluctuation (or dispersion) of values, in this
case gene-expression levels, in a data set. It is essentially
the standard deviation, s, normalized by the mean. Even
though a good measure of fluctuation, the value of s is
directly proportional to the overall mean. Therefore,
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normalization is needed to make it scale-less/unit-less,
giving rise to the CV term.

CV ¼ sqrt½
X
ðei � �Þ

2=n�=�

where, ei is expression level in cell type i, n is the total
number of cell types (12) in C. elegans, or tissues (10) in
human and m is the mean-expression level.

The CV value, calculated as above, was then used as a
fluctuation score to quantify how much a gene’s expres-
sion level fluctuates.

RESULTS

The power-law relationship applies to paralog count
distribution in both S. cerevisiae and C. elegans, and the
value of a is a gauge of paralog abundance

The protein domain distribution in the yeast S. cerevisiae,
as discussed earlier, has been reported to follow the power
law (11–13). Paralogs usually share common domains,
and paralog count distribution has been shown to follow
power law (14). We therefore expected the power law
applies to paralog count distribution computed using
our approach as well. An all-against-all BLAST was per-
formed for the S. cerevisiae proteome to identify paralog
pairs (19 886 pairs identified). The paralog count of each
protein, K, was then calculated. A log–log scatter plot of K
versus the number of proteins with this many paralogs is
shown in Figure 1. As expected, the data fit into a linear
relationship with a slope value of 2.34. Thus, the paralog
count distribution follows a power law, P(K) / K�2.34.

We next tested whether the power law applies to
paralog count distribution in C. elegans, and if this
relation can be used to quantify paralog enrichment in
C. elegans relative to S. cerevisiae. Therefore, an
all-against-all BLAST was performed for the C. elegens
proteome to identify paralog pairs (151 469 pairs
identified), followed by calculation of paralog count for
each protein. The log–log scatter plot is shown in Figure 1
together with that of S. cerevisiae. Once again, the data

exhibited a linear relationship, but with a lower slope
value of 1.78. Thus, although the paralog count distribu-
tion in C. elegans also obeys a power law, P(K) / K�1.78,
the value of a is lower than that observed in S. cerevisiae.
The proteome of C. elegans, as multicellular proteomes

in general, contains proteins translated from alternatively
spliced forms of mRNA from the same genes. However,
we currently cannot claim to have a complete collection of
all alternative-splicing events in C. elegans and other
multicellular species yet. To investigate whether this
incomplete coverage of alternative splicing has an effect
on the power-law distribution, we excluded alternative
spliced forms from our analysis, that is, only one
splicing isoform, isoform a as annotated in wormbase,
was included in this analysis. This has no effect on the
distribution; the value of a became 1.74, remaining essen-
tially the same (data not shown). We therefore concluded
that the power-law distribution in C. elegans has a lower
a-value than that in S. cerevisiae. This difference in
a-value is further confirmed by analyzing independently
identified paralog sets, those identified in the Ensembl
database. We downloaded S. cerevisiae and C. elegans
paralogs from Ensembl BioMart (http://www.ensembl.
org/info/data/biomart.html) and created the log–log
plots. As shown in Figure 1 inset, the C. elegans log–log
plot has a lower slope, and thus a lower a-value, than the
S. cerevisiae log–log plot.
The power-law relationship [P(K) / K�a] means that, as

paralog count K increases, the fraction of the proteome
with K paralogs P(K) decreases dramatically. A lower
value of a indicates that P(K) decreases at a slower pace
as K increases, and therefore dictates higher paralog abun-
dance. Furthermore, our result is consistent with the ob-
servation by Wuchty that the values of a in the power-law
distributions of the number of times for two domains to
co-occur within the same proteins is lower in multicellular
proteomes than in unicellular proteomes (12). The value of
a thus correctly gauges paralog enrichment in C. elegans
relative to S. cerevisiae, and was used as a gauge of
paralog abundance in the rest of this study.

Table 1. Caenorhabditis elegans cells whose gene-expression datasets were used in this studya

Cells Functional category Collection method a-value a-value, ASb

not considered

Gonad reproduction dissection 2.41 2.38
AFD neurons neuronal FACS 2.28 2.25
ASER neurons neuronal FACS 2.17 2.24
Cilia neuronal FACS 2.31 2.43
Pan neurons neuronal FACS 2.37 2.33
Motor neurons neuronal FACS (punc4:GFP) 2.18 2.24
Hypodermal cells hypodermis FACS 2.14 2.16
Muscle cells muscle FACS 2.43 2.55
Pharyngeal marginal cells connective FACS 2.23 2.22
Pharyngeal gland cells excretive FACS 2.2 2.33
Pharynx digestive FACS 2.15 2.19
Gut intestine FACS 2.39 2.38

aThey are used because gene-expression data has been released for them by the Genome BC C. elegans Gene Expression Consortium (http://elegans
.bcgsc.bc.ca/).
bAlternative splicing.
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The proteomes of individual cell types display paralog
abundance, as measured by the value of a, comparable
to that of the yeast S. cerevisiae

Members of a gene family often display complementary
expression patterns. In other words, they often do not
coexpress in the same cells. A specific cell type might
express only a portion of a gene family, leading to lower
paralog abundance in the cells relative to the whole
proteome of a multicellular organism. We are therefore
interested in whether this can be investigated in a quanti-
tative manner. To achieve this task, we need gene-expres-
sion datasets for a spectrum of specific cell types, often
termed gene-expression atlas. Fortunately, the sets of ex-
pressed genes have been published for a wide collection of
C. elegans cells (15,16), providing an ideal system to
accomplish this task. To our knowledge, this is the best
dataset generated from specific cell types. Other datasets,
such as the bovine gene-expression atlas (24), were always
generated using whole tissues, which are mixture of many
distinct cell types instead of homogeneous cell
populations.
A total of 12 of the C. elegans gene-expression datasets,

as discussed in ‘Materials and Methods’ section, were used
in this study (Table 1). Many of them represent specific
cell types. Additionally, C. elegans gonad and gut, even
though whole organs, are comprised of highly homoge-
neous cells. All gonad cells originate from two cells, Z1
and Z4, in L1 larva stage; all gut cells are epithelial cells
and derive from a single progenitor cell, such that the

clonal proliferation of one cell constitutes the whole
organ (25). Thus, the cells whose gene-expression
datasets were used in this study represent either specific
cell types or highly homogeneous cell populations. These
cell populations will be referred to, for the sake of con-
venience, as cell types in the rest of this paper with one
exception—the pharynx; the C. elegans pharynx is
comprised of a number of different cell types. However,
gene-expression datasets of two of them—the pharyngeal
marginal and gland cells—were also used in this study
(Table 1). Inclusion of the whole pharynx data, as dis-
cussed below, helped with interpretation of our analysis
results.

It was expected that individual C. elegans cell types ex-
pressed only a portion of all members of a large paralog
family; as discussed above, paralogs often display comple-
mentary expression patterns and do not coexpress in the
same cell. Therefore, each individual proteomes of the
12 cell types should have lower paralog abundance. We
tested whether this can be quantified by changes in the
value of the power-law parameter a.

In order for us to use the value of a, the power law
needs to apply to paralog count distribution in the prote-
omes of specific cell types. As shown in Figure 2A and B,
this is true in C. elegans cilia and gut proteomes. The
proteomes of all other cell types gave the same results
(data not shown). Strikingly, the values of a are higher
for all cell types (Table 1). They fall within a tight range
and were comparable to that of the S. cerevisiae proteome

Figure 1. Paralog count distributions follow power law in the yeast S. cerevisiae and the nematode C. elegans. Paralog count for each sequence was
calculated as the respective hit count in all-against-all BLAST of S. cerevisiae or C. elegans proteomes. The log[P(K)]� log(K) plots of the data, as
well as the line and equation of linear regressions, are shown for both species. See ‘Materials and Methods’ section for detail. S. cerevisiae data points
were shifted upward to overlap the leftmost data points of the two species, in order to better illustrate difference in the slopes (a-values).
Inset. Log[P(K)] � log(K) plots of S. cerevisiae and C. elegans based on Ensembl paralog data. Pair-wise paralog relationships were downloaded
from Ensembl, and paralog count for each gene was then calculated. S. cerevisiae data points were shifted upward to overlap the leftmost data points
of the two species.
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(Figure 2C). This is true regardless of whether alternative
splicing is considered in paralog count calculation.

The variation in values of a across different cell types
awaits further investigation. One possibility is for it to be
attributed to the fact that some cell types used in this study
might be a mixture. This depends on how specific each
promoter-GFP construct used in FACS technique is for
the targeted cell types (15). The pharynx, as discussed
above, consists of a number of different cell types. The
value of a is therefore lower in the whole pharynx than
those in the two specific cell types in pharynx—the pha-
ryngeal marginal and the pharyngeal gland cells (Table 1).
Another possibility is that it is due to intrinsic difference in
the biology of different cell types. Hopefully, relevant
single-cell transcriptom analysis dataset will become avail-
able soon for testing the two possibilities.

Diversification of paralog expression patterns

Compared with their counterparts in unicellular eukary-
otic species, genes are often duplicated multiple times
during multicellular genomic evolution. These duplicates,
when retained, lead to expanded gene families. For
example, most S. cerevisiae protein kinases have multiple
paralogs in both plants and animals (26,27). On the other
hand, paralog expression pattern diversification results in
cell-specific expression patterns; the expression level fluc-
tuates across different cell types. As discussed above,

it also leads to lower paralog abundance in specific cell
types.
We therefore examined potential relationships between

C. elegans gene-expression level fluctuation and duplica-
tions of corresponding genes for orthologs to S. cerevisiae
proteins. To get the gene duplication data, we downloaded
the orthologous/paralogous groups between S. cerevisiae
and C. elegans identified in the InParanoid database (28).
We then eliminated C. elegans genes that were absent from
the gene-expression dataset for the 12 cells summarized in
Table 1. For each remaining gene, its expression levels in
the 12 cell types were collected. CV, standard deviation
normalized by mean expression level of the gene, was
calculated. The CV value was used as the index to
quantify how much the gene’s expression level fluctuates
across the set of cell types (see ‘Materials and Methods’
section for detail). As shown in Figure 3A, the higher the
paralog counts in the processed InParanoid orthologous/
paralogous groups, the more the gene’s expression level
fluctuates. If the proteins were not binned, calculated cor-
relation coefficient between paralog counts and CV values
was 0.2, with a P-value of 2.47E� 10. Genes with high
paralog counts tend to be expressed in a cell-specific
manner.
To test the generality of this phenomenon, we searched

for relevant human gene-expression dataset. Fortunately,
a gene-expression dataset across 10 human tissues were

Figure 2. The proteomes of individual cell types display paralog abundance comparable to that of the yeast S. cerevisiae, as measured by the value
of a. (A and B). The log–log plot of paralog count distributions in the proteomes of C. elegans cilia and gut, respectively, is shown. The lines and
equations of the linear regressions are also shown in the graphs. (C) Comparison of the value of a of S. cerevisiae proteome and the average of those
of the proteomes of specific C. elegans cell types. The bars are labeled as follows: ‘Cells’ denotes average a-values of the 12 C. elegans cell types;
‘Worm’ denotes a-value of C. elegans whole proteome; ‘w/o AS’ denotes a-values were calculated without consideration of alternative splicing; and
‘Yeast’ denotes a-value of S. cerevisiae proteome. The standard deviation of the a-values of the 12 C. elegans cell types was used as error bar.
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available (29). While not suitable for identification of
proteomes of specific cell types, these tissue data met our
goals of calculating expression level fluctuation. We down-
loaded the orthologous/paralogous groups between
S. cerevisiae and human from the InParanoid database,
and then eliminated genes that were absent from the
human gene-expression data. For each remaining gene,
CV (standard deviation normalized by mean expression
level of the gene) was calculated as a measurement of
how much its expression level fluctuates across the
10 human tissues. As shown in Figure 3B, the same
trend was observed—the higher the paralog counts in
the processed InParanoid orthologous/paralogous group,
the more the gene’s expression level fluctuates. If the
proteins were not binned, calculated correlation coefficient
between paralog counts and CV values was 0.37, with a
P-value of 1.9E� 93.
We also examined the pairs of paralogs with cell-specific

expression patterns to see how much their expression
patterns have diverged (Figure 4). Pearson’s correlation
coefficient (r) is used to quantify the divergence; a high
positive value of r indicates that the two expression
patterns have not diverged yet; a value close to 0, or a
negative value, indicates the two have completely
diversified. We collected all C. elegans genes with a CV
value (expression level fluctuation score) of 1.8 (�85%
quantile) or higher. Among these genes, we then
calculated pairwise r-values for all pairs whose proteins
belong to the same InParanoid orthologous/paralogous
groups, i.e. paralog pairs. The result is shown in a
scatter plot in Figure 4A. Their r-values are either close
to 1 or close to 0, indicating the same or completely
diversified expression patterns respectively. Figure 4A
also shows the r-values of all gene pairs whose proteins
have pair-wise BLAST E-values of 1E� 30 or better, re-
gardless of whether they are included in the InParanoid

orthologous/paralogous groups. The data consist of 172
gene pairs, and the pattern remains the same. The vast
majority of them are clustered into two r-value ranges.
One group (73 pairs) has values of r ranging from 0.88
to 1—their expression patterns have not diverged. The
other group (92 pairs) has r-values ranging from �0.25
to 0.1. These genes display highly cell-specific expression
patterns. The cell types where they are predominantly
expressed, as these r-values indicate, no longer overlap
between any paralog pair in this group—their expression
patterns have completely diverged. Changing the CV value
cutoffs to 80% or 90% quantiles did not change the
patterns. Additionally, similar patterns were observed
for human gene pairs whose proteins belong to the same
InParanoid orthologous/paralogous groups, as well as for
all human gene pairs whose proteins have a pair-wise
BLAST E-values of 1E� 30 or better (Figure 4B).
Therefore, the pattern observed in this study is likely
common among multicellular species.

DISCUSSION

Genomic duplication and subsequent functional diversifi-
cation of resultant paralogs are a major driving force of
genomic evolution. Paralogs are more enriched in multi-
cellular species and often display complementary expres-
sion patterns. This study built upon previous discoveries
by other investigators (12,13), providing evidence that
paralog count distribution in a genome exhibits a
power-law relationship [P(K) / K�a] and that the value
of the parameter a can be used to gauge paralog abun-
dance. The study examined the fluctuation of the value of
a among proteomes of individual cell types and the whole
proteomes of unicellular and multicellular species. A
quantitative relationship among paralog enrichment,
paralog expression pattern diversification and

Figure 3. Relationship between gene duplication and expression level fluctuation in C. elegans (A) and human (B) Caenorhabditis elegans–
S. cerevisiae and human–S. Cerevisiae orthologous/paralogous groups were downloaded from InParanoid database, and processed as described in
text. Paralog count in each group, i.e. the number of C. elegans or human genes in the group, was used as a gauge of gene duplication activity during
single to multicellular genomic evolution. Expression level fluctuation across the cells was quantified with the CV value as described in ‘Materials and
Methods’ section. Average fluctuation of the genes in each bin was used to create the graph. Pearson correlation coefficient (r) between average
paralog counts and average fluctuation scores in the bins are also shown in the graph. Without binning, the r-values for C. elegans and human are
0.2 (P-value 2.47E� 10) and 0.37 (P-value 1.9E� 93), respectively.
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multicellularity was uncovered. To our knowledge, this
represents the first quantitative theoretical insight into
the role of paralog enrichment and expression pattern
diversification in multicellularity, a fundamental phenom-
enon in biology.

Multicellularity imposes a greater burden on the genetic
makeup of an organism: meeting the demand of a much
wider spectrum of functionality across different develop-
mental stages and differentiated cell types. This study
provides direct and quantitative evidence that creating a
larger paralog repository with diversified expression
patterns is a major evolutionary mechanism to meet this
enhanced demand. Even though paralog is more abundant
in a multicellular proteome, the size of the paralog reposi-
tory in a specific cell type is comparable to that in a uni-
cellular proteome. Proteins of larger paralog families
display higher fluctuation in their expression levels in the
set of cell types examined in this study. Whether, and to
what extent, different sets of paralog families are used in
different developmental stages and differentiated cell types
remains to be investigated.

While a powerful source of functional innovation in
biological evolution, genomic duplication can also cause
deleterious effects by breaking the balance between
duplicated and non-duplicated genes. Essential cellular
machineries require a stoichiometric balance among their
components. For example, protein complex formation
depends on a specific ratio among subunits of the
complex (30). Moreover, core functions such as cell
growth require a balance among the sets of involved bio-
chemical pathways (31). This gene dosage evolutionary
constraint is captured in the ‘gene balance hypothesis’
(30,32). Thus, whole-genome duplication is more tolerated
than non-whole-genome duplication, since gene dosage
balance is not broken (31). Paralogs in S. cerevisiae
quickly diverge to circumvent this evolutionary constraint,
in that their biochemical specificity (interaction partners)

in the protein–protein interaction networks and their regu-
latory control change dramatically (31,33).
There is one additional layer of functional diversifica-

tion in multicellular species, diversifying cell distribution
patterns. The evolutionary pressure is to create comple-
mentary expression patterns among paralogous proteins.
Many paralogous proteins do not coexist in the same cell.
They can preserve their biochemical specificity, e.g. inter-
acting with the same set of proteins, without breaking the
gene dosage balance. The gene dosage constraint is thus
lessened, explaining the higher retention rate of duplicate
genes observed in multicellular genomes (5). Con-
sequently, a larger repository of paralogs is maintained
in multicellular species.
Additionally, the BDIM (birth, death and innovation

model) model, a mathematical model of the birth-and-
death theory, was developed to quantitatively explain
the power-law distributions of protein domain counts in
a proteome (11,34). We believe it provides a framework to
quantitatively interpret observed pattern of a-values in the
whole proteomes of S. cerevisiae and C. elegans and in the
proteomes of specific C. elegans cell types. As discussed
earlier, a lower value of a in C. elegans indicates that P(K)

decreases at a slower pace as K increases, and therefore
dictates higher paralog abundance. This intuitive inter-
pretation is consistent with BDIM. To exhibit power-law
behavior, it assumes gene duplication rate (D) and
gene loss rate (L) as a function of paralog count K as
follows:

DðkÞ ¼ �ðK+aÞ,LðKÞ ¼ �ðK+bÞ,

where �, a and b are constants.
The model then predicts a power-law distribution,

P(K) / K�(1+b�a). The values of a for this distribution,
‘1+b� a’, is therefore determined by gene duplication
and loss rates; lower a-values dictates higher values for
duplication rate constant, ‘a’, and thus evolution

Figure 4. Correlation coefficient of expression patterns of paralog pairs in C. elegans (A) and in human (B). Paralog pairs were identified from
InParanoid database (InParanoid), or as any protein pairs with a pair-wise BLAST E-value of 1E� 30 or better (BLAST). A vector containing
gene-expression levels in the 12 C. elegans cell types, or in the 10 human tissues, was created for each protein. Pearson correlation coefficients
between vector pairs were calculated and used to create the graph.
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environments more accommodating to gene duplication
events (11). Therefore, eukaryotic genomes have higher
paralog abundance than bacteria genomes (14), as eukary-
otic cellular environment is more permissive for gene
duplication, allowing duplicate genes be partitioned to dif-
ferent cellular compartments to bypass the dosage evolu-
tionary constraint. This also explains lower a-values and
higher paralog abundance in multicellular species such as
C. elegans, in which duplicate genes can potentially
overcome the dosage evolutionary constraint through ex-
pression in different cell types. For genes expressed in the
same cells, however, such evolutionary mechanism does
not apply. Thus, a-values for specific cells are larger.
Moreover, individual C. elegans cell types have similar
architecture and operation, and hence similar cellular en-
vironment for genomic evolution as S. cerevisiae, a fruitful
model organism for the study of multicellular species.
Therefore, it is understandable that specific C. elegans
cells have a-value comparable to that of S. cerevisiae.
How biochemical specificities of close paralogs diverge

is an active research area. It is important for understand-
ing the evolution of biochemical networks, as the
networks emerge and grow through gene duplication
(node addition) and subsequent divergence (rewiring)
(35,36). It is also an important topic in biomedical
research. Drugs often interact with close paralogs of
intended target protein, causing adverse side effects. A
general practice is to identify sequence segments that
conserve among orthologs, but diverge among paralogs
(37–39). The findings reported here can potentially
benefit the studies of paralog diversification in multicellu-
lar proteomes. It is expected that paralogs with
overlapping expression patterns tend to diverge in their
biochemical specificities, whereas paralogs with comple-
mentary expression patterns conserve due to a lack of
gene dosage evolutionary constraint. We are currently
identifying sequence segments that conserve among
paralogs with complementary expression patterns, but
diverge among those with overlapping patterns.
Our results suggest that biochemical network analysis in

multicelluar species is more challenging than current
practice assumes. Most network models are generic—
they are constructed without considering whether two
proteins are expressed in the same cells. The cDNA ex-
pression libraries used in high-throughput protein–protein
detection efforts, such as yeast two-hybrid, were con-
structed without discriminating whether two proteins are
expressed together. However, diversification of expression
patterns, as our study suggests, cannot be ignored. It is
better to construct tissue/cell specific network models to
guide basic biological and biomedical researches.
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