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Anneke Cleopatra Weide* and André Beauducel
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Gradient projection rotation (GPR) is an openly available and promising tool for factor
and component rotation. We compare GPR toward the Varimax criterion in principal
component analysis to the built-in Varimax procedure in SPSS. In a simulation study,
we tested whether GPR-Varimax yielded multiple local solutions by creating population
simple structure with a single optimum and with two optima, a global and a local
one (double-optimum condition). The other conditions comprised the number of
components (k = 3, 6, 9, and 12), the number of variables per component (m/k = 4, 6,
and 8), the number of iterations per rotation (i = 25 and 250), and whether loadings were
Kaiser normalized before rotation or not. GPR-Varimax was conducted with unrotated
and multiple (q = 1, 10, 50, and 100) random start loadings. We found equal results
for GPR-Varimax and SPSS-Varimax in most conditions. The few very small differences
in favor of SPSS-Varimax were eliminated when Kaiser-normalized loadings and 250
iterations per rotation were used. Selecting the best solution out of multiple random
starts in GPR-Varimax increased proximity to population components in the double-
optimum condition with Kaiser normalized loadings, for which GPR-Varimax recovered
population structure better than SPSS-Varimax. We also included an empirical example
and found that GPR-Varimax and SPSS-Varimax yielded highly similar solutions for
orthogonal simple structure in a real data set. We suggest that GPR-Varimax can be
used as an alternative to Varimax rotation in SPSS. Users of GPR-Varimax should allow
for at least 250 iterations, normalize loadings before rotation, and select the best solution
from at least 10 random starts to ensure optimal results.

Keywords: gradient projection, Varimax, factor rotation, component rotation, principal component analysis,
random start loadings, local optima

INTRODUCTION

Exploratory factor analysis (EFA) and principal component analysis (PCA) are of major relevance
in behavioral research, and many extraction and rotation methods have been proposed for
them. Commercial statistical software, like SPSS or SAS, have implementations for the most
popular extraction and rotation methods. Newer developments, like parallel analysis for extraction,
Infomax, Geomin, and Partially Specified Target for rotation, can usually not be conducted by
the built-in procedures in commercial software. However, some scientists have provided free
software or code to be run in the non-commercial statistical software package R for these methods,
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making them accessible to a great audience. For example,
Lorenzo-Seva and Ferrando (2006) have developed the software
FACTOR with implementations for newer developments of
factor analysis. Moreover, the Mplus software (Muthén and
Muthén, 2015) also allows for several different methods of
factor rotation as a basis for exploratory structural equation
modeling. Most of the rotation methods that are meanwhile
available attempt to find simple structure (Carroll, 1953;
Kaiser, 1958; Hendrickson and White, 1964). Bernaards and
Jennrich (2005) propose a generalized algorithm for analytic
factor and component rotation that can approach most known
rotation criteria toward simple structure by means of gradient
projection (GPR). The approach is very promising because
it unifies different rotation criteria under a single algorithm.
Even more appealing is the fact that GPR can be performed
in both commercial and non-commercial statistical software.
GPR implementations of most rotation criteria are available
online for SPSS Matrix, SAS PROC IML, Matlab, Splus, and R1.
To this point, the mathematical background of the algorithm
and its refinements have been comprehensively and extensively
described (Jennrich, 2001, 2002; Bernaards and Jennrich, 2005).
The authors also provide demonstrations on how to use GPR
with exemplary loading matrices. However, when a new statistical
procedure and the related code are publicly available and ready-
to-use for data analysis, potential users should be able to lean
on simulation studies to ensure their results depend on their
data rather than the software algorithm applied. Therefore,
we provide a simulation study on GPR toward the Varimax
criterion (Kaiser, 1958) because it is one of the most popular
and accepted rotation criteria toward orthogonal simple structure
(Fabrigar et al., 1999; Browne, 2001) and it is implemented in
most statistical software packages. The popularity of Varimax
rotation can be demonstrated by hits in Google Scholar
searches. Entering “Varimax” on Google Scholar on February
13, 2019 yielded approximately 203,000 hits, as compared to
6,050 for “Quartimax,” 3,780 for “Equamax,” and 184 entries
for “Parsimax.” Even though perfect orthogonality is rather
unlikely, Varimax also exceeds the popularity of oblique rotation
criteria, such as Promax (43,100 hits), Oblimin (39,500 hits),
or Quartimin (1,710 hits). As one may assume that the relative
popularity of Varimax rotation is due to the lack of a backward
limit for the time frame in this search, we performed an additional
Google Scholar search for publications in the time frame between
2014 and 2019 (searched on 02/13/2019). For this time frame,
we got 24,700 hits when entering “Varimax.” For “Geomin,”
a more recent method for oblique and orthogonal rotation
(Browne, 2001), we got 2,460 hits. Thus, Varimax rotation is still
one of the most used rotation methods, even when many other
alternative rotation methods are meanwhile available (Browne,
2001). However, scientists that use Varimax seem to rely on
procedures that can be performed by pushing a button in
commercial statistical software like SPSS or SAS. Entering the
combination of “Varimax” and “SPSS” yielded 85,400 hits, and
we got 21,800 hits for the combination of “Varimax” and “SAS”
in Google Scholar (searched on 02/13/2019 for the complete time

1http://www.stat.ucla.edu/research/gpa

frame). Meanwhile, the combination of “Varimax” and “gradient
projection” resulted in 128 hits (when “gradient projection” was
entered with the quotation mark operator). Hence, GPR has
not yet reached the popularity that could be expected given
its promising simplicity and generalizability, and it faces the
challenge of competing against readily available procedures in
established software. In line with this, of the abovementioned
128 hits on Google Scholar for the combination of “gradient
projection” and “Varimax,” 55 of them comprised a combination
of “gradient projection,” “Varimax,” and “R project” (status on
02/13/2019). This indicates that GPR-Varimax is often used in
R, whereas most scientists that use commercial software stick to
pushing buttons to perform built-in, easily available procedures.
Hence, testing GPR in simulation studies could promote its use
in non-commercial software like R. Since SPSS is one of the
most popular software tools for factor and component rotation
and the Varimax criterion is one of the most popular rotation
criteria, we compare the GPR algorithm for the Varimax criterion
to the built-in SPSS procedure for Varimax rotation. As for the
choice between factor analysis and PCA, we investigate GPR-
Varimax performance for the rotation of components because the
component model is simpler and does not require the estimation
of error factors (Harman, 1967). Thereby, the present simulation
does not depend on the precision of different methods for the
estimation of factor loadings and communalities and focuses on
the precision of the rotation method alone.

In order to understand the approach of the present simulation
study, we give a brief description of the GPR algorithm in factor
and component rotation (Jennrich, 2001, 2002; Bernaards and
Jennrich, 2005). More detailed descriptions of the algorithm can
be found elsewhere (Mulaik, 2010). The idea of GPR is that
any rotation toward simple structure relies on an optimization
(minimization or maximization) criterion, where constraints are
placed on some parts of the optimization function. The gradient
projection algorithm can be used to solve such constraint
optimization problems. A rotation of an initial m × k loading
matrix A (e.g., unrotated loadings) is given by

3 = AT, (1)

where T is a k × k transformation matrix with columns of unit
length (i.e., its column sums of squares add up to 1). Let 8 be
the correlation matrix between rotated factors or components.
For an orthogonal rotation, the rotated components are required
to remain uncorrelated, such that the k(k−1) non-diagonal
elements of 8 are constrained to be zero, resulting in

8 = T′T = I. (2)

The optimization criterion Q in factor and component
rotation is a function of the rotated loading matrix 3 and thereby
a function of T, denoted by

f (T) = Q (3) . (3)

For example, the Varimax criterion seeks to maximize the
variance of squared loadings (Kaiser, 1958) and is therefore a
function of the transformation matrix T. The algorithm searches
for a minimum of f (T), such that the Varimax criterion would be
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the negative of Q(3). The algorithm uses the negative gradient G
of f (T) = Q(3). For orthogonal rotation, it is given by

G = A′
∂Q
∂3

. (4)

Each rotation criterion has its own expression for ∂Q. The
algorithm starts with an initial T from the manifold T that
comply with the constraints. Then, T is moved by its negative
gradient with step length α to find a matrix M by

M = T − αG. (5)

Next, M is projected back onto T by normalizing its columns
to unit length. The projection is denoted by ∼T. After each step,
the rotation criterion f (∼T) is evaluated and compared to the
previous f (T). For a sufficiently small α, the algorithm is strictly
descending, and

f (∼ T) < f (T) . (6)

Then, T is replaced with ∼T, and the algorithm starts again.
If f (∼ T) ≥ f (T), α needs to be reduced (e.g., halved), until
f (∼ T) < f (T). The algorithm continues until it converges, that
is, when f (T) becomes minimal.

For the initial loading matrix 3 = AT, a to-be-rotated loading
matrix A and a start transformation matrix T need to be
inserted. Usually, A are unrotated loadings from an initial
factor or component extraction. For the start transformation
matrix T, we can insert any matrix that complies with the
constraints. For example, we can use the k × k identity matrix
(Jennrich, 2001) or a random matrix whose columns have
unit length (Bernaards and Jennrich, 2005; Mulaik, 2010). For
the latter, Bernaards and Jennrich (2005) recommend running
the GPR algorithm several times with multiple random start
matrices to identify local optima. The code for multiple random
start matrices can be retrieved from http://www.stat.ucla.edu/
research/gpa. Local optima are relevant in analytic rotation
because the algorithms search a minimum on curvilinear,
complex loss-functions with many ups and downs (Rozeboom,
1992). Hence, beginning with a particular start transformation
matrix T does not guarantee to find the global optimum for the
rotation criterion. Addressing this issue, multiple random starts
are often used in demonstrations of analytic rotation algorithms.
For example, Kiers (1994) used 20 random start matrices to
present the Simplimax method, just like Browne (2001) in his
comparative overview on different analytic rotation methods.
Recently, Hattori et al. (2017) published a paper on Geomin
rotation, in which they identified local optima by iterating
across 100 random start matrices. If the GPR algorithm is to be
established as a feasible alternative to other rotation algorithms,
it needs to be shown that it does not stop at a local optimum
but finds the global optimum of the rotation criterion instead.
In the case of local optima, using multiple random start loading
matrices 3 = AT should result in multiple solutions. Hence, we
investigate whether using different start transformation matrices
T (identity and multiple random matrices) in GPR-Varimax
leads to the same or different results. If results are equal for
different numbers of start loading matrices (resulting from
different transformation matrices), it supports the notion that

the GPR algorithm overcomes local optima and does not require
a substantial amount of multiple starts for optimal results.
If results differ between multiple start loading matrices, the
global optimum should be found by trying multiple random
start loadings and choosing the solution for which the Varimax
criterion becomes maximal.

Kaiser (1958) proposes to perform a pairwise rotation of two
factors or components toward the Varimax criterion. When all
pairwise rotations of components are performed, the overall
Varimax criterion is calculated. Then, a next cycle of rotations
of all component pairs is performed, and it is checked whether
the Varimax criterion has increased. This procedure is repeated
until a convergence criterion is met or until a given number of
cycles (i.e., a maximum number of iterations) is reached. This
procedure is realized in conventional rotation software like SPSS,
where the number of iterations can be specified. The number of
iterations can also be specified for the GPR-Varimax algorithm,
but there, the procedure is based on the gradient projection
algorithm. However, the number of iterations of both rotation
algorithms should not be confounded with the number of start
loading matrices, which can only be specified in GPR-Varimax.
Nevertheless, since the number of iterations may also affect the
quality of results, we also investigate the effect of the number of
iterations for GPR-Varimax and SPSS-Varimax.

Given the possibility of local optima, investigating GPR-
Varimax in a simulation study requires population models that
can adequately address the question of whether the algorithm
finds the global optimum. Therefore, we will compare GPR-
Varimax and SPSS-Varimax for two different population models.
The first model is perfect orthogonal simple structure, which
Varimax rotation is designed to recover (Kaiser, 1958). In the
case of perfect orthogonal simple structure, there is a marked
single (global) optimum for the Varimax criterion in the
population. This single-optimum population model constitutes
a relatively basic test for any Varimax algorithm, because
local Varimax optima may only occur due to sampling error.
However, if population components are weakly defined, that
is, represented by few variables, the relative effect of sampling
error on the loadings will be more pronounced. In this case,
solutions become less stable across samples than for well-defined
population components, which are represented by more variables
(Guadagnoli and Velicer, 1988). Therefore, we will assess rotation
performance in the single-optimum simple structure for three
levels of component-definition with four, six, and eight variables
per population component.

The second model is a double-optimum simple structure
comprising a global and a local optimum. It is adapted from a
circumplex model (Gurtman, 1992; Hofstee et al., 1992), where
two or more competing simple structures exist in the population.
These competing simple structures produce multiple local optima
for the Varimax criterion. Figure 1 illustrates the loadings on two
components of the global optimum solution as well as the two
components of the local optimum solution in 45◦ angles. If one
of the competing simple structures is recovered, one variable set
has clear main loadings on only one component, whereas the
other variable set has an ambiguous loading structure with main
loadings on two components, and vice versa. For our purpose, the
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FIGURE 1 | Loadings of 24 variables on component 1 (C1) and 2 (C2) of the
global optimum solution (no Kaiser normalization) given in Table 2. The dotted
circle marks the size of the largest main loadings on C1 and C2, the dashed
lines mark the two components of the local optimum solution.

circumplex population model will be designed in a way that one
of the competing simple structures has slightly higher loadings
than the other one. For this solution, which represents the global
optimum, the Varimax criterion becomes greater than for the
competing solution, which represents a local optimum. Hence,
there are two optima in the population, one of which is the
global optimum and the other one is the local optimum for the
Varimax criterion. Varimax rotation of sample data based on
this population should on average recover the solution of the
global optimum. However, if the GPR-algorithm sometimes stops
at a local optimum for the Varimax criterion, these conditions
could provoke the competing solution depending on the start
loadings. Therefore, the double-optimum model constitutes a
more challenging test of local optima in GPR-Varimax than the
single-optimum model of perfect simple structure.

For both the single-optimum and the double-optimum
population model, rotation performance of GPR-Varimax can
be evaluated using the size of the Varimax criterion itself and
by assessing proximity to the global optimum of the underlying
population model. If GPR-Varimax produces a substantial
amount of solutions with a local optimum, the Varimax criterion
should differ between solutions depending on the start loadings
inserted before rotation. However, using multiple random start
loading matrices and selecting the solution for which the Varimax
criterion becomes maximal could result in a larger Varimax
criterion as compared to using only a single start loading
matrix. If GPR-Varimax generally produces solutions of a global
optimum, the Varimax criterion should not substantially differ
depending on the start loadings. The same pattern should be
found for proximity of the sample solutions to the global

optimum of the underlying population model. Proximity to
population models can be computed by congruence coefficients c
of the components from the solution to the respective component
in the population (Tucker, 1951; Korth and Tucker, 1975).
Cut-off values have been suggested to assess similarity between
factors or components by congruence coefficients. For example,
Lorenzo-Seva and ten Berge (2006) state that values between
c = 0.85 and c = 0.94 indicate fair similarity, and that components
with a congruence of c ≥ 0.95 can be regarded as equal.
Mundfrom et al. (2005) use different cut-offs with c ≥ 0.98 as
excellent, values between c = 0.92 and c = 0.98 as good, values
between c = 0.82 and c = 0.92 as borderline, values between
c = 0.68 to c = 0.82 as poor, and congruence of c≤ 0.68 indicating
terrible agreement. We will evaluate congruence coefficients
of the Varimax-rotated components (SPSS and GPR) with the
population components using these suggestions.

To summarize, this simulation study investigates rotation
performance of GPR-Varimax in comparison to SPSS-Varimax
under a number of conditions (see below). In particular,
we examine whether GPR-Varimax can overcome local optima by
using a sufficient number of iterations and multiple start loadings
for a single-optimum and a double-optimum model of simple
structure in the population.

MATERIALS AND METHODS

We used IBM SPSS Version 25 and R Version 3.5.2 to double-
check results for GPR-Varimax. GPR-Varimax was performed
with the syntax code for SPSS matrix and the code of the R
package GPArotation. The codes can be retrieved from http://
www.stat.ucla.edu/research/gpa (Bernaards and Jennrich, 2005)
or copied from the Supplementary Materials of this paper. We
also performed the built-in Varimax-rotation of SPSS, which is
available with the SPSS command FACTOR (SPSS-Varimax).

The conditions that we manipulated refer to the population
model (single-optimum and double-optimum simple structure),
the number of components (k = 3, 6, 9, and 12), the number
of variables per component for the single-optimum model
(m/k = 4, 6, and 8), sample size (n = 100 and n = 300),
the number of iterations per rotation (i = 25 and 250), and
whether Varimax-rotation was based on Kaiser normalized
loadings or not. Moreover, four different numbers of random
start loading matrices were investigated for GPR-Varimax (q = 1,
10, 50, and 100).

Population Factor Models
We generated two population models based on common and
unique factors. The first population model was a single-optimum
model of perfect orthogonal simple structure. Main loadings
for the single-optimum model were a0 = 0.50 and zero on
all other variables for population factors. Unique variances
were d0 =

√
1− 0.502 accordingly. We used m/k = 4, 6, and

8 variables per factor. Simple structure loadings of the population
factors can be inspected in Table 1 for three factors and
24 variables (m/k = 6), together with the respective Varimax-
rotated population components.
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TABLE 1 | Loading matrices of the single-optimum population model for three
simple structure population factors and corresponding Varimax-rotated
population components.

Factors Components

No Kaiser With Kaiser

F1 F2 F3 C1 C2 C3 C1 C2 C3

V1 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V2 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V3 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V4 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V5 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V6 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V7 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V8 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00

V9 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V10 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V11 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V12 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V13 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V14 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V15 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V16 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58 0.00

V17 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V18 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V19 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V20 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V21 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V22 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V23 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

V24 0.00 0.00 0.50 0.00 0.00 0.58 0.00 0.00 0.58

With Kaiser, Loadings were Kaiser normalized before rotation. No Kaiser,
Non-normalized loadings were rotated. Main loadings are given in boldface.
Population components were used to compute congruence coefficients with
sample components obtained by GPR-Varimax and by SPSS-Varimax.

The second population model was a double-optimum simple
structure, where two competing simple structures (a stronger
and a weaker one) existed in the population. We created the
double-optimum structure for 2/3 of the variables and factors
and kept perfect simple structure for the remaining 1/3 of the
variables and factors for all conditions. For the 1/3 perfect
simple structure variables and factors, main loadings remained
at a0 = 0.50 and unique variances at d0 =

√
1− 0.502. We defined

circumplexes of two factors, where the rotational position of two
factors competed against another rotational position of the two
factors. For this purpose, we used 16 variables per circumplex to
balance out loadings. For each circumplex, main loadings were
unique for 8 variables (a1/−a1), representing the stronger simple
structure, and ambiguous for the other 8 variables (a2/−a2),
representing the weaker competing simple structure. Ambiguous
main loadings were created by distributing the main loadings
onto two factors. The loadings for three factors with ambiguous
simple structure are given in Table 2. For the conditions with
k = 6, 9, and 12 factors, the population loading matrices were
created by means of a blockwise repetition of the loading pattern
presented in Table 2.

Population Components and Data Sets
Since we investigated Varimax-rotation in PCA, we needed to
obtain population components from the population factors of
the models. Population components were then used to evaluate
GPR-Varimax and SPSS-Varimax rotation of sample component
loadings by means of congruence with the respective population
components. To obtain population components, we generated
population data sets on the basis of the population factor models
and submitted these population data sets to PCA (see Tables 1, 2).

We followed a procedure described by Grice (2001) to
generate finite population data sets based on common and
unique factors. Thereby, we first used the SPSS Mersenne Twister
random number generator to generate normally distributed,
z-standardized random data X containing k + m preliminary
factor scores. We then performed PCA on these data, again
extracting k+m preliminary components without rotating them.
Since component extraction in PCA is based on orthogonality,
this step ensures that the final factors, common and unique, are
all based on perfectly uncorrelated random variables to fulfill the
requirements of population data. We saved the k+m component
scores, which served as the k common factors F and m unique
factor scores U. We then used an SPSS Matrix script in order to
generate a finite population of observed variables by the common
factor model Z = FA

′

+ UD′ (Gorsuch, 1983; Grice, 2001).
The loading matrices A for common and U for unique factors
were taken from the respective population factor models. The
population data sets consisted of 100,000 cases for all populations
that comprised 1,000 samples with n = 100 and 300,000 cases for
all populations of 1,000 samples with n = 300. Finally, population
component loadings were computed by performing a PCA with
the built-in Varimax rotation in SPSS on the population data.
Main loadings of population components for the single-optimum
model were a∗ = 0.58, for Varimax-rotation with and without
Kaiser normalization (Table 1). Population component loadings
for the double-optimum model differed between Varimax-
rotation with and without Kaiser normalization (Table 2).
Without Kaiser normalization, component loadings followed the
modeled factor structure, where half of the double-optimum
variables had unique main loadings, and the other half had
ambiguous (double) main loadings. Thereby, we could identify
the stronger simple structure (global optimum of the Varimax
criterion) by submitting the population data set to PCA
with SPSS-Varimax rotation of non-normalized loadings. For
demonstration purposes, we also present the weaker simple
structure (local optimum of the Varimax criterion, see Table 2).
With Kaiser normalization, population component loadings from
PCA with SPSS-Varimax did not follow the modeled structure
with unique loadings for half of the double-optimum variables
and ambiguous loadings for the other half. Instead, loadings were
ambiguous for all double-optimum variables. This was the case
for both the local and the global solution.

Analysis of Simulated Sample Data
From the population data, 1,000 samples were drawn with
either n = 100 or n = 300. Data for the samples were
submitted to correlation-based PCA in SPSS for component
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TABLE 2 | Loading matrices of the double-optimum model for three simple structure population factors and corresponding Varimax-rotated population components.

Factors Components

No Kaiser With Kaiser

Global optimum Local optimum Global optimum Local optimum

F1 F2 F3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

V1 0.51 0.00 0.00 0.60 0.00 0.00 0.42 0.42 0.00 0.23 −0.55 0.00 0.55 −0.23 0.00

V2 0.51 0.00 0.00 0.60 0.00 0.00 0.42 0.42 0.00 0.23 −0.55 0.00 0.55 −0.23 0.00

V3 0.34 0.34 0.00 0.41 0.41 0.00 0.57 0.00 0.00 −0.22 −0.53 0.00 0.22 −0.53 0.00

V4 0.34 0.34 0.00 0.41 0.41 0.00 0.57 0.00 0.00 −0.22 −0.53 0.00 0.22 −0.53 0.00

V5 0.00 0.51 0.00 0.00 0.60 0.00 0.42 −0.42 0.00 −0.55 −0.23 0.00 −0.23 −0.55 0.00

V6 0.00 0.51 0.00 0.00 0.60 0.00 0.42 −0.42 0.00 −0.55 −0.23 0.00 −0.23 −0.55 0.00

V7 0.34 −0.34 0.00 0.41 −0.41 0.00 0.00 0.57 0.00 0.53 −0.22 0.00 0.53 0.22 0.00

V8 0.34 −0.34 0.00 0.41 −0.41 0.00 0.00 0.57 0.00 0.53 −0.22 0.00 0.53 0.22 0.00

V9 0.00 −0.51 0.00 0.00 −0.60 0.00 −0.42 0.42 0.00 0.55 0.23 0.00 0.23 0.55 0.00

V10 0.00 −0.51 0.00 0.00 −0.60 0.00 −0.42 0.42 0.00 0.55 0.23 0.00 0.23 0.55 0.00

V11 −0.34 −0.34 0.00 −0.41 −0.41 0.00 −0.57 0.00 0.00 0.22 0.53 0.00 −0.22 0.53 0.00

V12 −0.34 −0.34 0.00 −0.41 −0.41 0.00 −0.57 0.00 0.00 0.22 0.53 0.00 −0.22 0.53 0.00

V13 −0.51 0.00 0.00 −0.60 0.00 0.00 −0.42 −0.42 0.00 −0.23 0.55 0.00 −0.55 0.23 0.00

V14 −0.51 0.00 0.00 −0.60 0.00 0.00 −0.42 −0.42 0.00 −0.23 0.55 0.00 −0.55 0.23 0.00

V15 −0.34 0.34 0.00 −0.41 0.41 0.00 0.00 −0.57 0.00 −0.53 0.22 0.00 −0.53 −0.22 0.00

V16 −0.34 0.34 0.00 −0.41 0.41 0.00 0.00 −0.57 0.00 −0.53 0.22 0.00 −0.53 −0.22 0.00

V17 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V18 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V19 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V20 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V21 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V22 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V23 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

V24 0.00 0.00 0.50 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59 0.00 0.00 0.59

With Kaiser, Loadings were Kaiser normalized before rotation. No Kaiser, Non-normalized loadings were rotated. Main loadings are given in boldface. Population
components were used to compute congruence coefficients with sample components obtained by GPR-Varimax and by SPSS-Varimax.

extraction. We extracted a fixed number of components in the
samples corresponding to the correct number of population
components. Components of each sample were rotated with
GPR-Varimax and SPSS-Varimax, both performed with and
without Kaiser normalization (Kaiser, 1958). For initial loading
matrices 3 = AT in GPR-Varimax, we used the k × k identity
matrix and random matrices as start transformation matrices T.
For the computation of random start loading matrices for GPR-
Varimax rotation, we used the SPSS Mersenne Twister random
number generator in order to generate random transformation
matrices. The unrotated component loading matrices A were
post-multiplied by the random transformation matrices to
generate random loading matrices. For the purpose of examining
possible local solutions in GPR-Varimax, we allowed for different
numbers of random start matrices with q = 1, 10, 50, and 100.
Whenever more than a single random start matrix was used, we
selected the solution with the maximum value for the Varimax
criterion. This allowed us to investigate if GPR-Varimax yielded
solutions with a local optimum depending on the start loadings,
or if GPR-Varimax could find the global optimum independent of
the start loading matrix. If rotation performance increased with a

higher number of random start loading matrices that were used,
this would indicate local optima. If rotation performance could
not be improved by selecting the best solution out of multiple
start loadings, and if the solution had the same quality as the
corresponding SPSS-Varimax solution, this would indicate that
the GPR-algorithm finds the global optimum.

We assessed rotation performance by computing the Varimax
criterion (Kaiser, 1958) v for all rotations and by comparing GPR-
Varimax loadings to population component loadings by means of
congruence coefficients c. To compare and average results from
multiple rotations, we had to solve the alignment problem in
each solution, which refers to component reflection (the sign
of the loadings) and component interchange (the position of
each component in a given loading matrix 3). We reflected
loading signs by multiplying each column of 3 with the sign of
the loading with the maximum absolute size of the respective
column. We determined the position of each component in 3 by
congruence coefficients c with population components. For each
column in 3, we selected the component that had the highest c
with the respective population component of that position. These
maximum congruence coefficients were then averaged across
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components in each sample, indicating proximity of the Varimax-
rotated sample loadings to corresponding population component
loadings (Mundfrom et al., 2005). In addition to proximity of
the sample loadings to population loadings, we also computed
deviation of the sample loadings from population component
loadings for each solution. Therefore, we calculated the root
mean square error (RMSE) based on the squared differences
between rotated and population loadings (see Supplementary
Materials). For each condition and method (GPR-Varimax, SPSS-
Varimax, with and without Kaiser normalization), we averaged
values for the three criteria (v, c, RMSE) of rotation performance
across all 1,000 samples.

RESULTS

We compared rotation performance of GPR-Varimax and SPSS-
Varimax on simulated data for the single-optimum and the
double-optimum population model. We also included an analysis
of real data to compare simple structure solutions from GPR-
Varimax and SPSS-Varimax in an empirical setting.

Cut-Offs for Equality of Results
For comparisons between GPR-Varimax and SPSS-Varimax, we
used cut-offs defining equality of rotation performance. For this
end, we decided on a conjunctive cut-off for the mean Varimax
criterion and mean congruence with population loadings of
solutions across 1,000 samples. Cut-offs were chosen to match
the scaling of the values. The mean Varimax criterion in the
samples ranged from v = 0.0066 (double-optimum, k = 12,
n = 100, with Kaiser normalization) to v = 0.0417 (single-
optimum, k = 3, m/k = 4, n = 300, with and without Kaiser
normalization). Mean congruence coefficients in the samples
ranged from c = 0.729 (single-optimum, k = 12, m/k = 4, n = 100,
no Kaiser normalization) to c = 0.984 (single-optimum, k = 3,
m/k = 8, n = 300, with and without Kaiser normalization).
The exact values for the mean Varimax criterion v and the
mean congruence coefficients with population loadings c can
be inspected in the Supplementary Materials of this paper.
Given the scaling of the values, we considered the quality of
results to be equal when both the absolute difference between
the mean Varimax criterion of the GPR-Varimax solutions and
the mean Varimax criterion of the SPSS-Varimax solutions was
|1| < 0.0001 and the absolute difference between the respective
mean congruence coefficients was |1| < 0.001. In other words,
the quality of GPR-Varimax and SPSS-Varimax solutions was
considered equal when the Varimax criterion differed by less than
0.0001 and when population congruence differed by less than
0.001. Tables 3–6 show differences in mean Varimax criterion and
mean population congruence between SPSS-Varimax and GPR-
Varimax, on which evaluations of the equality or inequality of
rotation performance were based. Differences in the tables are
displayed as GPR-mean minus SPSS-mean, such that a positive
sign indicates better performance of GPR-Varimax, a negative
sign indicates better performance of SPSS-Varimax, and an em-
dash (—) indicates equal performance. The tables show results for
unrotated start loadings (start T = identity), a single random start

loading matrix, and 10 random start loadings in GPR-Varimax,
of which the solution with the maximum Varimax criterion was
selected for each sample. Increasing the number of random starts
in GPR-Varimax to 50 and 100 yielded no greater differences
than those found for up to 10 random start loadings. Therefore,
results for 50 and 100 random starts in GPR-Varimax are not
displayed in the tables.

Simulation Results for Single-Optimum
Simple Structure
For the single-optimum population model, rotation performance
of GPR-Varimax and SPSS-Varimax was extremely similar, and
we found only few very slight differences 1 between them
(Tables 3, 4). Values for the mean Varimax criterion in the
subset of data with single-optimum simple structure ranged from
v = 0.0072 (m/k = 8, k = 12, n = 100) to v = 0.0417 (m/k = 4, k = 3,
n = 300). The Varimax criterion was larger for samples of n = 300
than for samples of n = 100, and Kaiser normalization of loadings
before rotation yielded slightly smaller values for the Varimax
criterion in small samples (n = 100). Values for mean congruence
coefficients ranged from c = 0.727 (m/k = 4, k = 12, n = 100,
GPR-Varimax, no Kaiser, 25 iterations per rotation) to c = 0.984
(m/k = 8, k = 3, n = 300, with and without Kaiser). Congruence
increased with sample size, where all mean congruences were
larger than c = 0.900 in all conditions with n = 300. The tendencies
in mean Varimax criterion and congruence were found for both
SPSS-Varimax and GPR-Varimax rotation.

Using the combined cut-offs for the Varimax criterion and
congruence, we found equal results for SPSS-Varimax and GPR-
Varimax in about 90% of the comparisons, i.e., in 259 out of 288
comparisons (86 out of 96 conditions) for the single-optimum
model (see Tables 3, 4). Most differences were at the margin of
the cut-offs (|1| = 0.0001| for v and |1| = 0.001| for c) and thus
very small. Regarding the Varimax criterion, only 8 out of the
288 comparisons showed different results between GPR-Varimax
and SPSS-Varimax, six of which were in favor of GPR-Varimax
(Table 3). Moreover, using unrotated start loadings (i.e., an
identity start transformation matrix) in GPR-Varimax resulted
in equal values for the mean Varimax criterion for up to four
decimals as testing several random start loadings and selecting
the solution with the maximum Varimax criterion. In some cases,
an unrotated start loading matrix yielded a greater Varimax
criterion than the subsequent random start loadings, such that the
solution for unrotated start loadings was selected. The few and
small differences (16 1 = −0.001, 7 1 = −0.002; see Table 4) in
mean congruence coefficients were all in favor of SPSS-Varimax.
They were only found in small samples (n = 100). Moreover, they
diminished when components were defined by more variables
(m/k = 4 vs. 6 vs. 8) and when 250 iterations were allowed
in each rotation (3 neg. 1 occurred) instead of 25 iterations
(20 neg. 1). Furthermore, when loadings were Kaiser normalized
before rotation, there were fewer differences (7 neg. 1) between
GPR-Varimax and SPSS-Varimax as opposed to rotation of non-
normalized loadings (16 neg. 1). In respect of start loadings
in GPR-Varimax, using random start loadings eliminated SPSS-
GPR differences in congruence in four conditions. In the other
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TABLE 3 | Differences in Varimax criterion between GPR-Varimax and SPSS-Varimax component rotation for single-optimum simple structure.

m/k = 4 m/k = 6 m/k = 8

25 iterations 250 iterations 25 iterations 250 iterations 25 iterations 250 iterations

GPR start No With No With No With No With No With No With

k N loadings Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser

3 100 Unrotated — — — — — — — — −0.002 −0.001 — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

6 100 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

9 100 Unrotated — — — — — — — — — 0.0001 — 0.0001

Random 1 — — — — — — — — — 0.0001 — 0.0001

Random 10 — — — — — — — — — 0.0001 — 0.0001

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

12 100 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

GPR, gradient-projection based rotation. k, number of components. m/k, number of variables per component. With Kaiser, loadings were Kaiser normalized before rotation.
No Kaiser, non-normalized loadings. Differences refer to the mean Varimax criterion of 1,000 samples and were computed as GPR-mean – SPSS-mean. Differences of
|1| ≥ 0.0001 are reported, otherwise results are considered equal (“—“). A positive sign means that GPR-Varimax was better than SPSS-Varimax and vice versa.

six conditions with SPSS-GPR differences, they remained the
same for up to 3 decimals independent of start loadings in GPR-
Varimax (unrotated or random). This was also true when 50 and
100 random start loadings were tested to find the maximum value
for the Varimax criterion.

Simulation Results for Double-Optimum
Simple Structure
For the double-optimum model with a local and a global
optimum of the Varimax criterion in the population, we found
more differences in rotation performance between GPR-Varimax
and SPSS-Varimax than for the single-optimum population
models (Tables 5, 6). The mean Varimax criterion in the subset
of data with double-optimum simple structure ranged from
v = 0.0066 (k = 12, n = 100, with Kaiser) to v = 0.0227 (k = 3,
n = 100, no Kaiser). It decreased when loadings were Kaiser
normalized before rotation. With regards to sample size, the
Varimax criterion was smaller for n = 300 than for n = 100 when
three or six components were rotated, but larger for n = 300 than
for n = 100 for the rotation of nine and 12 components. Mean
congruences were found between c = 0.725 (k = 12, n = 100, with

Kaiser, SPSS-Varimax) and c = 0.936 (k = 3, n = 300, with Kaiser,
GPR-Varimax with 10 random start loadings). They were overall
larger in samples of n = 300 (with all c > 0.900) and when loadings
were not Kaiser normalized before rotation.

Results varied more between rotation methods (GPR-Varimax
vs. SPSS-Varimax) and between start loadings in GPR-Varimax
than in the single-optimum case. Out of 96 comparisons,
rotation performance was equal in 50 comparisons, better
for GPR-Varimax in 30 comparisons, and better for SPSS-
Varimax in 16 comparisons (Tables 5, 6). Considering the mean
Varimax criterion, GPR-Varimax with at least 10 random start
loadings performed slightly better than SPSS-Varimax and GPR-
Varimax with a single start loading matrix in three conditions
(Table 5). However, greater variation was found when mean
congruence coefficients were compared for up to three decimals
(Table 6). Differences in favor of SPSS-Varimax were very small
(1 =−0.001). All negative differences were found for the rotation
of nine and 12 components, and most of them occurred when
25 iterations per rotation were allowed, sample size was small,
and loadings were not Kaiser normalized before rotation. These
negative differences diminished when we increased the number
of iterations per rotation from 25 (14 neg. 1) to 250 (2 neg. 1)
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TABLE 4 | Differences in congruence coefficients with population components between GPR-Varimax and SPSS-Varimax for single-optimum simple structure.

m/k = 4 m/k = 6 m/k = 8

25 iterations 250 iterations 25 iterations 250 iterations 25 iterations 250 iterations

GPR start No With No With No With No With No With No With

k N loadings Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser Kaiser

3 100 Unrotated — — — — — — — — −0.002 −0.001 — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

6 100 Unrotated — — — — −0.001 — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

9 100 Unrotated −0.001 — −0.001 — — — — — — — — —

Random 1 −0.001 — −0.001 — — — — — — — — —

Random 10 −0.001 — −0.001 — — — — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

12 100 Unrotated −0.002 −0.002 — — −0.001 −0.001 — — −0.001 — — —

Random 1 −0.002 −0.002 — — −0.001 −0.001 — — −0.001 — — —

Random 10 −0.002 −0.002 — — −0.001 −0.001 — — — — — —

300 Unrotated — — — — — — — — — — — —

Random 1 — — — — — — — — — — — —

Random 10 — — — — — — — — — — — —

GPR, gradient-projection based rotation. k, number of components. m/k = number of variables per component. With Kaiser, loadings were Kaiser normalized before
rotation. No Kaiser, non-normalized loadings. Differences refer the mean congruence coefficients of 1,000 samples and were computed as GPR-mean – SPSS-
mean. Differences of |1| ≥ 0.001 are reported, otherwise results are considered equal (“—“). A positive sign means that GPR-Varimax was better than SPSS-Varimax
and vice versa.

or when sample size increased from n = 100 (16 neg. 1) to n = 300
(4 neg. 1). As in the single-optimum models, combining Kaiser
normalized loadings and 250 iterations per rotation yielded
no differences in favor of SPSS. Most differences in favor of
GPR-Varimax were greater than those in favor of SPSS-Varimax
and up to 1 = 0.036. All relevant differences of 1 ≥ 0.020
occurred in large samples with Kaiser normalized loadings.
In these conditions, it was advantageous to use random start
loadings rather than unrotated start loadings in GPR-Varimax.
Highest congruence was reached when 10 or more random
start loadings were used. Thereby, the mean Varimax criterion
increased as well, but to a lesser extent than congruence with
population components.

Empirical Example Based on a
Short Knowledge Test
In addition to the simulation study, we also analyzed real data
from an empirical study to show the similarity of GPR-Varimax
and SPSS-Varimax in an investigative application. Therefore,
PCA was performed for 17 newly developed items of a

knowledge test. A total sample of 397 voluntary participants
(55 females; age in years, M = 19.53, SD = 2.49) from a
German school worked for about 30 min on the 17 single
choice knowledge items. Each item had one correct solution
and four distractors. Six items were from the knowledge domain
Geography/History, five items were from the knowledge domain
Science, and six items were from the knowledge domain of
Culture and Arts. The item inter-correlation matrix is given in
the Supplementary Material (Supplementary Table S14). Three
components from the unrotated PCA explaining 30.52% of the
total variance were retained for Varimax rotation (for eigenvalues
of the unrotated PCA, see Table 7). Varimax rotation was
performed by means of SPSS-Varimax and GPR-Varimax with
a maximum of 250 iterations. As a start transformation matrix
in GPR-Varimax, we used the identity matrix, one random start
matrix, and 10 random start matrices. We did not use more
than 10 random start matrices because the results from the
simulation study yielded that using more than 10 random start
matrices for the rotation of three components did not improve
rotation performance.
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TABLE 5 | Differences in Varimax criterion between GPR-Varimax and
SPSS-Varimax component rotation for double-optimum simple structure.

25 iterations 250 iterations

GPR start No With No With

k N loadings Kaiser Kaiser Kaiser Kaiser

3 100 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

300 Unrotated — — — —

Random 1 — — — —

Random 10 — 0.0001 — —

6 100 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

300 Unrotated — — — —

Random 1 — — — —

Random 10 — 0.0001 — 0.0001

9 100 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

300 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

12 100 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

300 Unrotated — — — —

Random 1 — — — —

Random 10 — — — —

GPR, gradient-projection based rotation. k, number of components. With Kaiser,
loadings were Kaiser normalized before rotation. No Kaiser, non-normalized
loadings. Differences refer to the mean Varimax criterion of 1,000 samples and
were computed as GPR-mean – SPSS-mean. Differences of |1| ≥ 0.0001 are
reported, otherwise results are considered equal (“—“). A positive sign means that
GPR-Varimax was better than SPSS-Varimax and vice versa.

Although several secondary loadings occurred, the component
loadings could be clearly interpreted in terms of the three
knowledge domains. The congruence of the Varimax loadings
based on SPSS-Varimax and Kaiser normalization (see Table 7)
with the Varimax loadings from SPSS-Varimax without Kaiser
normalization was 0.998. Thus, these two SPSS-Varimax loading
matrices were nearly identical, so that it was sufficient to compare
GPR-Varimax loadings only with the SPSS-Varimax loadings
based on Kaiser normalization. Table 7 displays GPR-Varimax
loadings where the start loading matrix were unrotated loadings
(i.e., the transformation matrix for transforming the unrotated
loading matrix into a start loading matrix was identity). It turned
out that the loadings of GPR-Varimax with and without Kaiser
normalization were nearly identical to the loadings resulting
from Varimax rotation based on the SPSS FACTOR command
and Kaiser normalization (see Table 7). The congruence of
GPR-Varimax loadings based on Kaiser normalization with
the corresponding SPSS-Varimax loadings based on Kaiser
normalization were all greater than 0.999. The congruence
of GPR-Varimax loadings without Kaiser normalization with

TABLE 6 | Differences in congruence coefficients with population components
between GPR-Varimax and SPSS-Varimax for double-optimum simple structure.

25 iterations 250 iterations

GPR start No With No With

k N loadings Kaiser Kaiser Kaiser Kaiser

3 100 Unrotated — 0.001 — 0.001

Random 1 — 0.017 — 0.017

Random 10 — 0.017 — 0.017

300 Unrotated 0.001 0.002 — —

Random 1 0.001 0.027 — 0.029

Random 10 — 0.036 — 0.030

6 100 Unrotated — — — —

Random 1 0.001 — — —

Random 10 0.001 — — —

300 Unrotated — — — —

Random 1 — 0.016 — 0.030

Random 10 — 0.023 — 0.032

9 100 Unrotated −0.001 −0.001 — —

Random 1 −0.001 −0.001 — —

Random 10 −0.001 −0.001 — —

300 Unrotated −0.001 — −0.001 —

Random 1 −0.001 0.027 −0.001 0.026

Random 10 — 0.034 — 0.028

12 100 Unrotated −0.001 −0.001 0.001 —

Random 1 −0.001 −0.001 0.001 —

Random 10 −0.001 −0.001 0.001 —

300 Unrotated — — — —

Random 1 — 0.026 — 0.027

Random 10 — 0.031 — 0.029

GPR, gradient-projection based rotation. k, number of components. With Kaiser,
loadings were Kaiser normalized before rotation. No Kaiser, non-normalized
loadings. Differences refer to the mean congruence coefficients with population
components of 1,000 samples and were computed as GPR-mean – SPSS-
mean. Differences of |1| ≥ 0.001 are reported, otherwise results are considered
equal (“—“). A positive sign means that GPR-Varimax was better than SPSS-
Varimax and vice versa.

the corresponding SPSS-Varimax loadings based on Kaiser
normalization were all greater than 0.990. Thus, the different
methods of Varimax rotation did not result in relevant differences
of the loadings. These congruence coefficients were similar when
one or 10 random start loading matrices were used for GPR
Varimax. Overall, the Varimax criterion of all solutions (GPR-
Varimax with and without Kaiser normalization, with unrotated
start loadings, one and 10 random start matrices, and with
SPSS without Kaiser normalization) was about 0.19 with small
differences at the third decimal place. Given these results, it
follows clearly that the interpretation of the component loadings
was not altered by the different methods of Varimax rotation.

DISCUSSION

We assessed rotation performance of Varimax rotation in PCA
based on gradient projection in comparison to the built-in
SPSS-Varimax rotation in a simulation study. Referring to
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TABLE 7 | Three Varimax-rotated principal components from a
short knowledge test.

GPR no Kaiser GPR with Kaiser SPSS with Kaiser

G/h S C G/h S C G/h S C

Geo/his 1 0.51 0.09 −0.12 0.52 0.11 −0.09 0.52 0.11 −0.09

Geo/his 2 0.45 −0.04 0.06 0.45 −0.02 0.09 0.45 −0.02 0.09

Geo/his 3 0.59 −0.03 0.25 0.58 −0.02 0.28 0.58 −0.02 0.28

Geo/his 4 0.59 0.01 −0.16 0.59 0.03 −0.13 0.59 0.03 −0.13

Geo/his 5 0.46 0.08 0.17 0.45 0.09 0.19 0.45 0.09 0.19

Geo/his 6 0.24 0.06 0.48 0.21 0.06 0.49 0.21 0.06 0.49

Science 1 0.11 0.46 0.07 0.09 0.46 0.09 0.09 0.46 0.09

Science 2 0.22 0.38 0.25 0.20 0.38 0.27 0.20 0.38 0.27

Science 3 0.20 0.62 0.15 0.17 0.63 0.17 0.17 0.63 0.17

Science 4 −0.10 0.77 0.02 −0.12 0.76 0.03 −0.12 0.76 0.03

Science 5 −0.01 0.64 −0.06 −0.02 0.64 −0.04 −0.02 0.64 −0.04

Culture 1 0.18 0.02 0.32 0.16 0.02 0.33 0.16 0.02 0.33

Culture 2 −0.09 0.04 0.63 −0.13 0.02 0.63 −0.13 0.02 0.63

Culture 3 −0.06 0.21 0.31 −0.09 0.20 0.31 −0.09 0.20 0.31

Culture 4 0.11 00.01 0.51 0.08 0.01 0.51 0.08 0.01 0.51

Culture 5 0.23 0.07 0.43 0.20 0.07 0.45 0.20 0.07 0.45

Culture 6 −0.14 0.17 0.42 −0.16 0.16 0.42 −0.16 0.16 0.42

SPSS, rotation by means of the SPSS command FACTOR. GPR, gradient-
projection based rotation. The GPR-Varimax solutions are displayed for unrotated
loadings as start loadings. Loadings with an absolute size greater or equal 0.30 are
given in boldface. First nine eigenvalues of unrotated PCA: 2.43, 1.52, 1.24, 1.17,
1.11, 1.00, 0.97, 0.96, 0.87.

the discussion of multiple local optima in analytic factor and
component rotation (Rozeboom, 1992; Bernaards and Jennrich,
2005; Mulaik, 2010), we examined whether the GPR-Varimax
algorithm could find the global optimum of the Varimax criterion
for a single-optimum and a double-optimum simple structure
in the population. Therefore, we evaluated rotation performance
of GPR-Varimax using unrotated loadings and multiple random
start loadings. Moreover, we investigated whether selecting
the best out of multiple random starts improved rotation
performance of GPR-Varimax. Furthermore, we included an
empirical example in which we compared Varimax solutions of
GPR and SPSS for the analysis of real data.

Summary and Interpretation of Results
We found that GPR-Varimax rotation was comparable to SPSS-
Varimax rotation in both simulated and real data. Comparing
rotation performance for the single-optimum and double-
optimum population model in the simulation study yielded
equal results in most manipulated conditions. When there
was a single marked optimum of orthogonal simple structure
in the population, results were extremely similar for GPR-
Varimax and SPSS-Varimax. The combined comparison of the
mean Varimax criterion for up to four decimals and mean
congruence coefficients with population loadings for up to three
decimals yielded equal results for 86 out of 96 conditions or
259 out of 288 comparisons. When sample size was n = 300, all
comparisons showed equal results for GPR-Varimax and SPSS-
Varimax. In smaller samples (n = 100), we found a few very

small differences, most of which were comprised by slightly
higher congruence coefficients of SPSS-Varimax solutions with
population loadings (1 = −0.001). Most of these differences
occurred when components were weakly defined (m/k = 4 vs.
m/k = 6 vs. m/k = 8). However, rotating Kaiser normalized
loadings and allowing for 250 iterations per rotation eliminated
all differences in favor of SPSS in small samples as well. Thus,
with the right settings, the GPR-Varimax algorithm reaches an
optimum for the Varimax criterion that yields results equal to
SPSS-Varimax even in small samples and for weakly defined
components. Furthermore, all differences in favor of SPSS-
Varimax were extremely small and probably not relevant in
applied contexts. Hence, even with 25 iterations per rotation
and non-normalized loadings, GPR-Varimax can be expected to
recover single-optimum population simple structure to a similar
degree as SPSS for the presented conditions. Regarding multiple
local solutions, we found little evidence that using multiple
random start loadings in GPR-Varimax resulted in substantially
different solutions for the single-optimum population model.
Only in four conditions, it was slightly advantageous to use
random start loadings rather than the unrotated loading matrix.
In the other 92 conditions, using unrotated start loadings in GPR-
Varimax was sufficient to match SPSS-Varimax performance.

When there were two optima, a global and a local one, of
population simple structure, we found more differences between
GPR-Varimax and SPSS-Varimax. However, more than half of
the comparisons (50 out of 96) yielded equal results. Again, the
Varimax criterion was the same in almost all comparisons (93 out
of 96) for up to four decimals, but we found more differences
in congruence coefficients with population components for up
to three decimals. All differences in favor of SPSS (16 neg. 1)
were very small (1 = −0.001), whereas those in favor of GPR
(30 pos. 1) were more substantial (50% of pos. 1 were larger
than 0.020). As in the single-optimum case, all differences in
favor of SPSS-Varimax were eliminated when Kaiser normalized
loadings were rotated and 250 iterations were allowed in each
rotation. All substantial differences in favor of GPR-Varimax
occurred in samples of n = 300 and when loadings were Kaiser
normalized before rotation. Thereby, GPR-Varimax solutions
showed highest similarity to population components when at
least 10 random start loading matrices were used. However,
using more than 10 random start loadings did not increase
congruence coefficients any further. Nevertheless, the results
showed that GPR-Varimax solutions with a similar Varimax
criterion as the SPSS-Varimax solution (|1| < 0.0001) produced
by using 10 or more random start loading matrices with Kaiser
normalized loadings led to relevant increases in congruence with
population components. Thus, when there is a local optimum in
the population loadings, GPR-Varimax may result in solutions
that are more similar to the global optimum than SPSS-Varimax,
while the Varimax criterion is similar or equal to SPSS-Varimax.
Hence, when population components have substantial ambiguity,
using multiple random start loadings in GPR-Varimax could
increase the chance of approximating the population components
with the global optimum. This unexpected finding could possibly
be explained by the different approaches of maximizing the
Varimax criterion by the built-in SPSS procedure as opposed
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to the GPR algorithm. The original Varimax procedure that is
realized in SPSS analytically maximizes the Varimax criterion
using derivatives for pairs of factors or components (Kaiser,
1958). In each iteration, the Varimax criterion of all component
pairs is maximized. Although there are also iterations in order to
maximize the Varimax criterion in GPR-Varimax, this algorithm
is not based on pairwise rotations of components. Additional
maximizing is performed when GPR-Varimax is conducted
with multiple start loading matrices. In GPR-Varimax based on
random start loading matrices, the complete loading matrices
based on two different start loading matrices are compared and
the loading matrix with the larger Varimax criterion is retained
for the next step. Thus, a main difference between the SPSS-
Varimax algorithm and the GPR-Varimax algorithm is that the
latter does not rely on pairwise rotation of components in order
to maximize the Varimax criterion. This should be investigated in
further studies. However, the present results may indicate that a
maximization of the Varimax criterion for the complete loading
matrix might be less susceptible to sampling error variance than
an algorithm that is based on component pairs.

Considering the results from both the single-optimum and
the double-optimum population models, GPR-Varimax and
SPSS-Varimax performed very similar in recovering population
components. Therefore, mean congruence coefficients with
population can be evaluated for the manipulated conditions for
both rotation methods combined. According to the thresholds
suggested by Lorenzo-Seva and ten Berge (2006), most solutions
discovered by GPR-Varimax and SPSS-Varimax displayed fair
similarity to population components with c > 0.85 (see
Supplementary Materials). This was true for all conditions
with n = 300. In the single-optimum case, all conditions
with n = 300 except for k = 12 with m/k = 4 even yielded
population congruence of c > 0.92, which has been suggested
as threshold for good agreement by Mundfrom et al. (2005).
For the other conditions, GPR-Varimax and SPSS-Varimax
solutions fell into the range of borderline and poor agreement
with population components, mostly depending on the number
of components to be rotated, Kaiser normalization, and the
population model beyond the simulated sample data sets. None
of the mean congruence coefficients with population components
were smaller than c = 0.68, as the threshold for terrible agreement
(Mundfrom et al., 2005).

Conducting Varimax rotation by GPR and SPSS in PCA on
a real data set supported the results of the simulation study.
For the 17 newly developed items of a short knowledge test,
both GPR-Varimax and SPSS-Varimax indicated a clear three-
component solution. The recovered loading pattern was highly
similar with congruence of c ≥ 0.990 between SPSS- and GPR-
components, indicating excellent agreement between loading
patterns (Mundfrom et al., 2005) or rather equal components
(Lorenzo-Seva and ten Berge, 2006). Furthermore, the solutions
did not differ between multiple start loadings in GPR-Varimax.
Thus, it was not necessary to transform the unrotated start
loadings from the data into random start loadings before
Varimax-rotation by GPR. These findings support the notion that
GPR-Varimax can be used as an alternative to SPSS-Varimax in
empirical applications.

Choices of Simulated Conditions
The results of the simulation study indicated that rotation
performance in terms of similarity to population components
foremost depended on the manipulated conditions rather than
the rotation algorithm applied (SPSS-Varimax vs. GPR-Varimax).
As the range from poor to excellent agreement (Mundfrom
et al., 2005) with population components was covered by the
presented conditions and hardly differed between GPR-Varimax
and SPSS-Varimax, we consider the search space to be sufficiently
exhausted. We used two population models to address the
question of local optima. In the single-optimum model, we
manipulated the m/k ratio (m/k = 4, 6, and 8) to test whether
solutions remained stable when components were weakly defined
(Guadagnoli and Velicer, 1988). The double-optimum model
with a global and a local optimum of simple structure in the
population was prone to produce local optima for the rotation of
sample data if the GPR algorithm would stop at a local optimum
instead of the global one. Regarding sample size, we used n = 100
as the minimum sample size recommended for factor analysis in
the literature (Gorsuch, 1983). The second sample size of n = 300
exceeds most recommendations for minimum sample sizes and
has been classified as good (MacCallum et al., 1999). Conducting
PCA in even smaller samples would not be advisable, especially
for a large number of components (here: maximum of 12) and
variables (here: maximum of 96). The number of components
for which we investigated performance of GPR-Varimax covers
the numbers of facets embedded in the most popular theories
on personality. The main discussion revolves around whether
personality consists of three (Eysenck, 1991; Eysenck et al., 1992),
five (Costa and McCrae, 2006), or six (Lee and Ashton, 2004)
independent components or factors. Moreover, investigating
rotation performance for up to 12 components, exceeds the
number of components or factors investigated in most simulation
studies on factor and component analysis (Guadagnoli and
Velicer, 1988; MacCallum et al., 1999; Mundfrom et al., 2005;
Trendafilov and Jolliffe, 2006). Furthermore, results for the
manipulated conditions did not differ to a substantial degree
(|1| < 0.001 for congruence and |1| < 0.0001 for the Varimax
criterion) when more than 10 random start loading matrices in
GPR-Varimax were used. Therefore, we decided to conduct all
analyses for a maximum of 100 random start loadings in GPR-
Varimax and report results for up to 10. Using a maximum of
100 random start loadings is also in line with findings by Hattori
et al. (2017), who found that using 100 multiple starts sufficed
to examine local solutions in Geomin rotation. It also exceeds
the number of random starts performed in other demonstrations
of factor rotation where multiple local optima were of concern
(Kiers, 1994; Browne, 2001; Trendafilov and Jolliffe, 2006).

Future Research
Future research should investigate the advantage of random
starts in GPR-Varimax we found for Kaiser normalized loadings
in the double-optimum case in more detail. In particular,
it would be interesting to isolate the effect of random start
loadings from the effect of the GPR algorithm. Therefore, one
could introduce random start loadings in SPSS by writing a

Frontiers in Psychology | www.frontiersin.org 12 March 2019 | Volume 10 | Article 645

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00645 March 25, 2019 Time: 18:22 # 13

Weide and Beauducel Varimax Rotation by Gradient Projection

syntax for the SPSS MATRIX environment. These random start
loadings should then be inserted in the built-in SPSS-Varimax
procedure that is available by the command FACTOR to produce
multiple solutions. In the same way as we proceeded with GPR-
Varimax, the solutions should be successively replaced to select
the one with the maximum Varimax criterion. If congruence
with population components thereby reaches the level that we
found for GPR-Varimax, the effect can be attributed to random
starts rather than the Varimax algorithm applied. If differences
between GPR-Varimax and SPSS-Varimax remain, the effect can
be attributed to either the GPR-Varimax algorithm alone or a
combination of multiple random starts and differences in the
Varimax procedure between GPR and SPSS.

Moreover, it would be interesting to extend the investigation
from rotation in PCA to rotation in EFA to examine whether
GPR-Varimax performs similarly when different extraction
methods are applied. For example, GPR-Varimax could be
applied to loadings obtained from maximum likelihood factor
analysis or principal axis factoring to investigate whether
rotation performance remains stable when unique variances
need to be estimated as well (Harman, 1967). Furthermore,
one could introduce more complex loading structures in the
single- and double-optimum population models. For example,
one could manipulate component/factor saturation (Guadagnoli
and Velicer, 1988) by varying the size of the main loadings
(here a = 0.50 for population factors). Furthermore, one could
introduce secondary loadings in addition to the main loadings.
These could be modeled to maintain orthogonality (e.g., with
alternating signs) or to produce obliqueness in the population
model. This would be particularly interesting because in most
cases, obliqueness is more likely than orthogonality despite the
popularity of Varimax (Fabrigar et al., 1999; Browne, 2001). For
different conditions of obliqueness, GPR could be investigated
for oblique rotation with Promax, Oblimin/Quartimin, or also
Geomin as a newer method for oblique and orthogonal rotation
(Browne, 2001; Hattori et al., 2017).

The GPR algorithm for the oblique rotation criteria Geomin
and Oblimin was also used by Dien (2010), who compared
different rotation methods in PCA on event-related potentials
(ERP) from simulated EEG data. He found less favorable results
for Geomin and Oblimin, but he could not differentiate whether
the effect was due to the rotation criteria or due to the GPR-
algorithm used to optimize them. One could build on these
findings to examine whether GPR performs better or worse
for the rotation of ERPs when compared to other rotation
approaches. This should be conducted for Varimax rotation, for
which misallocation of variance is a known problem in ERP

data (Wood and McCarthy, 1984; Beauducel and Debener, 2003).
It could be compared whether GPR-based Varimax rotation
produces more or less misallocation of variance than Varimax
rotation by the built-in SPSS procedure.

Conclusion and Recommendations
To conclude, our study supports that Varimax rotation by
GPR, a rotation algorithm that is openly available and usable
in free software like R (Bernaards and Jennrich, 2005), is a
feasible alternative to the built-in Varimax procedure in the
commercial software package SPSS. Both the simulation study
and the empirical example show that results of GPR-Varimax
and SPSS-Varimax are comparable. In the simulation, the few
and very small differences in rotation performance in favor
of SPSS were fully eliminated when loadings were Kaiser
normalized before rotation and 250 iterations were allowed per
rotation. This was true for both the single-optimum and the
double-optimum (global and local) model of simple structure
in the population. In the double-optimum case, GPR-Varimax
performed even better than SPSS-Varimax when loadings were
Kaiser normalized and the best solution from multiple random
start loadings was selected. When a clear simple structure cannot
be expected, it can be advantageous to test 10 random start
loading matrices and select the solution with the maximum
Varimax criterion. Combining the results from the simulation
study, we recommend using Kaiser normalized loadings and a
minimum of 250 iterations per rotation when GPR-Varimax is
conducted. Furthermore, users of GPR-Varimax should insert
the unrotated loading matrix and an additional 10 random
loading matrices as start loadings and select the solution with
the maximum Varimax criterion. We provide the code for
conducting GPR-Varimax with the recommended adjustments
and selection of the best solution in R and SPSS MATRIX
language in the Supplementary Materials of this paper.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2019.00645/full#supplementary-material

REFERENCES
Beauducel, A., and Debener, S. (2003). Misallocation of variance in event-

related potentials: simulation studies on the effects of test power, topography,
and baseline-to-peak versus principal component quantifications. J. Neurosci.
Methods 124, 103–112. doi: 10.1016/S0165-0270(02)00381-3

Bernaards, C. A., and Jennrich, R. I. (2005). Gradient projection algorithms and
software for arbitrary rotation criteria in factor analysis. Educ. Psychol. Meas.
65, 676–696. doi: 10.1177/0013164404272507

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analy-
sis. Multivariate Behav. Res. 36, 111–150. doi: 10.1207/S15327906MBR3601_05

Carroll, J. B. (1953). An analytical solution for approximating simple structure in
factor analysis. Psychometrika 18, 23–38. doi: 10.1007/BF02289025

Costa, P. T., and McCrae, R. R. (2006). Revised NEO Personality Inventory (NEO
PI-R): Manual (UK Edition). Oxford: Hogrefe.

Dien, J. (2010). Evaluating two-step PCA of ERP data with Geomin, Infomax,
Oblimin, Promax, and Varimax rotations. Psychophysiology 47, 170–183. doi:
10.1111/j.1469-8986.2009.00885.x

Frontiers in Psychology | www.frontiersin.org 13 March 2019 | Volume 10 | Article 645

https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00645/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00645/full#supplementary-material
https://doi.org/10.1016/S0165-0270(02)00381-3
https://doi.org/10.1177/0013164404272507
https://doi.org/10.1207/S15327906MBR3601_05
https://doi.org/10.1007/BF02289025
https://doi.org/10.1111/j.1469-8986.2009.00885.x
https://doi.org/10.1111/j.1469-8986.2009.00885.x
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00645 March 25, 2019 Time: 18:22 # 14

Weide and Beauducel Varimax Rotation by Gradient Projection

Eysenck, H. J. (1991). Dimensions of personality: 16, 5 or 3?—Criteria for a
taxonomic paradigm. Personal. Individ. Differ. 12, 773–790. doi: 10.1016/0191-
8869(91)90144-Z

Eysenck, H. J., Barrett, P., Wilson, G., and Jackson, C. (1992). Primary trait
measurement of the 21 components of the P-E-N system. Eur. J. Psychol. Assess.
8, 109–117.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., and Strahan, E. J.
(1999). Evaluating the use of exploratory factor analysis in psycho-
logical research. Psychol. Methods 4, 272–299. doi: 10.1037//1082-989X.4.
3.272

Gorsuch, R. L. (1983). Factor Analysis, 2nd Edn. Hillsdale, NJ: Erlbaum.
Grice, J. W. (2001). A comparison of factor scores under conditions

of factor obliquity. Psychol. Methods 6, 67–83. doi: 10.1037//1082-989X.
6.1.67

Guadagnoli, E., and Velicer, F. W. (1988). Relation of sample size to the stability of
component patterns. Psychol. Bull. 103, 265–275. doi: 10.1037/0033-2909.103.
2.265

Gurtman, M. B. (1992). Construct validity of interpersonal personality measures:
the interpersonal circumplex as a nomological net. J. Personal. Soc. Psychol. 63,
105–118. doi: 10.1037/0022-3514.52.5.1019

Harman, H. H. (1967). Modern Factor Analysis, 2nd Edn. Chicago: University of
Chicago Press.

Hattori, M., Zhang, G., and Preacher, K. J. (2017). Multiple local solutions and
Geomin rotation. Multivariate Behav. Res. 52, 720–731. doi: 10.1080/00273171.
2017.1361312

Hendrickson, A. E., and White, P. O. (1964). Promax: a quick method for rotation
to oblique simple structure. Br. J. Stat. Psychol. 17, 65–70. doi: 10.1111/j.2044-
8317.1964.tb00244.x

Hofstee, W. K., de Raad, B., and Goldberg, L. R. (1992). Integration of the Big
Five and circumplex approaches to trait structure. J. Personal. Soc. Psychol. 63,
146–163. doi: 10.1037//0022-3514.63.1.146

Jennrich, R. I. (2001). A simple general procedure for orthogonal rotation.
Psychometrika 66, 289–306. doi: 10.1007/BF02294840

Jennrich, R. I. (2002). A simple general method for oblique rotation. Psychometrika
67, 7–19. doi: 10.1007/BF02294706

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika 23, 187–200. doi: 10.1007/BF02289233

Kiers, H. A. L. (1994). Simplimax: oblique rotation to an optimal target with simple
structure. Psychometrika 59, 567–579. doi: 10.1007/BF02294392

Korth, B., and Tucker, L. R. (1975). The distribution of chance congruence
coefficients from simulated data. Psychometrika 40, 361–372. doi: 10.1007/
BF02291763

Lee, K., and Ashton, M. C. (2004). Psychometric properties of the HEXACO
personality inventory. Multivariate Behav. Res. 39, 329–358. doi: 10.1207/
s15327906mbr3902_8

Lorenzo-Seva, U., and Ferrando, P. J. (2006). FACTOR: a computer program to
fit the exploratory factor analysis model. Behav. Res. Methods 38, 88–91. doi:
10.3758/BF03192753

Lorenzo-Seva, U., and ten Berge, J. F. M. (2006). Tucker’s congruence coefficient
as a meaningful index of factor similarity. Methodology 2, 57–64. doi: 10.1027/
1614-2241.2.2.57

MacCallum, R. C., Widaman, K. F., Zhang, S., and Hong, S. (1999). Sample size in
factor analysis. Psychol. Methods 4, 84–99. doi: 10.1037/1082-989X.4.1.84

Mulaik, S. A. (2010). Foundations of Factor Analysis, 2nd Edn. Boca Raton, FL:
Chapman & Hall.

Mundfrom, D. J., Shaw, D. G., and Ke, T. L. (2005). Minimum sample size
recommendations for conducting factor analyses. Int. J. Test. 5, 159–168. doi:
10.1207/s15327574ijt0502_4

Muthén, L. K., and Muthén, B. O. (2015). MPLUS. Los Angeles, CA: Muthén &
Muthén.

Rozeboom, W. W. (1992). The glory of suboptimal factor rotation: why local
minima in analytic optimization of simple structure are more blessing than
curse. Multivariate Behav. Res. 27, 585–599. doi: 10.1207/s15327906mbr2704_5

Trendafilov, N. T., and Jolliffe, I. T. (2006). Projected gradient approach to the
numerical solution of the SCoTLASS. Comput. Stat. Data Anal. 50, 242–253.
doi: 10.1016/j.csda.2004.07.017

Tucker, L. R. (1951). A Method for Synthesis of Factor Analysis Studies. Personnel
Research Section Report, No.984. Washington, DC: Department of the Army.
doi: 10.21236/AD0047524

Wood, C., and McCarthy, G. (1984). Principal component analysis of event-
related potentials: simulation studies demonstrate misallocation of variance
across components. Electroencephalogr. Clin. Neurophysiol. 59, 249–260. doi:
10.1016/0168-5597(84)90064-9

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Weide and Beauducel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 14 March 2019 | Volume 10 | Article 645

https://doi.org/10.1016/0191-8869(91)90144-Z
https://doi.org/10.1016/0191-8869(91)90144-Z
https://doi.org/10.1037//1082-989X.4.3.272
https://doi.org/10.1037//1082-989X.4.3.272
https://doi.org/10.1037//1082-989X.6.1.67
https://doi.org/10.1037//1082-989X.6.1.67
https://doi.org/10.1037/0033-2909.103.2.265
https://doi.org/10.1037/0033-2909.103.2.265
https://doi.org/10.1037/0022-3514.52.5.1019
https://doi.org/10.1080/00273171.2017.1361312
https://doi.org/10.1080/00273171.2017.1361312
https://doi.org/10.1111/j.2044-8317.1964.tb00244.x
https://doi.org/10.1111/j.2044-8317.1964.tb00244.x
https://doi.org/10.1037//0022-3514.63.1.146
https://doi.org/10.1007/BF02294840
https://doi.org/10.1007/BF02294706
https://doi.org/10.1007/BF02289233
https://doi.org/10.1007/BF02294392
https://doi.org/10.1007/BF02291763
https://doi.org/10.1007/BF02291763
https://doi.org/10.1207/s15327906mbr3902_8
https://doi.org/10.1207/s15327906mbr3902_8
https://doi.org/10.3758/BF03192753
https://doi.org/10.3758/BF03192753
https://doi.org/10.1027/1614-2241.2.2.57
https://doi.org/10.1027/1614-2241.2.2.57
https://doi.org/10.1037/1082-989X.4.1.84
https://doi.org/10.1207/s15327574ijt0502_4
https://doi.org/10.1207/s15327574ijt0502_4
https://doi.org/10.1207/s15327906mbr2704_5
https://doi.org/10.1016/j.csda.2004.07.017
https://doi.org/10.21236/AD0047524
https://doi.org/10.1016/0168-5597(84)90064-9
https://doi.org/10.1016/0168-5597(84)90064-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Varimax Rotation Basedon Gradient Projection Is aFeasible Alternative to SPSS
	Introduction
	Materials and Methods
	Population Factor Models
	Population Components and Data Sets
	Analysis of Simulated Sample Data

	Results
	Cut-Offs for Equality of Results
	Simulation Results for Single-Optimum Simple Structure
	Simulation Results for Double-Optimum Simple Structure
	Empirical Example Based on a Short Knowledge Test

	Discussion
	Summary and Interpretation of Results
	Choices of Simulated Conditions
	Future Research
	Conclusion and Recommendations

	Author Contributions
	Supplementary Material
	References


