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ABSTRACT

The standard analysis pipeline for single-cell RNA-
seq data consists of sequential steps initiated by
clustering the cells. An innate limitation of this
pipeline is that an imperfect clustering result can ir-
reversibly affect the succeeding steps. For example,
there can be cell types not well distinguished by clus-
tering because they largely share the global struc-
ture, such as the anterior primitive streak and mid
primitive streak cells. If one searches differentially
expressed genes (DEGs) solely based on cluster-
ing, marker genes for distinguishing these types will
be missed. Moreover, clustering depends on many
parameters and can often be subjective to manual
decisions. To overcome these limitations, we pro-
pose MarcoPolo, a method that identifies informative
DEGs independently of prior clustering. MarcoPolo
sorts out genes by evaluating if the distributions are
bimodal, if similar expression patterns are observed
in other genes, and if the expressing cells are proxi-
mal in a low-dimensional space. Using real datasets
with FACS-purified cell labels, we demonstrate that
MarcoPolo recovers marker genes better than com-
peting methods. Notably, MarcoPolo finds key genes
that can distinguish cell types that are not distin-
guishable by the standard clustering. MarcoPolo is
built in a convenient software package that provides
analysis results in an HTML file.

INTRODUCTION

Single-cell RNA (scRNA) sequencing technology has of-
fered opportunities to study gene expressions of individ-
ual cells of a biological system. The two important goals of
scRNA analysis are to define clusters of cell types existing
in the data and to characterize the expression signature of
each cell type. To achieve these goals, people carry out the
standard pipeline consists of two steps. First, unsupervised
clustering is applied to define clusters in the data. Second,
informative genes that can characterize clusters are iden-
tified by examining differentially expressed genes (DEGs).
These two steps, namely the clustering step and the charac-
terization step, are performed sequentially because DEGs
between the clusters cannot be found without clustering by
definition.

However, this standard practice with two sequential steps
has an innate limitation. The limitation is that the whole
procedure is dependent on the first step, the clustering step.
The clustering result may not be perfect for two reasons.
First, the clustering is performed under the assumption that
overall gene expressions differ by cell types. Typically, one
reduces the dimension of gene expression data by calculat-
ing the principal components (PCs) from highly variable
genes (HVGs). Applying a clustering algorithm to PCs is
equivalent to assuming that many genes will differ by cell
types. However, it is possible that some cell types may not
show large differences in the global structure of genes, while
a few informative DEGs can easily discriminate those cell
types. For example, in our analyses of real datasets with cu-
rated cell type labels, the standard clustering pipeline failed
to distinguish between the anterior primitive streak (APS)
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cells and mid primitive streak (MPS) cells in the human em-
bryogenic stem cell (hESC) data (1) and between NK cells
and gamma delta (��) T cells in the human liver data (2),
while one informative DEG could almost perfectly segre-
gate these types. Thus, if the analysis depends entirely on
the clustering result, one can neither find these informative
marker genes nor distinguish these types. Second, there are
many parameters and settings for the clustering step, which
in turn underscores that no single clustering result is un-
doubtedly perfect for interpretation. The variable settings
include the method for HVGs selection (3–5), the number
of HVGs used (3,4), the method for dimension reduction
(6,7), and the parameter for the clustering resolution (8,9).
It is common that the clustering procedure is performed re-
peatedly to get the seemingly best clustering result to human
eyes (4). In such a case, the final clustering result may be sus-
ceptible to subjective decision and data-specific overfitting.

In this respect, there have been demands for methods that
can extract informative DEGs from data itself in a manner
independent of the clustering result (10,11). One possible
approach would be to utilize existing HVG selection meth-
ods. However, HVG methods were only designed to select
genes as input for the dimension reduction but were not
specifically designed to sort out DEGs. A more advanced
approach is singleCellHaystack (12), a recently developed
method that extracts a list of candidate DEGs by examining
whether the expression of a gene agrees with the placement
of cells in a low-dimensional space. The limitation of this
method is that it, by default, uses the median read count
of each gene to define whether a gene is expressed or not
in each cell. This simple binarization can result in a loss of
quantitative information because subsets of a cell type may
express a gene with different intensities (13–15).

We here propose MarcoPolo, a novel clustering-
independent approach to identifying DEGs in scRNA-seq
data. MarcoPolo identifies informative DEGs without
depending on prior clustering and therefore is robust to
uncertainties from clustering or cell type assignment. The
term ‘DEGs’ is usually used for situations when we first fix
the group labels of cells and then observe the differences in
expression levels between those groups. The DEGs in our
MarcoPolo lack such fixed group information, so we note
that the genes MarcoPolo presents are DEG candidates
in the strict sense. Since DEGs are identified independent
of clustering, one can utilize them as additional DEGs
that can complement the DEGs found by the standard
clustering, can utilize them to detect subtypes of a cell
population that are not detected by the standard clus-
tering, or can utilize them to augment HVG methods to
improve clustering. An advantage of our method is that
it automatically learns whether a cell expresses a gene
or not by fitting a bimodal distribution, which can be
helpful for interpretation. Additionally, our framework
provides analysis results in the form of an HTML file so
that researchers can conveniently review the visualization
of the results.

MarcoPolo finds informative DEGs by using three strate-
gies. First, it takes advantage of the fact that the expression
patterns of an informative gene can be bimodal. (13–15) To
this end, it fits a bimodal mixture model and calculates a
score for how well the model fits the observed expression

pattern. This procedure divides cells into two groups and
provides the grouping labels of the cells, which can be use-
ful for downstream interpretation. Second, it uses a voting
system that compares a gene’s expression pattern with other
genes. The underlying reasoning is that a group of cells in
a similar biological status will co-express a subset of genes
(16). Hence, if an expression pattern of a gene is shared by
many other genes, we consider the gene informative. Third,
MarcoPolo examines whether the cells expressing a gene are
placed proximal to each other in a low-dimensional space.
MarcoPolo combines these three scores (bimodality score,
voting system, and proximity score) into one to winnow
genes of which expressions are noteworthy.

Using extensive simulations and real data analyses, we
demonstrate that DEGs identified by MarcoPolo are infor-
mative. Using real datasets with curated cell labels, we de-
fined marker genes based on the cell labels and let methods
find these markers. MarcoPolo achieved the best accuracy
compared to competing methods including the HVG meth-
ods, singleCellHaystack, and the standard DEG pipeline
dependent on clustering. In the challenging tasks of distin-
guishing between the APS and MPS cells in the hESC data
and between NK cells and �� T cells in the Liver data, Mar-
coPolo assigned high ranks to the marker genes that could
distinguish these types. Finally, when we used MarcoPolo-
identified genes to augment HVGs for dimension reduction,
we found that the clustering results became more robust
against changes in the resolution and other parameters.

MATERIALS AND METHODS

MarcoPolo method

Linear Poisson mixture model. To identify the expression
modality in scRNA-seq data, we fit the following Poisson
mixture model to each gene’s count data.

log μnt = β0 +
∑

p

βpxnp + δt + log sn

Here, t ∈ {0, 1} indicates the two cell groups. We call the
group of cells with a larger mean on-cells and the group of
cells with a smaller mean off-cells. Conditional on that cell
n belongs to group t, μnt is the mean of the Poisson distri-
bution that ygn , the observed read count of cell n, follows.
β0 is an intercept, and βp is coefficients corresponding to
covariate xnp. δt is on-cells-specific overexpression. sn is the
size factor (17) of cell n. A similar modeling of read counts
has been previously used by Zhang et al. (18).

Based on this model, the loss function Q of each gene is
defined using the log-likelihood.

Q = −log

[∏
n

(∑
t

Poisson(ygn|μnt)

)]

We optimize this loss function using the Adamax opti-
mizer implemented in the PyTorch computing library. We
used the default learning rate of 2e-3 for the optimizer.
As PyTorch is a tensor computation software with a strong
GPU acceleration support, users can easily utilize GPU for
MarcoPolo.
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After the loss function optimization, for each gene, we
learn how the cells are divided into two groups according
to the expression modality. Without loss of generality, we
assume that the mean expression of group t = 1 is larger
than the mean expression of group t = 0.

Multiple-criteria ranking system. MarcoPolo uses the fol-
lowing three criteria to sort out informative DEGs. For de-
scription purposes, we define an indicator variable Ign ∈
{0, 1} to denote the cluster assignment of cell n according
to gene g.

Voting system. The voting system prioritizes genes that ex-
hibit a common expression pattern with other genes. If a
gene is truly related to a biological status, it is likely that
there are more genes that are co-expressed in a way similar
to the gene. We examine how many times the segregation
pattern of a gene is repeated by calculating the voting score
of gene g,

vg =
∑

g′
vgg′

where vgg′ = 1 if
∑

n (Ign ·Ig′n )
min(

∑
n Ign ,

∑
n Ig′n ) > t or else vgg′ = 0 (The

default value for the threshold t is 0.7). Thus, the more times
a gene is supported by other genes, the higher the gene’s vot-
ing score becomes. Note that our formula calculates what
proportion of the cells that express a gene with a smaller on-
cell count also expresses a gene with a larger on-cell count.
We use this formulation because sometimes, one gene can be
a marker gene of a group, and another gene can be a marker
gene of a subtype of that group. In such a case, we wanted
to consider them as supportive of each other in our voting
system.

Proximity score system. A hierarchical structure is per-
vasive in scRNA-seq data due to the cell lineage. That is,
heterogeneity from higher-level grouping can determine the
global structure of the scRNA data. We assume that the
expression pattern of a gene corresponding to a meaning-
ful biological status tends to align well with this global
structure. This idea is similar to the one on which single-
CellHaystack is based (12). For each gene g, we calculate
the proximity of the on-cells (Ign = 1) in a low-dimensional
space. The intuition is that if a gene can explain the underly-
ing structure, the cells expressing that gene will be proximal
to each other. To this end, we perform principal component
analysis (PCA) following the same standard procedure used
in Seurat (8) as follows. We first divide read counts of the
genes in a cell by the total count within the cell and mul-
tiply by 10,000. This is then natural-log transformed using
log(1 + x). Next, we center the data to 0 and divide it by
the standard deviation. Finally, the values are truncated to
10. We obtain principal components of the data and then
calculate the proximity score as follows,

pg =
NPC∑

i

√∑
n Ign · (Uin − (

∑
n Ign · Uin)/

∑
n Ign)2∑

n Ign

where Uin is the projection of the nth cell’s data onto the
i th principal component. The default value for the num-

ber of PCs (NPC) is 2. The smaller this score is, the more
informative we interpret the gene as. Note that although
this score tends to capture genes whose on-cells cluster to-
gether in the standard clustering approach, our method is
not strictly dependent on a specific clustering algorithm.
Thus, our method can avoid uncertainties induced by fixing
the clusters and can be interpreted as utilizing the clustering
information in the PC space in a soft way.

Bimodality score system. The bimodality score system pri-
oritizes genes of which expression is bimodal. We measure
the discrepancy between the high and low expression com-
ponents of a given gene using two statistics. First, we com-
pare the log-likelihood of the data (namely Q score) under
the null hypothesis with a single Poisson distribution versus
the alternative hypothesis with K = 2 Poisson distributions
with different means. We have developed a statistic defined
as the ratio of the two log-likelihoods, namely QQ ratios,

QQratio,g = Qnull,g

Qalt,g

This modeling may look unconventional because the sub-
traction, rather than division, of the two log-likelihoods is
more common in other statistical areas. We have found that
the ratio statistic fits this problem well because the ratio is
robust against the observed differences in the absolute read
counts between different genes. Since read counts can dif-
fer drastically from gene to gene, a simple subtraction of
Q scores can be affected largely by the read counts rather
than by how well the data fit a bimodal distribution.

In addition to using the QQ ratio statistic, we also use a
statistic that compares the on-cells’ mean expression value
with all cells’ mean expression value. That is, we compare
how much the mean of the alternative hypothesis shifts from
the mean of the null hypothesis as follows.

MSg =
∑

n

(
Ign · ygn

)
∑

n Ign
−

∑
n

(
ygn

)
n

The bimodality score is obtained by merging the two
measures in a nonparametric way,

bg = min
(
rank

(
QQratio,g

)
, rank

(
MSg

))
Final step of obtaining MarcoPolo score. Finally, we aggre-
gate the aforementioned statistics to select genes of interest.
We generate the MarcoPolo score, a nonparametric rank-
based score of each gene, by combining vg, pg, and bg.

MarcoPolog = min
(
rank

(
vg

)
, rank

(−pg
)
, bg

)
Note that the proximity score was negated in rank func-

tion because genes with smaller scores are more informative,
and bg was put without rank function because it is already
based on ranks. In case two genes have the same rank, the
gene with a larger fold change is prioritized. After calcu-
lating this statistic, we remove outlier genes that satisfy any
of the following conditions: (1) log fold change between on-
cells and off-cells is < 0.6, (2) the number of on-cells (

∑
n

Ign)

is < 10, or (3) the number of on-cells (
∑
n

Ign) is > 70 per-

cent of the number of all cells. We rank all remaining genes
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based on their MarcoPolo scores and present the results in
the form of an HTML file.

DATASETS

Simulation dataset

We generated multiple scRNA-seq simulation datasets us-
ing Symsim (19), a simulator of single-cell RNA-seq ex-
periment. Each dataset contained 1,000, 2,000, 5,000 or
10,000 cells with 5,000 genes sequenced. In the simulation
scheme of Symsim, each gene in each cell has its own pa-
rameters for modeling its transcriptional kinetics: promoter
on-rate (kon), off-rate (koff), and RNA synthesis rate (s).
The parameters are determined by the product of gene-
specific coefficients (i.e., gene effects) and cell-specific co-
efficients, called extrinsic variability factors (EVFs). EVFs
are a low-dimensional manifold, on which the cells lie, rep-
resenting factors of cell-to-cell variability. For generating
EVFs of each cell, we used the tree structure of numerous
subpopulations shown in Supplementary Figure S1. The
expected value of each EVF was determined according to
the cell’s position in the tree. For generating gene effect
values, we modulated a parameter called � in the simula-
tor (1e-2, 5e-3, 1e-3, and 5e-4), which controls the prob-
ability that each gene effect is not zero (i.e., the relative
probability that a gene has a non-zero type-specific over-
expression). The smaller the parameter becomes, the fewer
the number of cell-type markers available in the dataset be-
comes. For example, when the number of cells was 10,000,
the observed number of genes with non-zero overexpres-
sion became (196, 107, 23, and 10) with parameters (1e-
2, 5e-3, 1e-3, and 5e-4) respectively. We ran simulations
ten times for each combination of parameters with differ-
ent random seeds. In total, 160 datasets were generated (4
dataset sizes × 4 � parameters × 10 trials). For other pa-
rameters, we used the following fixed values. The number of
extrinsic variability factors (EVFs) was 20. The number of
different EVFs between subpopulations (Diff-EVFs) was 5.
The mean of a normal distribution from which gene effects
were sampled was 1. The parameter bimod, which modifies
the amount of bimodality in the transcript count distribu-
tion, was 1.

Real dataset

Embryonic stem cell scRNA data. The Koh et al. (1)
dataset consists of 531 fluorescence-activated cell sorting
(FACS)-purified human embryonic stem cells (hESCs) at
various stages of differentiation. We extracted the data from
the R package DuoClustering2018 (20), which can be in-
stalled using Bioconductor package manager. We used the
following cell types with both bulk RNA-seq data and
scRNA-seq data: hESC (day 0), anterior primitive streak
(day 1), mid primitive streak (day 1), DLL1 + paraxial
mesoderm (day 2), lateral mesoderm (day 2), early somite
(day 3), sclerotome (day 6), and central dermomyotome
(day 5).

Human liver scRNA data. The MacParland et al. (2) liver
dataset consists of 8,444 cells of 11 cell types collected

from 5 patients. We extracted the data from the R pack-
age HumanLiver, which can be downloaded from https://
github.com/BaderLab/HumanLiver. MacParland et al. de-
termined the identity of each cell type using manual cura-
tion based on known gene expression profiles after cluster-
ing cells. This dataset included 11 unique cell types: hepato-
cytes, �� T cells, macrophages, plasma cells, NK cells, �� T
cells, LSECs, mature B cells, cholangiocytes, erythroid cells,
and hepatic stellate cells.

PBMC 4k scRNA data. We obtained the PBMC (pe-
ripheral blood mononuclear cell) 4k dataset (21), namely
Zhengmix8eq, from the R package DuoClustering2018.
This dataset is a mixture of 3,994 FACS-purified PBMC
cells of 8 cell types, which are B cells, monocytes, naive cyto-
toxic cells, regulatory T cells, memory T cells, helper T cells,
naive T cells, and natural killer cells.

Tabula Muris consortium data. We downloaded the Tab-
ula Muris consortium data (22) from the consortium web-
site (https://tabula-muris.ds.czbiohub.org/). It consists of
20 datasets of different organs and tissues: aorta, blad-
der, brain (myeloid), brain (non-myeloid), diaphragm, fat,
heart, kidney, large intestine, limb muscle, liver, lung,
mammary gland, marrow, pancreas, skin, spleen, thymus,
tongue, and trachea. The consortium provided datasets
obtained by using two different approaches, microfluidic
droplet-based 3’-end counting and FACS-based full-length
transcript analysis. We used the FACS-based datasets for
our analysis.

Data preprocessing

For each dataset, we only used the genes of which mean ex-
pression (log-normalized count) value across all cells was
in the top 30th percentile. We used the t-SNE coordinates
included in the downloaded metadata for drawing low-
dimensional plots. The size factors of cells were calculated
using calculateSumFactors (17) implemented in scran pack-
age (23). We note that all of the methods we compared used
the same preprocessed data.

Marker gene identification

For simulation datasets, we used each gene’s meta informa-
tion to obtain gold standard marker sets. Symsim outputs
the number of different external variability factors (EVF)
for each gene, an indicator of how much it had a cell-type-
specific effect. We regarded genes of which the number of
different EVFs is not zero as markers. For real datasets,
we used two criteria for defining markers. The first crite-
rion was using the fold change values between cell types.
Because the real datasets included cell type labels obtained
either by FACS purification or by manual curation, we were
able to accurately define markers based on cell types. To this
end, we used the approach recently suggested by Zhang et
al. (16), which can effectively detect markers that are shared
by multiple cell types. Briefly, for each gene, we sorted the
cell types in ascending order based on the mean expression
level. We then calculated fold change between two consec-
utive types in this order. We then examined the maximum

https://github.com/BaderLab/HumanLiver
https://tabula-muris.ds.czbiohub.org/
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value among the N-1 fold change values, given N types. Af-
ter calculating this maximum value for all genes, we used the
genes with the large maximum values as marker genes. We
selected a different number of top genes (100, 200, 300, 400,
and 500 genes). We filtered out genes with the maximum log
fold change not larger than 2. The second criterion was us-
ing genes reported in marker databases such as CellMarker
database (24) and Panglao database (25). To this end, first,
we downloaded the list of markers from the databases. Then
we extracted the markers of the corresponding tissue and as-
signed them to our datasets. To obtain markers of high con-
fidence, we excluded markers that were reported only once.
We excluded the datasets which had less than 10 markers af-
ter the marker filtering procedure from our benchmarking.

Highly variable genes

We used the FindVariableFeatures function of Seurat (8)
to obtain highly variable genes (HVG). The two selection
methods we used to sort out HVGs were VST and DISP,
which were selected by the selection.method parameter.
This function output an ordered list of genes.

Standard DEG pipeline based on clustering

We followed the default pipeline of Seurat (v3.2.1) for iden-
tifying DEGs based on clustering. We selected 2,000 HVGs
using the FindVariableFeatures function with the VST op-
tion. We normalized and scaled the read count data using
the NormalizeData and ScaleData functions. Then, we cal-
culated 50 principal components (PCs) using the RunPCA
function. We obtained clustering results using the default
number of PCs, the top 10 PCs, by running the FindNeigh-
bors function and the FindClusters function with default
parameters sequentially. For the FindClusters function, we
used multiple resolutions of 0.5, 1.0, and 1.5 to obtain clus-
tering results with various numbers of clusters. Finally, for
each clustering result, we ran the FindAllMarkers function
to identify differentially expressed genes across clusters. The
FindAllMarkers function used a Wilcoxon Rank Sum test
by default. In addition, we ran the function with and with-
out a log fold change threshold of 0.25. In total, we ran Seu-
rat pipeline with 6 combinations of parameters for Seurat.
We ranked the genes by the ascending order of P-values. In
case two genes had the same P-value, we prioritized genes
with larger fold change values.

singleCellHaystack

Two input parameters required by singleCellHaystack were
(1) the coordinates of cells in a low-dimensional space and
(2) binarized detection data, a table showing which genes
are detected in which cells. To obtain low-dimensional co-
ordinates, we calculated 10 PCs using the functions imple-
mented in Seurat, as we did in the standard DEG pipeline.
To obtain the detection data, we used the median of each
gene as the threshold for determining whether cells are de-
tected or not, which was the default usage. We then ran the
haystack function with those two input parameters. Finally,
we ranked the genes by the ascending order of singleCell-
Haystack P-values.

Local web server generation

To help researchers interpret and make use of the re-
sult for various purposes, we provide the analysis re-
sult as a local database in the form of an HTML file.
For each gene, the output file provides the fold change
based on the tentative group, a two-dimensional plot of
cells, a histogram of expression with annotated group in-
formation, and the statistics that were used to priori-
tize genes. In addition, it contains a biological descrip-
tion of each gene that was adopted from the NCBI Gene
database (26), which was downloaded from the NCBI FTP
server (https://ftp.ncbi.nih.gov/gene/DATA/GENE INFO/
Mammalia/Homo sapiens.gene info.gz).

Benchmarking hardware

All benchmarking took place on an Intel® Xeon® Gold
6136 CPU (3GHz). We used a single CPU while limiting
the number of threads to four using the taskset command
in CentOS 7 operating system. A single Nvidia® RTX®

2080 was used for the GPU mode of MarcoPolo.

RESULTS

Overview of MarcoPolo Method

The standard analysis pipeline for scRNA-seq data consists
of two steps, the clustering step and the characterization
step, as shown in Figure 1A. A drawback of this pipeline
is that any errors that occur in the first clustering step will
sequentially affect the remaining analysis. The second draw-
back is that DEGs cannot suggest new subtypes unidenti-
fied by the clustering, because DEGs are entirely dependent
on the clustering result. To solve these challenges, we pro-
pose MarcoPolo, a clustering-independent DEG identifica-
tion method. Since MarcoPolo does not depend on clus-
tering results, it is free from errors that can occur during
clustering. MarcoPolo-identified genes can serve as addi-
tional DEGs, suggest novel subtypes of a cell type unidenti-
fied by the standard clustering, and augment HVGs to im-
prove clustering (Figure 1B). To select DEGs, MarcoPolo
uses a multiple-criteria ranking approach to rank genes af-
ter fitting a two-component Poisson mixture model (Meth-
ods). For a given gene, we name the cells that are more likely
to be in the high expression component as on-cells and the
cells that are more likely to be in the low expression compo-
nent as off-cells (Figure 1C). The first component of Mar-
coPolo is the voting system that prioritizes genes exhibit-
ing a shared expression pattern with other genes (Figure
1D). The intuition is that a true biological entity will ex-
press multiple markers; therefore, a gene that reflects this
true entity will share its expression pattern with other genes.
For example, gene 1, gene 3, gene 4, and gene 5 in Fig-
ure 1D show similar on-cell patterns, and therefore the vot-
ing system assigns high ranks to these genes. By contrast,
gene 2 and gene 6 have no other genes sharing on-cell pat-
terns and thus are assigned low ranks. In addition to the
voting system, MarcoPolo implements two more criteria,
the proximity score and the bimodality score. We can expect
that biologically similar cells will be close in the distance
in a low-dimensional space. Based on this idea, the prox-

https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
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Figure 1. Overview of MarcoPolo. (A) the standard analysis pipeline for scRNA-seq data, consisting of two consecutive steps. In this pipeline, any errors
in the clustering step irreversibly affect the succeeding step. (B) MarcoPolo analysis pipeline. MarcoPolo identifies informative DEGs independent of
clustering, and these genes can be utilized for various purposes to complement the standard pipeline. (C) MarcoPolo fits a single Poisson distribution and
a two-component Poisson mixture model separately. In the tSNE plots, the cells were colored by the groups they belonged to. In the bottom plots, on-cells
(high expression component) are colored red, and off-cells (low expression component) are colored orange. (D) MarcoPolo’s voting system prioritizes genes
exhibiting a shared expression pattern with other genes. The on/off patterns of 6 different genes are plotted. Arrows indicate that a gene supports (votes
for) another gene because they share expression patterns. Gene 1 and gene 3 got three votes, while gene 2 got zero vote. (E) MarcoPolo’s proximity score
system calculates the variance of the principal component (PC) values of on-cells for each gene. Higher ranks are assigned to genes with low variance.
(F) MarcoPolo’s bimodality score system gives higher scores to genes whose expressions follow a bimodal distribution. (G) MarcoPolo offers the analysis
result in a local database (HTML file). For each gene, the web server provides the log fold change values, expression on/off plots, histograms, scores, and
the biological description of the gene.



PAGE 7 OF 17 Nucleic Acids Research, 2022, Vol. 50, No. 12 e71

imity score computes the variance of the principal compo-
nent (PC) values of on-cells and assigns high ranks to genes
with low variance (Figure 1E). The bimodality score sys-
tem measures how well the bimodal two-component model
fits a given gene (Figure 1F). This system compares the
log-likelihood (Q score) of the two-component model ver-
sus the one-component model. Accordingly, genes with a
bigger reduction in the Q score are ranked higher. In addi-
tion, the system assigns higher ranks to genes of which on-
cells’ mean expression value is much higher than all cells’
mean expression value. MarcoPolo determines the ranking
of all genes by combining these three scoring systems. Our
framework also provides the analysis result in the form of
an HTML file so that researchers can conveniently interpret
and visualize results (Figure 1G). The output file provides
a fold change value based on the tentative group, a two-
dimensional plot of cells, a histogram of expression with
annotated group information, and the statistics that were
used to rank genes.

Standard DEG analysis depends on the clustering perfor-
mance

Here we show that if a clustering algorithm fails to clus-
ter a group of cells, informative genes can be missed in the
downstream DEG analysis. We demonstrate this using re-
alistic simulation datasets generated by Symsim (19), a sim-
ulator of single-cell RNA-seq experiments. We generated
160 different simulation datasets while varying the param-
eter � (1e-2, 5e-3, 1e-3, and 5e-4), which controls the prob-
ability that a gene has a non-zero type-specific overexpres-
sion, and the dataset size (i.e., the number of cells) (1,000,
2,000, 5,000, and 10,000) ( Methods). The simulated num-
ber of cell-type markers in the dataset was linearly pro-
portional to the parameter � (Supplementary Table S1).
The smaller the parameter � became, the fewer the num-
ber of cell-type markers became. For each combination of
the two parameters, we generated 10 independent datasets
to obtain 160 datasets in total. As expected, the smaller
the parameter � became, the less clear the boundaries be-
tween the cell populations became (Supplementary Figure
S2), and the lower the quality of clustering results became
(Supplementary Figure S3). In addition, interestingly, we
found that the quality of clustering results was the highest
when the number of cells was 5,000. Since we know which
genes are true DEGs in this simulation, we evaluated the
performance of the methods for finding DEGs. The meth-
ods we compared were MarcoPolo, singleCellHaystack, two
widely used HVG methods implemented in Seurat pack-
age (8) (VST and DISP), and the standard DEG workflow
based on clustering (Seurat clustering with default parame-
ters followed by Seurat FindAllMarkers function both with
and without its default filter, a filter for excluding genes of
log fold difference smaller than 0.25). We examined each
method’s area under the receiver operating characteristic
curve (AUC) to see how accurately each method sorts out
true DEGs (Figure 2). We found that the performance of
the standard workflow based on clustering was good when
the number of DEGs was high. This was expected because
if there are many DEGs of a cell type, the clustering based
on global structures will be successful, and the DEGs can

be easily identified from clusters. Specifically, we observed
that the standard workflow performed well when the num-
ber of cells was large (especially when it was 5,000). This
was also expected because the quality of clustering can be
low when the number of cells is low. For example, when the
parameter � was set as high as 1e-2 and the number of cells
was 5,000, the standard workflow’s median AUCs were be-
tween 0.888 and 0.915 (with filter) and between 0.828 and
0.848 (without filter) depending on the resolution parame-
ters (Supplementary Table S2). However, when the param-
eter � was lowered to 5e-4 and the number of cells was low-
ered to 1,000, the AUC decreased; the medians were be-
tween 0.769 and 0.906 (with filter) and between 0.597 and
0.634 (without filter), and the inter-quantile ranges (IQRs)
were large (0.048∼0.167 with filter and 0.207∼0.294 with-
out filter). This demonstrated that the standard pipeline can
have difficulties in catching DEGs if the clustering becomes
unclear due to a small number of DEGs for a specific popu-
lation or due to an insufficient number of cells. In contrast,
MarcoPolo consistently showed high performance. When
the parameter �was large (1e-2) and the number of cells was
5,000, the median was 0.900, and the IQR was 0.051. When
the parameter �was small (5e-4) and the number of cells was
1,000, the median was 0.833, and the IQR was 0.114. The
HVG methods also showed good performances. The perfor-
mance of DISP was particularly notable for this simulation
benchmark; its AUC was lower than MarcoPolo when � =
1e-2 but was higher than MarcoPolo when �≤5e-3. Inter-
estingly, the performance of singleCellHaystack showed a
similar trend to the standard workflow. When � = 1e-2, the
median AUC was relatively high (0.895), but when �= 5e-4,
the median AUC went down to 0.601, and the IQR became
large (0.364). Although this simulation does not perfectly
represent real situations, the result suggests that when it is
hard to cluster cells appropriately, the standard DEG anal-
ysis based on clustering could easily miss the target popula-
tions’ DEGs while MarcoPolo and other methods showed
a capability to retrieve them.

MarcoPolo identifies marker genes

We benchmarked if MarcoPolo could identify marker genes
in real datasets for which we know the true markers. We
used 23 real datasets: the human embryogenic stem cell
(hESC) dataset (1), the human liver cell dataset (2), the hu-
man peripheral blood mononuclear cell (PBMC) dataset
(21), and the Tabula Muris consortium datasets of 20 dif-
ferent organs and tissues (22) (see Methods). In contrast
to simulation datasets for which we know true DEG sets,
the true markers are not perfectly known for real datasets.
We here used two separate criteria to define marker an-
swer sets and repeated the same benchmarking procedure
twice. The first criterion was using the fold change values
between cell types. In these datasets, the cell types of the
cells were already labeled with high confidence either by
fluorescence-activated cell sorting (FACS) or by manual cu-
ration based on the known markers. Assuming that the cell
type labels provided by the original studies were correct,
we defined marker genes that were cell-type-specifically ex-
pressed (Methods). Briefly, for each gene, we sorted cell
types in ascending order based on the mean expression
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Figure 2. Simulation data analysis. Using Symsim, we simulated scRNA-seq data while varying the parameter �, which controls the probability that a gene
has a non-zero type-specific overexpression. We plotted the performance of different methods for finding true markers in simulation data in terms of the
area under the curve. For the standard DEG pipeline, the number in parentheses denotes the resolution parameter of the clustering algorithm. (A) The
number of cells is 1,000. (B) The number of cells is 2,000. (C) The number of cells is 5,000. (D) The number of cells is 10,000.

level and calculated the maximum fold change between any
two consecutive cell types. We prioritized genes with large
maximum fold changes and selected the top 100 genes.
To verify this method’s validity, we applied it to simula-
tion datasets and found that these fold-change-based mark-
ers belonged to EVF-based gold standard marker sets to
a large extent (Supplementary Figure S4). We then exam-
ined how well different methods could identify these marker
genes if the true labels of cell types were not given. As we
did in the previous analysis, we compared MarcoPolo, the
two HVG methods, singleCellHaystack, and the standard
DEG pipeline based on clustering. We measured the AUC
of the methods for each dataset and plotted the distribu-
tion of AUC over 23 datasets. Figure 3A shows that Mar-
coPolo achieved the best AUC among all methods (me-
dian AUC = 0.847). The median AUCs of other meth-
ods were 0.723 for DISP (HVG), 0.798 for VST (HVG),
0.784 for singleCellHaystack, and around 0.794∼0.829 for
standard DEG pipelines. The inter-quartile range of Mar-
coPolo was relatively small (0.128). Figure 4 and Supple-
mentary Table S3 show the actual receiver operating char-
acteristic (ROC) curves and their AUCs of the methods
for each dataset. When we examined which method per-

formed the best for each dataset, MarcoPolo performed the
best or the second-best among all methods in 16 out of
23 datasets (70% of datasets; the best in 13 datasets and
the second-best in 3 datasets). For singleCellHaystack, the
number was 4 (17% of datasets; 2 best and 2 second-best).
For the standard pipeline based on clustering, the number
was 11 (48% of datasets; 4 best and 7 second-best). This re-
sult shows that MarcoPolo’s multiple-criteria ranking ap-
proach worked well in sorting out informative marker genes
for a variety of datasets. As MarcoPolo determines the fi-
nal ranking of the genes by combining the three scoring
systems, we wanted to see how each scoring system con-
tributed to the final performance. To this end, we exam-
ined the performance of using each single scoring system
alone. Supplementary Table S4 and Supplementary Fig-
ure S5 show that the scoring system with the best perfor-
mance differed by datasets. Thus, MarcoPolo needed all
three systems to achieve consistent performance over differ-
ent datasets. In many cases, the combined score performed
comparably to the best single system, implying that it effec-
tively captured information from the three systems. We re-
peated the same analysis for various numbers of top genes
(200, 300, 400, and 500 genes) and observed similar trends
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Figure 3. Performance of different methods for finding true markers in real
datasets. For the standard DEG pipeline, the number in parentheses de-
notes the resolution parameter of the clustering algorithm. (A) In each of
23 real datasets, we defined true markers based on the cell type labels pro-
vided by the original study. We used the top 100 genes with large maximum
log fold change values as a true marker set. (B) We used genes reported in
CellMarker database and Panglao database as a true marker set.

(Supplementary Tables S5–S8 and Supplementary Figures
S6–S9); the median AUC of MarcoPolo was always the
highest.

As this result can depend on the specific DEG extrac-
tion method we used, we tried a second criterion to define
marker genes; we used genes reported in marker databases
such as CellMarker database (24) and Panglao database
(25). We defined the true marker answers for each tissue us-
ing the list of markers in the databases (Methods and Sup-
plementary Table S9) and repeated the same analysis above
(Figure 3B, Supplementary Figure S10, and Supplemen-
tary Table S10). In this setting, the standard DEG pipelines
showed the best performance in terms of the median AUCs.
This was expected because the records in marker databases

are based on standard DEG pipelines in most cases. The
performances of MarcoPolo and singleCellHaystack were
comparable to those of the standard DEG pipelines. We
here note that as we cannot guarantee that the sample of
the records in the databases has similar properties to our
dataset’s property, marker database-based benchmarking is
also not a perfect measure. For example, it is not guaranteed
that our dataset has the same cell-type composition as the
one in the database, as we only used tissue names to match
records.

Bimodal mixture model helps interpretation

A notable advantage of MarcoPolo compared with other
previous methods such as singleCellHaystack is that Mar-
coPolo provides the grouping of the cells after fitting the
bimodal mixture model, which can help interpretation. For
example, singleCellHaystack requires a predefined thresh-
old to determine whether a gene is either expressed or not in
each cell (median is used by default). However, MarcoPolo
adaptably learns the model parameter from data and clas-
sifies the cells into two groups: on-cells that are in the high
expression component of the mixture model and off-cells
that are in the low expression component. The on-cell and
off-cell information that MarcoPolo provides can be uti-
lized to complement the standard pipeline for determining
clusters. Figure 5A-C show some real data examples where
the on/off information from MarcoPolo DEGs were con-
cordant with the true cell types. These genes were ranked
high (<30th) by MarcoPolo, and their distributions were bi-
modal. MarcoPolo distinguished on-cells (red in the his-
togram) from off-cells after model fitting, and those on-cells
corresponded well to a specific cell type in the t-SNE plot.
We note that the median read count (blue vertical line in
the histogram if plotted and zero otherwise) was not fully
effective for distinguishing the two bimodal groups in these
examples.

We then assumed an extreme situation that we were com-
pletely blind to the cluster information from the standard
clustering analysis. We assumed that we only had the on/off
information from MarcoPolo DEGs. Since the on/off infor-
mation can correspond to the membership of a cell type, we
wanted to accumulate the on/off information of top rank
DEGs to retrieve the cell types. To this end, we evaluated
how many top-rank MarcoPolo DEGs are required to re-
trieve the cell types. We regarded a gene to be distinguish-
ing a cell type if the on-cell group contains more than 70%
of the cell type and less than 20% of the other remaining
cell types. We gradually increased the number of top-ranked
genes and counted how many cell types were distinguish-
able by those genes. In total, among a total of 147 cell types
included in the 23 real datasets, MarcoPolo’s grouping in-
formation was able to segregate 97 cell types when the top
300 genes in MarcoPolo were considered (Figure 5D and
Supplementary Table S11). For comparison, we considered
simple grouping by using the medians of read count as a
threshold to define on/off cells, following the default use of
singleCellHaystack. Figure 5D shows that grouping based
on the medians of read counts gave inferior results in re-
trieving the cell types compared to MarcoPolo.
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Figure 4. ROC curves and their AUCs for identifying true markers using different methods for each real dataset. As a true marker set, we used the top
100 genes with large maximum log fold change values. The candidate gene lists were obtained by using MarcoPolo, HVG methods, singleCellHaystack, or
standard DEG pipeline with clustering, and were compared to the true markers. For the standard DEG pipeline, the number inside parentheses denotes
the resolution parameter of the clustering algorithm.
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Figure 5. MarcoPolo’s bimodal mixture model fitting. (A)-(C) Three examples showing that the on/off information from MarcoPolo’s bimodal fitting is
concordant with the true cell types provided by the original study. The red colors (both in dot plot and histogram) denote on-cells (the cells in the high
expression component of the bimodal mixture). Next to the gene name is the gene’s rank in the MarcoPolo result. Cells with zero expression count were
excluded from histograms for simplicity, although the zero count cells were accounted for in the model fitting. We plotted blue vertical lines to indicate the
median read count of each gene in case the median is non-zero. The x-axis of histogram denotes the bins of expression counts divided by cell-specific size
factors. For each bin of expression count, the height indicates the number of cells in it (cell frequency). (D) The proportion of recovered cell types when we
only used the on/off information from the MarcoPolo result. We used the top-ranked genes and examined how many cell types were distinguishable using
these genes. For comparison, we also used simple grouping by using the medians of read counts (equivalent to the default use of SingleCellHaystack). Only
datasets containing more than five cell types are shown. The number inside the parentheses denotes the number of cell types in each dataset.
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MarcoPolo DEGs can identify cell types not distinguishable
by the standard pipeline

Sometimes, the standard clustering analysis may fail to dis-
tinguish some cell types. This is because cell types with
similar global structures can be placed too closely in the
reduced-dimensional space. Even in such situations, a few
key genes may be able to segregate these types. Therefore, if
informative genes are given, researchers can have opportu-
nities to manually examine each gene and find those types.
MarcoPolo DEGs can provide useful candidates for the dis-
tinction of the cell types.

The human embryogenic stem cell (hESC) dataset of Koh
et al. (1), the liver dataset of MacParland et al. (2), and the
lung dataset of Tabula Muris consortium (22) provide ex-
amples where the standard clustering approach fails to dis-
tinguish certain cell types. In the 2D t-SNE coordinates pro-
vided by the original studies, the APS and MPS cells in the
hESC dataset, the gamma delta (��) T cells and NK cells in
the liver dataset, and the NK cells and T cells in the lung
dataset show unclear boundaries (Supplementary Figure
S11). The standard clustering can have difficulties in distin-
guishing these types, because t-SNE coordinates reflect PCs
based on which the clustering is performed. To confirm this,
we re-analyzed these datasets from scratch using the stan-
dard Seurat pipeline. We used the default HVG selection
pipeline (VST method to select 2,000 genes) and calculated
PCs. For the clustering step, we used the widely used method
(FindNeighbors and FindClusters function in Seurat pack-
age). For the FindClusters function’s resolution parameter,
we used the value of 2.0 because the default value of 1.0 gave
worse results. In our analysis, as was expected, the clustering
algorithm failed to cluster the abovementioned cell types
properly (second column of Figure 6). This implies that if
one simply uses the standard pipeline, one would neither
distinguish these cell types nor find DEGs between them.

We then applied MarcoPolo to these datasets. We found
that a highly ranked gene (NODAL, ranked 11th out of
14,694 genes) by MarcoPolo was able to distinguish the
APS and MPS cells in the hESC data. The on-cells inferred
from the bimodal distribution were highly concordant to
the MPS cells, and the off-cells were concordant to the APS
cells (Figure 6A). MarcoPolo’s grouping information at-
tributed 92% of APS and MPS cells into on-cells or off-
cells correctly. This shows that examining the top-scoring
DEGs predicted by MarcoPolo along with their grouping
information can help identify the cell types. We also found
that a highly ranked gene (GNLY, ranked 12th out of 6,002
genes) by MarcoPolo was able to distinguish �� T cells and
NK cells in the liver data. The on-cells inferred from the
bimodal distribution were concordant with the �� T cells,
and the off-cells were concordant with the NK cells. Mar-
coPolo’s grouping information attributed 83% of the �� T
cells and NK cells into on-cells or off-cells correctly. This is
an interesting example because GNLY is known as a marker
gene for both �� T cells and NK cells. GNLY gene encodes
the antimicrobial peptide granulysin, which kills microbial
pathogens such as Mycobacteria, Listeria, and Plasmod-
ium vivax by assembling itself into a pore which disrupts
the pathogens’ membrane (27–29). Although GNLY gene
is commonly used as a marker for NK cells, it is also known

to be expressed by �� T cells (27). Thus, this gene is ex-
pressed in both types. Indeed, our data showed that this
gene’s distribution over the cells shows continuously con-
nected bimodal distribution (the last column in Figure 6B).
Since there were two groups of cells with different expres-
sion intensities, MarcoPolo was able to learn the two peaks
from data. In addition, we found that a highly ranked gene
(GZMA, ranked 42nd out of 7,002 genes) by MarcoPolo was
able to distinguish the NK cells and T cells in the lung data.
The on-cells inferred from the bimodal distribution were
highly concordant to the T cells, and the off-cells were con-
cordant to the NK cells (Figure 6C). MarcoPolo’s grouping
information attributed 92% of the NK cells and T cells into
on-cells or off-cells correctly. We want to emphasize that the
11th, 12th, and 42nd ranks can be considered notably high,
because MarcoPolo examined a total of 14,694 genes in the
hESC data, 6,002 genes in the liver data, and 7,002 genes in
the lung data.

Augmenting MarcoPolo DEGs to HVGs improves the robust-
ness of clustering

Since MarcoPolo analysis is independent of clustering (Fig-
ure 1B), MarcoPolo DEGs can complement the standard
pipeline in various ways. So far, we have shown that Mar-
coPolo DEGs can suggest marker DEGs and potential sub-
types of a cluster after the clustering is done. Here, we show
that MarcoPolo can also help before the clustering is done
by updating HVGs. In the standard scRNA-seq analysis
pipeline, a subset of genes selected by HVG methods is
used to construct a low-dimensional representation before
the clustering. For a clustering result that well reflects the
structure of the underlying biological data structure, it is
important to use informative HVGs as an input. As Mar-
coPolo and singleCellHaystack are designed to pick genes
with informative differential expression, we can use them
as a feature selection method in the standard pipeline as
well.

In this experiment, we augmented MarcoPolo (or single-
CellHaystack) genes to HVGs and used them as input for
the dimension reduction step. Briefly, we compared three
categories of feature selection methods: only using genes
selected by the standard HVG method, using a mixture of
HVG genes and MarcoPolo genes (namely HVG with Mar-
coPolo), and lastly using a mixture of HVG genes and sin-
gleCellHaystack genes (namely HVG with Haystack). In
case we mixed two different criteria such as mixing HVG
and MarcoPolo, we extracted the same number of genes
from the top-ranked genes in each criterion. We used the
datasets from the previous analysis: we aimed to distinguish
the APS and MPS cells in the hESC data, the �� T cells and
NK cells in the liver data, and the NK cells and T cells in
the lung data. We note that although we evaluated meth-
ods by checking whether those two cell types were clustered
correctly, we used all of the cells contained in the datasets
for the feature selection and clustering steps. In order to test
the robustness of each feature selection method against pa-
rameter changes, we ran the same method multiple times
using different parameters and settings and measured how
many times a method gave a successful clustering. We var-
ied the parameters and settings as follows. First, we tried
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Figure 6. Cell types not distinguished by the standard pipeline but distinguished by top ranked MarcoPolo genes. (A) the APS and MPS cells in the hESC
dataset of Koh et al., (B) the NK cells and the �� T cells in the liver dataset of MacParland et al., and (C) the T cells and NK cells in the lung dataset of
Tabula Muris consortium. The first column shows the true cell type labels of the original study, obtained by either FACS (A, C) or manual curation (B).
We used t-SNE coordinates included in the original datasets. Only cell types of our interest were shown for better visualization. The second column shows
the standard clustering result by Seurat. The distinction of the cell types was unclear even with an increased resolution parameter of 3.0 (default: 1.0). The
third column shows the MarcoPolo results, where we colored cells based on a high-rank gene found by MarcoPolo. The cells in the on-cell group (high
expression group) were colored red. The fourth column shows the histograms, where cells with zero expression count were excluded. The x-axis denotes the
bins of expression counts divided by cell-specific size factors. For each bin of expression count, the height indicates the number of cells in it (cell frequency).

two widely used HVG methods (VST and DISP). Second,
we varied the number of HVGs from 200 to 1,000 with an
interval of 100 (9 numbers). For example, when we used
a mixture of standard HVG method and MarcoPolo with
200 genes, we used the top 100 genes from MarcoPolo and
the top 100 genes from standard HVGs, respectively. Third,
we varied the number of top PCs used by the clustering al-
gorithm from 10 to 30 with an interval of 5 (5 numbers).
Fourth, we varied the resolution parameter in the Louvain
clustering algorithm from 0.6 to 1.4 with an interval of 0.2 (5
parameters). To sum up, for each feature selection method,
we repeated the analysis 450 times with different settings
(2 HVG methods × 9 HVG numbers × 5 top PC num-
bers × 5 resolution parameters). We then calculated how
many of these 450 trials succeeded in isolating the target
populations. We concluded that the two cell types were dis-

tinguished in the clustering result if the proportion of cor-
rectly mapped cells of two cell types was larger than 0.8.

Overall, employing MarcoPolo as a feature selection
method improved the robustness of clustering (Figure 7A).
When MarcoPolo genes were employed for the hESC
dataset, the frequency of separating the target populations
dramatically improved from 36.4% to 96.9% compared to
using HVGs alone. For the liver dataset, augmenting Mar-
coPolo genes gave a comparable result with a slight drop
(from 78.7% to 73.8%). In the case of the lung dataset, Mar-
coPolo increased the success rate from 41.8% to 52.9%. sin-
gleCellHaystack genes also improved the robustness when
augmented to HVGs in the hESC dataset (from 36.4% to
60.9%) and the lung dataset (from 41.8% to 54.2%), but the
improvement was smaller than MarcoPolo. When applied
to the liver data, singleCellHaystack showed a considerable
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Figure 7. Robustness of clustering against parameter changes. We focused on the challenging tasks of distinguishing the APS and MPS cells in the hESC
data, the NK and �� T cells in the liver data, and the T and NK cells in the lung data. We compared three different HVG selection methods: the standard
HVG method and the augmented versions using MarcoPolo or SingleCellHaystack. We tried 450 different parameters and settings for the clustering
analysis and measured the frequency of successfully separating the populations of interest over multiple trials. (A) Overall performances of the three
methods. (B)-(D) Comparison of the three methods with respect to the changes of a single parameter.

performance drop (78.7% to 64.9%). When it comes to the
overall performance of the three datasets, HVG with Mar-
coPolo was the best; HVG with MarcoPolo, HVG with sin-
gleCellHaystack, and HVG alone showed success rates of
74.5%, 60.0%, and 52.3%, respectively. We also visualized
the methods’ performances with respect to each variable pa-
rameter (Figure 7B-D), which shows that HVG with Mar-
coPolo performed the best in many different settings.

Analysis of MarcoPolo’s dependency on hyperparameters

We investigated MarcoPolo’s dependency on hyperparam-
eters by running it with different hyperparameter settings.
We used the Tabula Muris bone marrow and lung datasets
for this analysis. First, the voting system of MarcoPolo in-
volves a threshold determining whether two genes’ expres-
sion patterns support each other. We ran MarcoPolo with
default hyperparameter settings except for the threshold of
the voting system being varied as 0.5, 0.6, 0.7, 0.8, and 0.9
(Supplementary Figure S12A). We observed that the Spear-
man correlations between any two runs of MarcoPolo were
all over 0.86, where the Spearman correlation was calcu-
lated based on MarcoPolo’s gene ranking of all genes. We
also measured how many genes coexisted in the top 100 gene

lists of the two runs. At worst, the number of genes coexist-
ing in the two top 100 gene lists was 70. Second, we varied
the maximum value in the normalization step of the prox-
imity score system: 5, 10, 15, and 20, and found that the
MarcoPolo result was not affected by this hyperparameter
(Spearman correlation of 1.0; Supplementary Figure S12B).
Third, we varied the number of PCs used in the proximity
system: 1, 2, 3, 4, and 5 (Supplementary Figure S12C). We
observed that Spearman correlations were all over 0.95. At
worst, the number of genes coexisting in the two top 100
gene lists was 88. The final step of MarcoPolo involves the
process of removing outlier genes that satisfy the following
conditions (1) log fold change between on-cells and off-cells
is < 0.6, (2) the number of on-cells (

∑
n

Ign) is < 10, or (3) the

number of on-cells (
∑
n

Ign) is > 70 percent of the number of

all cells. We varied the log fold change threshold: 0.4, 0.5,
0.6, 0.7, and 0.8 (Supplementary Figure S12D), the mini-
mum number of on-cells: 5, 10, 15, 20, 25, and 30 (Supple-
mentary Figure S12E), and the maximum percentage of on-
cells: 50, 60, 70, 80, and 90 (Supplementary Figure S12F).
In our experiments varying each of the three hyperparam-
eters, the Spearman correlations were all over 0.99, 0.99,
and 0.97, respectively, and the number of genes coexisting
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Figure 8. Mean runtime of different methods for simulated datasets of var-
ious sizes.

in the two top 100 gene lists was at worst 92, 96, and 83,
respectively.

Comparison of runtime with different methods

We measured the runtime of different methods using simu-
lation datasets (Figure 8 and Supplementary Table S12). As
HVG methods finished in seconds, we excluded them from
comparison. MarcoPolo involves the process of fitting the
linear Poisson mixture model for each gene and thus was the
slowest among all methods tried. For all sizes of datasets,
MarcoPolo (CPU) took about 8∼10 hours, which we con-
sider a feasible amount of time for typical research use. Be-
cause MarcoPolo was implemented in PyTorch, which en-
ables tensor computation with strong GPU acceleration,
users can opt whether to run MarcoPolo with GPU or only
with CPU (Methods). We found that MarcoPolo (GPU)
is 60∼90 times faster than MarcoPolo (CPU). Except for
MarcoPolo (CPU), for datasets of 1,000 cells, MarcoPolo
(GPU) was the slowest method, and for datasets of 10,000
cells, the standard clustering-based DEG pipeline with high
resolution was the slowest method. Interestingly, unlike
other methods, MarcoPolo’s runtime increased sublinearly
with dataset size, suggesting its potential utility for very
large data in the future.

DISCUSSION

We developed MarcoPolo, a clustering-independent
method to identify DEGs in scRNA-seq data. The stan-
dard DEG pipeline has the limitation that the results can
be affected by any errors or uncertainties in the clustering

step. We showed that MarcoPolo can overcome this limi-
tation and has three practical usages. First, it can identify
biologically informative genes accurately in a manner
independent of clustering. Second, it can suggest groups
of cells that are not identified in the standard clustering
process. Third, it can be used as a feature selection method
to improve the clustering robustness.

MarcoPolo suggests a philosophically different perspec-
tive on analyzing scRNA-seq data. In the standard work-
flow, groups of cells are first defined by clustering, and then
DEGs among them are identified. In contrast, MarcoPolo
identifies DEGs first, and then the DEGs can provide ten-
tative grouping information of the cells. The two directions
of approaches can complement each other. If a cell popu-
lation has a unique global structure of expression profile,
the DEG detection followed by clustering will work well.
If there is a certain marker gene of which bimodal expres-
sion can suggest a population, MarcoPolo can work well. In
our analysis, MarcoPolo’s grouping information was shown
to recover the cell types in real datasets and was often able
to distinguish cell types that were not distinguished by the
standard pipeline.

MarcoPolo has differences from another DEG identifi-
cation method, singleCellHaystack. Two methods are simi-
lar in that DEGs are identified in a manner independent of
clustering. A notable difference is that singleCellHaystack
requires a predefined threshold to determine whether a gene
is expressed or not in the cell. We showed that this binariza-
tion can decrease the performance of DEGs for distinguish-
ing putative clusters (Figure 5D). MarcoPolo flexibly learns
the on-cells and off-cells by fitting a bimodal distribution
and does not require a predefined threshold.

One strength of MarcoPolo that differentiates it from
other methods is the automatic generation of the summary
results and the figures in the form of an HTML file (Sup-
plementary Figure S13). This can be considered as a conve-
nient local web database where the user can explore the top-
ranked markers and how the cells are visually segregated
as on/off-cells by those markers. In addition, MarcoPolo
prepares the on/off information of the cells in an R object
file so that the information can be used in the downstream
analysis. We expect that this detailed and friendly software
implementation of our method can help maximize the ac-
cessibility to general users as well as experts.

MarcoPolo has the following limitations. First, like many
other methods, MarcoPolo is dependent on hyperparame-
ters. Among the five hyperparameters that we tested for sen-
sitivity, the voting system threshold and the number of PCs
were the two that MarcoPolo was the most sensitively de-
pendent on. Second, the support of real data analysis for
the cell type identification was suggestive rather than defini-
tive. The situation that the standard pipeline failed to dis-
tinguish cell types was only observed in some datasets but
not in others. However, we expect that the information pro-
vided by MarcoPolo could be useful for the identification of
cell types in future studies. Third, MarcoPolo assumes there
are two peaks in the mixture distribution, but there can be
genes with more peaks. When we extended our model to in-
clude three peaks, the overall performance did not improve,
though. Our own manual examination of the datasets also
suggested that there might not be many genes with more
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than two peaks, which was the reason we decided to go on
with our two-component Poisson mixture model.

The real datasets used in our analyses presented a large
range of proportions of zeros. In scRNA-seq analysis, there
have been strong beliefs that zeros are over-presented by
technical issues, and therefore the missing values should
be imputed (30,31). In contrast, recently, some studies sug-
gested that there was no evidence of zero inflation when the
read counts were fitted with the Poisson model (32,33). To
see how much the amount of zeros in the data impacts Mar-
coPolo’s performance, we did the following analysis. Begin-
ning with the dataset used for Figure 5A, we subsampled
the read counts. We applied a binomial distribution with
P = 0.5 to each read count, so the probability of detect-
ing expression was reduced to 50% compared to that of the
original dataset. The Spearman correlation between Mar-
coPolo scores from the original dataset and the subsampled
dataset was very high as 0.96, and the number of genes that
coexisted in the top 100 gene lists from the runs for the two
datasets was 88 genes (Supplementary Figure S14).

One of the interesting observations in our study was
that the HVG DISP method accurately identified marker
genes in simulation datasets especially when the parame-
ter �, which controls the probability that a gene has a non-
zero type-specific overexpression, was low. DISP is an HVG
identification method that prioritizes genes with a large
variance-to-mean ratio. We checked whether the variance-
to-mean ratios of marker genes were large when the pa-
rameter � was low in simulation datasets (Supplementary
Table S13). The lower the parameter � became, the larger
the variance-to-mean ratios of marker genes became. For
this reason, DISP worked well in simulation datasets with
low non-zero type-specific expression probabilities. We then
performed the same analysis for real datasets (Supplemen-
tary Table S14). In contrast to simulation datasets, in real
datasets, we observed that the variance-to-mean ratios of
marker genes were not dramatically larger than those of
non-marker genes. Except for the liver dataset of MacPar-
land et al., the mean variance-to-mean ratio of marker genes
was at most 15 times higher than that of non-marker genes,
whereas it was 50 times higher in the simulation datasets.

CONCLUSION

We presented MarcoPolo, a clustering-independent ap-
proach to the exploration of differentially expressed genes
in single-cell RNA-seq data. Our method exploits the bi-
modality of expression to find informative genes and learns
the on/off group information of the cells from the data. Us-
ing simulations and real data analyses, we showed that our
method puts informative genes at the top ranks, helps iden-
tify cell types not separated well in the standard clustering
result, and selects features to improve the robustness of the
clustering. We believe that our approach can complement
the standard pipeline by suggesting a different perspective
of scRNA-seq analysis for finding informative genes.

DATA AVAILABILITY

MarcoPolo is available at the GitHub repository (https:
//github.com/chanwkimlab/MarcoPolo). It is coded in

Python 3.7 using PyTorch v1.4. The required packages are
NumPy, SciPy, scikit-learn, and Pandas.

We made the MarcoPolo analysis results for the real
datasets used in the paper available online. The local
database (HTML) reports generated by MarcoPolo are ac-
cessible at the following addresses.

hESC (Koh et al.) (https://chanwkimlab.github.io/
MarcoPolo/hESC/index.html)

Liver (MacParland et al.) (https://chanwkimlab.github.
io/MarcoPolo/HumanLiver/index.html)

PBMC (Zheng et al.) (https://chanwkimlab.github.io/
MarcoPolo/Zhengmix8eq/index.html)

The followings are for Tabula Muris consortium datasets.
Aorta (https://chanwkimlab.github.io/MarcoPolo/

TabulaAorta/index.html)
Bladder (https://chanwkimlab.github.io/MarcoPolo/

TabulaBladder/index.html)
Brain Myeloid (https://chanwkimlab.github.io/

MarcoPolo/TabulaBrainMyeloid/index.html)
Brain Non-Myeloid (https://chanwkimlab.github.io/

MarcoPolo/TabulaBrainNonMyeloid/index.html)
Diaphragm (https://chanwkimlab.github.io/MarcoPolo/

TabulaDiaphragm/index.html)
Fat (https://chanwkimlab.github.io/MarcoPolo/

TabulaFat/index.html)
Heart (https://chanwkimlab.github.io/MarcoPolo/

TabulaHeart/index.html)
Kidney (https://chanwkimlab.github.io/MarcoPolo/

TabulaKidney/index.html)
Large intestine (https://chanwkimlab.github.io/

MarcoPolo/TabulaLargeIntestine/index.html)
Limb muscle (https://chanwkimlab.github.io/

MarcoPolo/TabulaLimbMuscle/index.html)
Liver (https://chanwkimlab.github.io/MarcoPolo/

TabulaLiver/index.html)
Lung (https://chanwkimlab.github.io/MarcoPolo/

TabulaLung/index.html)
Mammary Gland (https://chanwkimlab.github.io/

MarcoPolo/TabulaMammaryGland/index.html)
Marrow (https://chanwkimlab.github.io/MarcoPolo/

TabulaMarrow/index.html)
Pancreas (https://chanwkimlab.github.io/MarcoPolo/

TabulaPancreas/index.html)
Skin (https://chanwkimlab.github.io/MarcoPolo/

TabulaSkin/index.html)
Spleen (https://chanwkimlab.github.io/MarcoPolo/

TabulaSpleen/index.html)
Thymus (https://chanwkimlab.github.io/MarcoPolo/

TabulaThymus/index.html)
Tongue (https://chanwkimlab.github.io/MarcoPolo/

TabulaTongue/index.html)
Trachea (https://chanwkimlab.github.io/MarcoPolo/

TabulaTrachea/index.html)

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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