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Abstract: Bone defects of critical size after compound fractures, infections, or tumor resections are a
challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing
due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic
inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid
mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive
and anabolic molecules contribute to improving bone healing in these disorders, especially when
they are released in a targeted and controlled manner during crucial bone healing phases. In this
regard, the development of smart biocompatible and biostable polymers such as implant coatings,
scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and
biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release
of substances from these materials, and more, are advantageous. In this review, we discuss current
developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling
bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different
carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for
release of a panoply of drugs.

Keywords: angiogenesis; bioactive scaffolds; bone grafting; critical-size bone defects; drugs;
inflammation; tissue regeneration; osteoconduction; osteoinduction; osseointegration

1. Introduction

Bone defects regularly result after trauma, tumor resection, or infection and are becoming an
increasing challenge with a rising number of elderly patients with relevant comorbidities. Because of an
ageing population due to an increased life expectancy in the industrial countries, pathologic fractures
and other bone-related manifestations of systemic diseases are becoming more frequent. The structure
of adult and particularly ageing bone is more fibrous and comprises fewer bone-forming cells compared
to children, leading to a reduced repair capacity. Besides comorbidities and age, gender represents
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another risk factor for impaired fracture healing. Ageing women are more frequently affected by
osteoporosis in comparison to men based on their hormonal status. Estrogen deficiency reduces bone
mineral density, making the bone more fragile. If bone defects are of critical size or patients have
an impaired bone healing due to metabolic or inflammatory diseases such as diabetes mellitus and
osteoporosis, the defects will not heal completely without additional surgical intervention [1–6].

Bone, as a complex structured tissue, requires a well-orchestrated healing process regarding
timeframe and localization. In the literature, the bone healing process and defining molecular
pathways are already described extensively [2,3,6–13]. Briefly, bone regeneration can be sectioned
into an inflammatory, reparative, and remodeling phase. Within the several repair stages, distinct
cell populations, such as mesenchymal stem cells, immune cells, or endothelial cells together with
bone-specific osteoblasts and osteoclasts interact within a complex network and occupy the leading
role in alternating turns. The cells release diverse growth factors and signaling mediators to stimulate
vascularization and matrix formation resulting in regenerated bone tissue and reestablished normoxic
conditions [14].

Currently, the “gold standard” for therapeutic intervention in long bone defects are bone autografts
in combination with stable internal or external fixation. Autografts belong to the first generation of
bone substitutes, but have some drawbacks, including reduced bioactivity, limited availability, and
donor site morbidity. Internal or external fixation may fail in patients with impaired bone healing
and prolonged offloading and immobilization will further add to the overall morbidity. Therefore,
intensive research has focused on new bioactive materials being able to control the host tissue reaction
and include tissue engineering aspects. According to latest expertise, the optimal bone scaffold should
combine osteoconductive and osteoinductive properties to facilitate osteogenesis. This “diamond
concept” demands the interconnection between three-dimensional scaffolds for mechanical support,
growth factors, or other bioactive molecules, and osteogenic cells. Although intensive research has been
carried out on these concepts, the gap towards translation into clinical application has yet to be closed.
Thus, there is an urgent clinical need for smart adjuvant therapy approaches with bone scaffolds being
biocompatible, well implantable in host tissue, and suitable as drug delivery platforms [1–3,7–9,15–17].

The following review examines carrier systems and dual delivery systems for release of
targeted adjuvant therapies to enhance bone regeneration using inflammation-modulatory agents,
pro-angiogenic agents, and metabolism-modulatory compounds (Table 1). To ensure optimal bone
fracture treatment, the administered dose, as well as chemical properties of the incorporated drugs and
release mechanisms, have to be taken into account when fabricating and establishing drug delivery
systems [18,19]. In the following sections, several aspects regarding composition and formulations of
drug carrier, and drug release kinetics due to diffusion, scaffold degradation, or triggered release will
be highlighted.

A PubMed database search was performed in March 2020 using key words and phrases “drug
delivery”, “local”, “scaffold”, “inflammation”, “angiogenesis”, “trigger”, “release kinetic”, linked to
the key words “bone defect”, “fracture”, and “healing” by AND/OR as Boolean function.

Table 1. Summary of selected adjuvant drugs for local drug delivery approaches being discussed in
this work and their effects on bone fracture healing. Their molecular targets, mechanisms of action,
direct effects on bone metabolism and side effects have been described in detail elsewhere [20–22].

Adjuvant Drugs Effect on Bone Metabolism

Growth factors

act during all fracture healing stages; stimulate proliferation and differentiation of bone forming cells as
well as angiogenesis

BMP-2/BMP-7
FGF-2

IGF
PDGF
TGF-ß
VEGF

Hormones acts during all fracture healing stages; anabolic and catabolic effects on bone healing depending on dose
and administrationParathyroid hormone
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Table 1. Cont.

Adjuvant Drugs Effect on Bone Metabolism

Bisphosphonates

act during several fracture healing stages; prevent bone resorption and increase bone mineralization

Nitrogen-containing
bisphosphonates
Alendronate
Ibandronate
Pamidronate
Zoledronate

Non-nitrogen-containing
bisphosphonates

Clodronate

Glucocorticoids interferes in late fracture healing phases; inhibits osteoclasto- and osteoblastogenesis; low dose of
short-acting glucocorticoids may not be adverseDexamethasone

Non-steroidal
anti-inflammatory drugs

(NSAIDs)
elicit anti-inflammatory effects due to inhibition of cyclooxygenases and reduction of prostaglandin

production; mainly impair bone repair, especially during the first crucial bone healing phases
Ibuprofen

Indomethacin

Prostaglandins important during early fracture healing phases; biphasic effect on osteoblasts and osteoclasts; intermittent
application recommendedProstaglandin E1

Prostaglandin receptor
agonist

Enzyme inhibitors
GSK-3ß inhibitors

GSK-3ß inhibitors prevent proteasomal degradation of β-catenin leading to cytosolic accumulation and
nuclear translocation of β-catenin for transcriptional activation of various target genes

603287-31-8
AZD2858 or

GSK-3ß inhibitor XXVII
(AZD2858 × HCl)

Phosphodiesterase-4 inhibitor phosphodiesterase-4 inhibitor elicits anti-inflammatory effects and increases proliferation and
differentiation of osteoblasts and osteoclasts; low doses used for short-term treatment are recommendedRolipram

Proteasome inhibitor proteasome inhibitor promotes osteoblastogenesis as well as inhibits osteoclastogenesis; low doses used
for short-term treatment are recommendedBortezomib

Sphingosine 1-phosphate
receptor agonists

increase angiogenesis and osteogenesisFTY720
SEW2871
VPC0191

HMG-CoA
(3-hydroxy-3-methylglutaryl

-CoA) reductase
inhibitors-statins

promote osteogenesis and appear to be anti-inflammatory and pro-angiogenic
Lovastatin
Pravastatin
Simvastatin
Atorvastatin
Fluvastatin
Pitavastatin

Rosuvastatin

Divalent metal ions enhances bone formation and mechanical strength; suppresses bone resorption
Strontium

Antibiotics
prevent bone infections; tetracycline inhibits osteoclast differentiation and is high affine to bone mineralsGentamicin

Tetracycline

2. Carriers for Drug Delivery

Targeted drug delivery approaches are needed to increase the therapeutic drug efficacy and
decrease adverse side effects [6,23–25]. Ideal scaffolds should fulfill several biological and structural
requirements including biocompatibility, biomimicry, mechanical support, and porosity to permit cell
adhesion as well as nutrient supply, biodegradability after successful therapy, and controlled drug
delivery [1,13,17,26–31]. Regarding optimal scaffold loading with desired drugs, several aspects such
as loading capacity, distribution, binding affinities, and stability have to be considered [32]. In general,
drug release kinetics (Figure 1) can be tuned by drug loading techniques, scaffold morphology,
and degradation according to polymer composition, crosslinking degree, or porosity [33].
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Figure 1. Exemplary schematic drug release kinetics for single and dual drug delivery.

2.1. Composition of Scaffolds

Several reviews have summarized a variety of in vivo studies regarding various natural, synthetic,
or inorganic drug delivery approaches and their bone regenerative potential as well as drug release
kinetics [13,34–39].

2.1.1. Natural Polymers

Natural scaffolds are highly biocompatible as they belong to the extracellular matrix (ECM)
in most cases, but feature only minor mechanical strength and can lead to undesired immune
reactions. The most studied natural polymers comprise collagen, hyaluronic acid, alginate, and
chitosan [13,29,33,34,36,40]. In a clinical trial with a study length of 12 months, rhBMP-2 (recombinant
human bone morphogenetic protein 2, 1.50 mg/mL, 12 mg total dose) delivery from an absorbable
collagen sponge accelerated the bone healing of tibial fractures. Significantly, the drug delivery
approach reduced the amount of secondary interventions and infections compared to the control
group without the BMP-2-delivering implant [41]. Aoki and Saito reviewed several natural polymers
including collagen, gelatin, and hyaluronic acid with respect to BMP-2 delivery and the effects on bone
healing [42]. Furthermore, Guo and coworkers investigated a drug delivery system comprising collagen
sponges loaded with ibandronate (Figure 2). In vitro, release of this anti-resorptive bisphosphonate
from collagen proceeds rapidly over a few days. After 4 weeks, local ibandronate (0.04 mg/10 mg
scaffold) delivery improved bone healing and mechanical properties in an osteoporotic rat femoral
fracture model as the treatment resulted in an enhanced callus formation with higher density compared
to control groups without scaffolds, unloaded collagen sponges or implants combined with systemic
ibandronate administration [43]. Therefore, a smart drug delivery system for bone regenerative
applications should include natural polymers to ensure biocompatibility and provide the basis for
osteogenesis due to facilitated cell adhesion and migration.
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Figure 2. Chemical structures of selected anti-resorptive bisphosphonates. Bisphosphonates improve
the bone quality due to accelerated bone mineralization and are frequently used in the treatment of
osteoporosis. The hydrophilic molecules contain the typical P–C–P core structure and exhibit a high
binding affinity to bone minerals.

2.1.2. Calcium Phosphates

Calcium phosphates are suitable scaffolds in bone tissue regenerative applications as these matrices
have desirable mechanical strength and can be easily functionalized or adapted to the diamond concept
becoming efficient bioactive drug delivery systems [33,34,44–46]. According to the literature, the most
common bone tissue engineering devices comprise calcium phosphates including hydroxyapatite and
composites [17,29,33,36,47–49]. Calcium phosphates can be applied in form of granules, ceramics, or
cements [50]. Several reviews summarized several in vivo studies dealing with hydroxyapatite- and
calcium phosphate-based materials for site-directed delivery of growth factors including BMP-2, VEGF
(vascular endothelial growth factor), or TGF-ß (transforming growth factor-ß) [50,51]. For instance,
an investigation by Poldervaart and coworkers focused on an alginate hydrogel with incorporated
BMP-2-loaded gelatin microparticles and calcium phosphate granules. In vitro, BMP-2 release kinetic
showed a characteristic initial burst followed by a degradation-dependent release due to the presence
of proteolytic enzymes such as collagenases. BMP-2 delivery by this cylindrical calcium phosphate
scaffold increased ectopic bone formation in rats after 12 weeks [52]. Likewise, Chu and coworkers
incorporated BMP-2 (10 µg/scaffold) in calcium phosphate-based scaffolds and found improved
mechanical properties, like stiffness of bone, in rat femoral defects after an investigation period of
15 weeks [53]. Moreover, Maehara and coworkers used hydroxyapatite-collagen sponges for FGF-2
(fibroblast growth factor 2, 10–100 µg/mL) delivery in rabbit femoral trochlear groove defects. In vivo,
growth factor-loaded scaffolds tended to improve bone regeneration, whereas even the empty scaffold
itself elicited sufficient bone repair properties up to 24 weeks [54]. Similarly, Komaki and coworkers
used a drug delivery system comprising tricalcium phosphate and collagen for local release of FGF-2
(200 µg/0.3 mL scaffold). In vivo, the authors showed enhanced bone formation based on their
FGF-2 delivery approach 12 weeks after implantation in rabbit tibial defects compared to unloaded
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controls [55]. The same scaffold composition of tricalcium phosphate and collagen is also suitable
for PDGF (platelet-derived growth factor) delivery as shown in another study. The authors found
advantageous effects regarding bone fracture healing due to local application of their drug delivery
system without taking a closer look at the release kinetics in a diabetic rat model simulating an
impaired fracture healing. Eight weeks after implantation, drug delivery systems containing 22 µg
PDGF per scaffold increased mechanical strength [56]. Besides osteogenic growth factors, calcium
phosphates are also appropriate scaffolds for delivery of angiogenic agents. Wernike and coworkers
investigated the release kinetics of VEGF from calcium phosphate ceramics. The authors analyzed two
different drug-loading techniques and adsorbed or co-precipitated VEGF, whereas co-precipitation of
the growth factor reduced initial burst characteristics in comparison to adsorption. In vivo, sustained
VEGF delivery from this calcium phosphate scaffold supported bone formation and vascularization in
a murine critical-size cranial defect model after 28 days [57].

Furthermore, incorporation of adjuvant drugs in scaffolds for bone regenerative applications
is required to ensure optimal fracture healing. By the use of simvastatin-loaded calcium sulfate
scaffolds, Huang and coworkers indicated accelerated bone formation in a rabbit ulnar defect model.
Regarding release kinetics of the HMG-CoA reductase inhibitor simvastatin (Figure 3), over 70% of the
drug was released within 2 weeks, with a higher simvastatin loading resulting in a reduced release rate.
In vivo, simvastatin-loaded scaffolds promoted bone regeneration in the same magnitude as calcium
sulfate scaffolds loaded with BMP-2 resulting in similar newly formed bone tissue areas up to 8 weeks
after implantation [58]. In addition, Nyan and coworkers investigated simvastatin (1 mg/scaffold)
delivery by calcium sulfate discs and showed an improved bone formation in a rat critical-size
calvarial defect model after 8 weeks compared to untreated controls or unloaded scaffolds [59].
In in vitro investigations, Khurana and coworkers analyzed pitavastatin-loaded injectable calcium
phosphate foams. The foams released pitavastatin (Figure 3) by an initial burst. In vitro, pitavastatin
delivery increased BMP-2 and VEGF expression indicating advantageous osteogenic and angiogenic
effects [60]. Furthermore, pravastatin (Figure 3) can be used in bone regenerative applications as well.
Delivery approaches based on local release forms of pravastatin have not been studied comprehensively
yet, but oral administration in ovariectomized rats prevented bone loss indicating advantageous effects
on bone metabolism [61]. In general, statins elicit pleiotropic effects [62]. Of note, statins inhibit
HMG-CoA reductase, which is the rate-limiting enzyme in the mevalonate pathway responsible for the
production of non-sterol and sterol isoprenoids, especially cholesterol. Thus, they became prominent
lipid-lowering agents for the treatment of hypercholesterolemia [63]. In addition, statins can activate the
AKT1/PI3K (protein kinase B/phosphatidylinositol 3-kinase) signaling pathway, which leads to some
similar downstream effects as the inhibition of HMG-CoA reductase. The mevalonate pathway, on the
other hand, can also be inhibited at other sites, such as the conversion of dimethylallyl pyrophosphate
to geranyl pyrophosphate by bisphosphonates. This association points to another possible pleiotropic
effect of statins. In fact, the statins have gained attraction as a pro-osteogenic molecule after first
indications that lovastatin (Figure 3) can stimulate the production of important osteogenic growth
factors [64].

By investigating bone healing of rat tibial defects over 8 weeks, Park and coworkers found
increased bone formation and mineralization after application of alendronate-loaded calcium phosphate
scaffolds. In vitro, alendronate (Figure 2) displayed a sustained release over 28 days. Thereby, scaffolds
incorporating high alendronate concentration (5 mg/scaffold) had a diminished release profile as
only 20% of the drug was released after 4 weeks in comparison to lower alendronate concentration
(1 mg/scaffold), where 70% of the bisphosphonate were released [65]. Apart from osteogenesis, implant
loosening often remains challenging and drug delivery approaches should address this issue. According
to several in vivo studies, strontium-modified calcium phosphate implants support osseointegration
and local bone formation in a rat osteoporotic femoral defect model over an investigation period
of 6 weeks and 6 months [66,67]. For instance, Tao and coworkers focused on a drug delivery
system composed of strontium-modified calcium phosphate cement and an additional single local
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administration of BMP-2 (5 µg/mL). In osteoporotic rats, the strontium-containing scaffold as well as
the combination of this scaffold with BMP-2 led to an increased bone formation of critical-size femoral
defects after 8 weeks [68]. For similar investigation of strontium-doped calcium phosphate cements,
Reitmaier and coworkers used critical-size bone defects in sheep. Local strontium release resulted in
enhanced bone formation after 6 months, but not after short-term treatment [69]. Consequently, calcium
phosphates meet several aspects of the diamond concept for ideal bone implants as these scaffolds
provide structural support and feasibility of incorporating a variety of different adjuvant drugs.

Figure 3. Chemical structures of selected HMG-CoA reductase inhibitors. The statins elicit pleiotropic
effects regarding bone regeneration, despite having different carbo- and heterocyclic core structures.
Anabolic impacts rely on stimulation of osteogenesis, but the statins also evoke dose-dependent
anti-inflammatory and pro-angiogenic effects.

2.1.3. Synthetic Polymers

In contrast to scaffolds based on natural compounds, synthetic polymers have a clear defined chemistry
and can be easily processed and modified in terms of mechanical strength and biodegradability. Nevertheless,
synthetic polymers often lack bioactive effects and, therefore, are often combined with osteoinductive drugs.
The most studied synthetic polymers include polyethylene glycol (PEG), polycaprolactone (PCL), polylactic
acid (PLA), polylactide-co-glycolide (PLGA), and their derivatives [3,29,33,34,40,70,71]. For instance, Li and
coworkers incorporated a prostaglandin E2 agonist (0.05–5 mg/scaffold) into a PLGA-derived matrix.
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According to the authors, release of the prostaglandin E2 receptor selective drug proceeded over
14 days and improved bone properties regarding callus size, density and strength in a rat femoral
fracture model after 21 days [72]. Yoshii and coworkers investigated lovastatin-loaded polyurethane
scaffolds in a rat femoral defect model. Lovastatin showed slow and sustained release kinetics with
an almost linear trend. In vivo, an improved bone density after local drug release was visible after
4 weeks [73]. Without determining release kinetics, Kaigler and coworkers detected advantageous
effects regarding angiogenesis and osteogenesis 12 weeks after implantation of VEGF-loaded PLGA
scaffolds in rat calvarial defects [74]. By using fluvastatin-loaded PLGA membranes, Zhang and
coworkers were able to show enhanced bone formation in both a rat calvarial and tibial defect model
after 4 and 8 weeks. According to the authors, the PLGA membranes released fluvastatin with a
release rate of approximately 1 µg/day [75]. Nevertheless, designed smart scaffolds potentially ought
to comprise both natural and synthetic polymers to fulfill all requirements.

2.1.4. Hybrid Scaffolds

To combine tunable scaffold characteristics based on synthetic polymers and biocompatibility
of natural compounds, hybrid materials could be very promising drug delivery systems. Dang and
coworkers established a PTH (parathyroid hormone) delivery system comprising alternating stacked
polyanhydride isolation layers and drug-loaded alginate layers. This fabricated scaffold is supposed
to release PTH in a pulsatile manner over 21 days as intermittent PTH release is favorable for bone
repair. Modulation of chemical composition and thickness of the isolation layer resulted in the desired
daily pulsatile release profile. In vivo, the programmed PTH release enhanced bone regeneration in
a murine calvarial defect model after 3 or 8 weeks without affecting bone mineral density [76,77].
Jeon and coworkers made use of another anabolic drug, BMP-2 (1 µg/scaffold), and compared drug
release kinetics and bone healing potential of heparin-conjugated PLGA scaffolds with unconjugated
polymeric scaffolds. Both, hybrid and synthetic scaffold were loaded with BMP-2 and investigated in a
rat ectopic bone formation model. Regarding BMP-2 release, unconjugated scaffolds released the total
amount of incorporated BMP-2 within 4 h, whereas the heparin-conjugation sustained BMP-2 release at
least over 2 weeks. In vivo, BMP-2-loaded hybrid scaffolds resulted in the greatest bone regeneration
in comparison to unloaded or unconjugated PLGA scaffolds after 8 weeks [78]. Additionally, Kim and
coworkers also made use of heparin-functionalized scaffolds. The authors conjugated PCL-PLGA
scaffolds with heparin-dopamine to achieve a controllable release of the immobilized BMP-2. In vitro,
BMP-2 release exhibits burst release kinetics within the first hours followed by lower and sustained
release over 2–3 weeks. In a rat femoral defect model, BMP-2 delivery by the conjugated synthetic
scaffold increased bone and callus formation 8 weeks after implantation in comparison to unloaded
scaffolds and scaffolds without dopamine conjugate [79]. Hoshino and coworkers studied another
hybrid scaffold formulation over 12 weeks. The authors used a scaffold consisting of tricalcium
phosphate and a PLA-PEG polymer for delivery of BMP-2 (80 µg/implant). By investigation of rib
defects in dogs, the authors showed an improved bone regeneration and stiffness after application
of BMP-2-loaded hybrid scaffolds in comparison to BMP-2-loaded tricalcium phosphate alone [80].
By using PLGA-coated gelatin sponges, Kokubo and coworkers showed enhanced bone repair in
critical-size rabbit ulnar defects after BMP-2 delivery resulting in a complete union after 16 weeks [81].
Keskin and coworkers fabricated a BMP-2 delivery system based on collagen-chondroitin sulfate discs,
which further contained a polymeric coating. Regarding BMP-2 delivery, the drug carrier released
about half of the incorporated growth factor within 2 weeks. In a rat femoral defect model, the authors
found osteoinductive effects in response to short-term BMP-2 delivery over 3 weeks by histological
investigation [82]. Reichert and coworkers used a hybrid scaffold consisting of PCL and tricalcium
phosphate for local BMP-7 delivery. In critical-size tibial defects of sheep, the drug delivery approach
increased bone volume and mechanical strength after application of their BMP-7 delivery approach in
comparison to unloaded scaffolds resulting in bridging after 3 months and increased strength after
12 months [83]. Moreover, other investigations dealt with a hybrid membrane consisting of chitosan



Pharmaceutics 2020, 12, 428 9 of 39

and silica components for local delivery of adsorbed BMP-2 in terms of release kinetics and bone
regeneration of calvarial defects. In vitro, BMP-2 exhibits sustained release kinetics, whereas the initial
release of BMP-2 from the hybrid membrane at the first day was higher in comparison to BMP-2-loaded
chitosan membranes. After 2 weeks, loaded hybrid membranes accelerated bone regeneration by
almost a third in a rat model compared to unloaded hybrid scaffolds [84].

Besides anabolic growth factors, osteogenic and angiogenic drugs have also been coupled
with hybrid drug carriers. Piskin and coworkers investigated two different loading methods of
PCL nanofibers forming membranes and their bone regenerative potential. The authors compared
PCL scaffolds having simvastatin absorbed to the surface with scaffolds, where simvastatin was
incorporated into the nanofibers within the fabrication process. Scaffold loading with simvastatin
based on commercially available simvastatin tablets for oral use containing also cellulose, starch, and
other inactive components. The loading method mentioned first led to a burst release, whereas the
direct incorporation of simvastatin into the nanofibers resulted in a sustained release profile according
to the authors. In rat cranial bone defects, drug delivery by PCL scaffolds with direct incorporation of
simvastatin enhanced bone mineralization in comparison to the absorptive loading after 6 months [85].
Concerning statin delivery to bone defects, Ibrahim and Fahmy investigated different chitosan-based
sponges for local rosuvastatin delivery (Figure 3) over 4 weeks. The authors used polyacrylic acid
or polyacrylic acid crosslinked with divinyl glycol (‘polycarbophil’) as anionic polymers. Variation
of chitosan and polymer ratio modulated in vitro release kinetics, whereas rosuvastatin release was
completed within a few hours reflecting burst release kinetics. The authors found signs of bone
remodeling in histological investigations of rat femoral fractures due to local rosuvastatin delivery [86].
Similarly, Monjo and coworkers incorporated rosuvastatin in a collagen sponge. For stabilization of the
collagen sponges, the authors used titanium implants with Teflon caps. This drug delivery approach
released rosuvastatin through a burst, but did not change bone volume in a critical-size tibial defect in
rabbits significantly after 4 weeks [87].

In summary, a combination of synthetic and natural compounds within the drug delivery scaffold
could improve the bone formation efficacy.

2.2. Scaffold Formulations

Fabricated drug delivery approaches originating from the above-mentioned polymeric components
exist in various forms or shapes with different drug release profiles. Scaffold shape, morphology,
porosity, molecular weight, or size, among others, can affect drug delivery decisively [88]. Nyberg and
coworkers summarized several drug-eluting technologies such as bulk incorporation, surface adsorption,
multilayer coatings, or particles (Figure 4) with regard to their advantages and disadvantages [89].
In the following section, various aspects of drug release kinetics of diverse scaffold formulations will be
discussed in detail.

2.2.1. Drug-Releasing Coatings

In bone regenerative applications, implant coatings can contain non-releasable and releasable
components. To strengthen bone integration of implants, osteoconductive coatings including
calcium phosphate or hydroxyapatite showed promising results. To date, several reviews have
summarized techniques to apply osteoconductive coatings on implants with their related advantages
and disadvantages [47,90,91]. In addition, non-fouling coatings for infection prevention and
bioadhesive coatings consisting of ECM proteins are also important aspects in terms of improving
bone fracture healing. Within this surface functionalization, peptide-binding sequences such as RGD
(arginine-glycine-aspartate) or other integrin-binding domains were adsorbed on implant surfaces for
mediation of cell adhesion and differentiation. As implant coatings seem to be attractive strategies in the
field of bone healing, adsorption of bioactive drugs appear to be interesting in particular [3]. Subsequently,
several drug-releasing coatings will be described, whereas relevant features of non-releasing coatings
outlined above will be not considered in more detail.
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Figure 4. Exemplary scaffold formulations for bone-targeted drug delivery.

Implant functionalization with immobilized growth factors or other drugs could be promising
regarding enhanced bone healing, but several issues have to be taken into consideration while
establishing drug-eluting coatings. For instance, immobilization might influence the biological activity
of the surface-immobilized osteoinductive molecules depending on their orientation. Moreover, surface
adsorption often causes unregulated release kinetics such as an initial burst [3]. Nevertheless, Petrie
Aronin and coworkers coated bone allografts with a PLGA polymer containing FTY720 (Figure 5).
This sphingosine 1-phosphate receptor agonist is supposed to be released locally with sustained
release kinetics. In vitro, the authors measured an initial burst release within 5 days, probably due
to degradation of the polymer coating, and a complete elution of FTY720 within 2 weeks. In a
critical-size tibial defect model, FTY720 release improved mechanical stability compared to uncoated
or unloaded polymer coatings 6 weeks after implantation [92]. Likewise, Das and coworkers used
FTY720 incorporated within polymer-coated allografts to improve bone formation of critical-size tibial
defects after 8 weeks [93]. In cranial defect models, Wang and coworkers, as well as Huang and
coworkers, proved the bone regenerative effects of bone allografts coated with FTY720 after 12 and
8 weeks, respectively, whereby FTY720 release followed a characteristically initial burst and prolonged
release kinetics, hereinafter [94,95].

To accelerate calvarial bone regeneration, Ishack and coworkers analyzed drug-releasing collagen
coatings of hydroxyapatite-calcium phosphate scaffolds. The coatings contained either dipyridamole
(100 µM) to raise local adenosine level and stimulate adenosine receptor-mediated downstream
signaling or BMP-2 (200 ng/mL) as a well-known osteoinductive growth factor. Ex vivo, the authors
were able to identify a sustained release of dipyridamole over an investigation period of 240 h. In vivo,
this drug delivery system improved bone regeneration for both drugs in comparison to control scaffolds
after 8 weeks [96]. By modifying the coating with respect to the amount of polymer and incorporated
drug concentration, which affects coating thickness and BMP-2 distribution, respectively, drug release
kinetics can be tuned from an initial burst towards a sustained release. The sustained release over
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4 weeks slightly shifted improved bone formation and mineralization towards later bone healing
phases in comparison to an initial burst release during the first 2 days [97,98]. To combat burst release,
Shah and coworkers investigated drug-releasing implant coatings by using a layer-by-layer fabrication
approach. Implant coatings consisted of an osteoconductive base layer with hydroxyapatite and
chitosan combined with osteoinductive BMP-2-containing layers on top. By applying several layers,
the drug release was modulated with respect to hydrolytic degradation of the polymeric layers. In this
study, the authors followed up BMP-2 release in vivo and found a controlled growth factor release over
4 weeks, suggesting that a layer-by-layer coating technique prolongs drug delivery in comparison to
simple surface adsorption or other drug-containing coatings with burst release kinetics [99]. Regarding
the layer-by-layer technique, drug release rate can be tuned easily based on drug concentration and
number of applied layers to combat drug diffusion. Nevertheless, to achieve a controlled release, many
layers have to be fabricated [100]. Furthermore, He and coworkers implanted titanium alloys coated
with hydroxyapatite-collagen composites into dog femora for 4 weeks. The implant coating contained
BMP-2 for local drug delivery. In vivo, the BMP-2-loaded implants improved bone formation by almost
a third compared to unloaded hydroxyapatite-coated alloys [101]. Moreover, Pauly and coworkers
compared the bone regenerative effects of simvastatin-coated titanium implants with BMP-2-coated
scaffolds, representing a positive control, after 42 days. The authors showed an improved tibial fracture
healing in rats based on simvastatin delivery in high concentrations (50 µg/implant), which elicited a
comparable bone regeneration of local BMP-2 (50 µg/implant) delivery [102].

Figure 5. Chemical structures of sphingosine 1-phosphate receptor agonists. The lipid mediators act
mainly on vascularization and bone metabolic cells.

In terms of optimized implant fixation, Li and coworkers investigated hydroxyapatite-coated
titanium implants and implants with strontium-substituted coatings (10% strontium-hydroxyapatite).
Strontium-containing implants improved osseointegration in osteoporotic rat tibia after 12 weeks [103].
Another approach to oppose implant loosening involves bisphosphonate delivery. Gao and coworkers
investigated the potential of hydroxyapatite-coated titanium implants with immobilized bisphosphonates
such as pamidronate, ibandronate, and zoledronate (1 mg/mL, Figure 2). In vitro, bisphosphonate release
generally showed a burst release within the first 3 days and a subsequent slower discharge up to
7 days. With respect to the release kinetics, differences between the three bisphosphonates became
obvious, as zoledronate was released fastest, followed by ibandronate and pamidronate. According to
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the authors, the different affinities of the three bisphosphonates to hydroxyapatite were responsible
their individual release kinetics. In an osteoporotic rat model, the examined bisphosphonates improved
implant integration and bone formation 3 months after implantation, whereas zoledronate showed
the greatest potential. Regarding bone healing efficacy, the other two bisphosphonates, ibandronate
and pamidronate, had minor impacts. Thus, a classification concerning the bone regenerative potential
of the investigated bisphosphonates was similar to their release order [104]. Greiner and coworkers
coated titanium implants with a synthetic PLA polymer. The coating included the nitrogen-containing
bisphosphonate zoledronate for local drug release. The authors did not determine release kinetics in
this study, but mentioned a potential drug elution of 50% within 2 days referring to a previous study.
By investigating tibial fractures of rats for 84 days, zoledronate delivery resulted in increased mechanical
stability compared to uncoated and unloaded controls [105]. In line with this, several investigators used
coated titanium or tantalum implants for local delivery of zoledronate, alendronate, or pamidronate,
respectively, to increase mechanical properties and bone ingrowth in vivo [106–109]. Furthermore,
Li and coworkers used magnesium-based alloys and coated these implants with PLA-calcium phosphate
composites incorporating zoledronate. In vitro, the authors detected a sustained drug release with a
zoledronate release of 14% within the first 3 days based on diffusion and up to 27% in the following
3 weeks due to degradation of the implant coating. By investigating femoral fractures of osteoporotic
rats for 12 weeks, local release of zoledronate increased bone repair and mechanical strength [110]. Thus,
drug-eluting scaffold coatings of various components with several molecules such as growth factors
and bisphosphonates, among others, displayed promising results in terms of bone regeneration and
implant fixation.

2.2.2. Hydrogels

Hydrogels are frequently studied with regard to potential applications in bone regeneration
and fracture healing because of their injectability, degradability, tenability, and simple drug
loading [36,111,112]. Growth factors or synthetic drugs can be incorporated into the hydrogel network
covalently or non-covalently defining release kinetics in addition to hydrogel degradation-dependent
drug delivery [113]. For instance, Fukui and coworkers conjugated simvastatin (250 µg/implant)
into their gelatin hydrogel system with the intention to establish a slow-releasing drug delivery
approach. In vivo, the locally applied drug carrier promoted femoral fracture healing in rats after
8 weeks [114]. Similarly, Yan and coworkers proved increased bone formation 4 weeks after application
of a thermo-sensitive hydrogel with incorporated simvastatin in comparison to empty defects and
unloaded scaffolds using a rat femoral defect model. In vitro, simvastatin showed a rapid release
within the first 2 days. According to the authors, scaffolds released 80% of the incorporated simvastatin
within 2 weeks demonstrating a correlation between drug delivery and hydrogel degradation [115].
By using photopolymerized hyaluronic acid-based hydrogels with encapsulated simvastatin, Bae and
coworkers found accelerated bone healing of cranial defects in rabbits after 8 weeks. Regarding drug
release kinetics, the authors described an initial burst release, which could be reduced by higher
loading of the hydrogel carrier with simvastatin (up to 1 mg/scaffold) [116]. In addition, Tanabe and
coworkers used photopolymerized gelatin hydrogels as drug carrier. The authors immersed the
hydrogel disks in a fluvastatin (Figure 3) solution and indicated beneficial osteogenic effects in a rat
calvarial defect model after 28 days. However, fluvastatin release kinetics were not studied [117].
Additionally, Chen and coworkers also followed up the approach of a gelatin hydrogel as drug delivery
system. Their hydrogels contained 400 µg FGF-2 per 100 µL hydrogel and accelerated the bone
healing in a rabbit tibial defect model in comparison to empty hydrogels after an investigation period
of 8 weeks [118]. Besides animal studies, in a randomized, double-blind, placebo-controlled trial,
Kawaguchi and coworkers reported an accelerated healing of fresh tibial fractures after injection of
gelatin hydrogels incorporating FGF-2 [119]. Yamamoto and coworkers examined a gelatin-based
hydrogel for controlled BMP-2 delivery. In vivo, BMP-2 release was dependent on the corresponding
water content of the hydrogel, which modulated release kinetics from burst release within few days to
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sustained release over several weeks. A reduced water content resulted in a longer retention of BMP-2
within the hydrogel scaffold (99.7 wt%: complete elution within 15 days; 93.8 wt%: 60% remaining
after 30 days). By investigating critical-size ulnar defect healing in rabbits, the authors showed an
improved bone mineral density after administration of their BMP-2 (17 µg/scaffold) carrier system
in comparison to BMP-2 without a carrier after 6 weeks [120,121]. Furthermore, Diab and coworkers
incorporated BMP-2 (5 µg/200 µL scaffold) within a silk-based hydrogel. In vitro, the silk hydrogels
released BMP-2 by burst release, whereas increasing silk concentration reduced release kinetics. In a rat
critical-size femoral defect model, the authors implemented a nanofibrous PCL mesh in the bone defect
area and subsequently filled with polymeric mesh containing their BMP-2-loaded hydrogel. The local
growth factor delivery approach resulted in accelerated bone repair in comparison to unloaded silk
scaffolds after 12 weeks [122]. In general, hydrogels can be useful drug delivery formulations with
respect to their easy drug-loading properties and applicability, but hydrogel composition has to be
carefully chosen to withstand the mechanical load in long bones. As shown in the last-mentioned
study, other formulations like nanofibers for structural support can also be integrated into the scaffolds
to build up a dual compound drug delivery carrier.

2.2.3. Nanotubes and Nanofibers

Nanofiber- or nanotube-based scaffolds have been intensively studied in terms of bone repair
due to their ECM-mimetic structure and morphology [36]. In general, drug delivery of nanotubes
and nanofibers can be tuned by length or diameter of the tubes/fibers to delay drug diffusion and
ensure controlled drug release profiles. Additionally, sequential drug release can be achieved by dual
compound systems such as coated fibers or fibers with a surrounding polymeric scaffold [24,123].
Kwon and coworkers focused on nanotube implants consisting of titanium oxide soaked with
zoledronate. By investigating a rabbit femoral model for 3 weeks, the authors found supported bone
formation, but the release kinetics of the delivered bisphosphonate has to be determined yet [124].
In another approach, Shen and coworkers coated titanium oxide nanotubes with hydroxyapatite
layers to efficiently load and release the anti-resorptive agent alendronate. In vitro, this drug delivery
device enhanced osteoblast proliferation as alendronate exhibited a delayed release compared to
nanotubes without hydroxyapatite layers. Beyond that, pH alterations varied drug release kinetics
with an accelerated release at lower pH reflecting osteoclast microenvironment according to the authors.
In vivo, the alendronate-releasing nanotube system improved bone formation in osteoporotic rabbits
after 3 months [125]. Moreover, Lee and coworkers investigated the bone regenerative effect of BMP-2.
The authors incorporated BMP-2 into heparin-binding amphiphilic nanofibers being embedded in
a collagen scaffold. In vitro, BMP-2 displayed a delayed release in the presence of heparan sulfate
as the scaffolds released only one third of loaded BMP-2 consistently after 8 days. In a critical-size
femoral defect model being investigated over 6 weeks, the osteogenic effect of this nanofiber-based
BMP-2 (1 µg/scaffold) dual compound delivery system was proven [126]. Further investigations
on ectopic and cranial bone formation by sustained delivery of BMP-7 and simvastatin or BMP-2,
respectively, demonstrated a good suitability of nanofibrous scaffolds in terms of bone regenerative
applications [127–130]. Moreover, Kolambkar and coworkers established a dual compound drug
delivery system, while the authors combined a nanofiber mesh forming a tube with an alginate
hydrogel containing BMP-2 (5 µg/125 µL scaffold). BMP-2 delivery occurred almost completely within
7 days. In a rat critical-size femoral defect model, the described BMP-2 delivery approach enhanced
bone repair after 12 weeks [131,132]. Regarding drug loading methods, Fu and coworkers investigated
different loading techniques of PLGA-based fibrous scaffolds regarding drug release profiles and
affected bone formation. In vitro, fibrous scaffolds with surface-absorbed BMP-2 showed burst release
kinetics. In contrast, direct encapsulation of BMP-2 within the nanofibers during scaffold fabrication
sustained BMP-2 release for several weeks. Moreover, the authors incorporated hydroxyapatite
nanoparticles into the PLGA matrix. Furthermore, hydroxyapatite concentrations modulated BMP-2
release kinetics with higher hydroxyapatite content accelerating drug release. In a murine critical-size
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tibial defect model, the authors confirmed bone regenerative properties of their BMP-2 (1 ng/implant)
drug delivery system 6 weeks after implantation [133]. Additionally, Zhu and coworkers investigated
core-shell structured nanofibrous membranes for sustained rhBMP-2 delivery. The growth factor was
incorporated in a PEG-based core surrounded by a PCL shell. In vitro, BMP-2 release followed a linear
correlation of the investigation period of 4 weeks with a release rate of 500 pg per day. In a rabbit
critical-size calvarial defect model, BMP-2 delivery by this nanofiber-based approach enhanced bone
repair after 12 weeks in comparison to empty defects and unloaded scaffolds [134]. Boerckel and
coworkers compared the bone formation after application of their BMP-2-loaded alginate hydrogel,
being filled in the bone defect after covering the defect ends with a nanofiber mesh, with clinically
used BMP-2-absorbed collagen sponges. In critical-size rat femoral defects, BMP-2 release of the
nanofiber-alginate scaffold was slower than growth factor release from collagen sponges and resulted
in enhanced bone formation and mechanical strength after 12 weeks [135]. The studies mentioned
above underline that drug-loaded nanofibers are suitable for bone regenerative applications, especially
if the nanofibers are embedded in a dual compound scaffold.

2.2.4. Particles

Nanoparticles or microspheres were often incorporated into bone scaffolds to modulate mechanical
scaffold properties and drug release kinetics based on their size [36]. In literature, several in vitro
and in vivo studies on nanoparticles as drug carriers have been summarized [136,137]. For instance,
Cao and coworkers investigated the bone regenerative potential of BMP-2-loaded chitosan-based
nanoparticles in a critical-size radial defect model. The release kinetics follow an initial burst
due to swelling properties, followed by a gradual release based on degradation. To reduce the
initial burst release, these nanoparticles were incorporated in a gelatin hydrogel network. In rabbits,
the BMP-2-loaded nanoparticles being incorporated into a hydrogel improved bone repair in comparison
to hydrogel-encapsulated BMP-2 after 12 weeks [138]. Similarly, Zhou and coworkers focused on
BMP-2 delivery systems. The authors loaded the surface of hydroxyapatite microspheres having
a fibrous nanostructure with BMP-2 and determined sustained release kinetics over several days
in vitro. Furthermore, this delivery approach promoted bone healing in rat femoral defects over an
investigation period of 8 weeks [139]. Li and coworkers compared the bone forming properties after
application of polyurethane scaffolds being directly loaded with BMP-2 and polymeric implants with
incorporated PLGA microspheres encapsulating BMP-2 (2 µg/scaffold). Encapsulation of BMP-2 within
the microspheres reduced the burst release depending on the size and composition of the microspheres,
but the scaffolds incorporating BMP-2 directly showed the most promising effect on bone formation in
rat femoral defects after 4 weeks. Therefore, the authors suggested the burst release of BMP-2 followed
by a sustained release to be essential in bone healing processes [140]. Another method for establishing
a drug delivery system was used by Rahman and coworkers. The authors loaded PLGA-PEG particles
with BMP-2 (1 µg/scaffold) and sintered a solid scaffold afterwards. In this study, BMP-2 was released
over 3 weeks in vitro reflecting sustained release kinetics. In a mouse calvarial defect model being
investigated over 6 weeks, the mentioned BMP-2 delivery approach resulted in enhanced bone formation
of more than 30% in comparison to unloaded scaffolds and empty defects [141]. Chung and coworkers
investigated a drug delivery system consisting of a heparin-functionalized nanoparticle-fibrin gel
with incorporated BMP-2 (4 µg/scaffold). A sustained BMP-2 release over at least 2 weeks was visible
in vitro and resulted in enhanced rat calvarial critical-size defect healing after 4 weeks [142]. On the
contrary, particulate drug delivery approaches can also not be beneficial for bone repair as shown in
a study by Henslee and coworkers. The authors established a dual compound scaffold comprising
PLGA microparticles with adsorbed BMP-2 and a surrounding solid, porous polymeric scaffold for
structural support. The incorporation of BMP-2-loaded microspheres within a surrounding scaffold is
supposed to reduce burst release and ensure sustained release kinetics. In a critical-size rat femoral
defect model; however, this BMP-2 delivery system did not result in accelerated fracture healing over
an investigation period of 12 weeks. The authors suggested that the solid scaffold could be, on the one
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hand, a physical barrier for bone forming cells hindering migration and gap closure and, on the other
hand, a barrier for optimal BMP-2 delivery, whereby BMP-2 is needed especially in early bone healing
phases and a delay might be disadvantageous [143]. Regarding growth factor delivery by particular
carriers, Link and coworkers loaded microparticles comprising calcium phosphate and gelatin with
TGF-ß (250 ng/scaffold). According to the authors, the TGF-ß delivery approach is supposed to
have sustained release kinetics. However, no significant improvement of bone strength or bone
formation was obvious 12 weeks after implantation in rabbit femoral defects comparing TGF-ß-loaded
microparticles with empty composite carriers [144]. Lee and coworkers loaded collagen-chitosan
microgranules with TGF-ß (100 ng/20 mg microgranules) and proved enhanced bone healing in a rabbit
calvarial defect model after 4 weeks [145]. Several investigators including Patel and coworkers as well
as Ennett and coworkers studied the release kinetics of VEGF from microparticles being incorporated
in polymeric scaffolds in vitro and in vivo. Consequently, both crosslinking degree of the encapsulated
microparticles and composition of the surrounding scaffold defines the release kinetics and modulates
the initial burst [146,147]. This reflects that in a dual compound drug delivery system variation of each
structural component influences release kinetics of the encapsulated drug decisively.

Khajuria and coworkers combined hydroxyapatite and zoledronate in a nanoparticulate delivery
system to address bone formation and suppress bone resorption, respectively. Hydroxyapatite
nanoparticles adsorbed zoledronate with a loading efficiency between 28% and 52%. In vitro, this
drug delivery approach elicits burst release kinetics as over 60% of the incorporated drug was released
after one hour. Nevertheless, zoledronate delivery improved bone properties compared to sole
administration of hydroxyapatite or zoledronate in an osteoporotic rat model being investigated over
3 months [148]. Garrett and coworkers incorporated lovastatin in polymeric nanobeads. The authors
showed a constant release of lovastatin with 25% cumulative release over 10 days in vitro. In vivo, this
drug delivery approach improved bone healing and strength in a rat femoral model after 4 weeks [149].
In comparison, the lovastatin delivery system of Yoshii and coworkers exhibits faster release kinetics
in vitro. Their drug delivery approach comprised lovastatin-loaded microparticles (2833 µg/cm3

defect) being incorporated into a polymeric scaffold and about 80% of lovastatin was released after
5 days. Furthermore, in a critical-size rat femoral bone defect model the drug delivery approach
enhanced bone formation after 8 weeks [150]. Tai and coworkers investigated PLGA-hydroxyapatite
microspheres loaded with simvastatin (3 or 5 mg/scaffold) in terms of bone healing within 4 weeks.
Simvastatin showed a burst release at day one followed by a sustained delivery over 2 weeks in vitro.
The authors suggested diffusion of the surface-adsorbed simvastatin to be responsible for the initial
burst. In a murine gap fracture model, this drug delivery approach displayed bone regenerative
potential [151]. Nyan and coworkers investigated tricalcium phosphate particles adsorbed with
simvastatin (loading efficiency of 93.4 ± 5.8%). About 25% of the incorporated simvastatin was
released within one day followed by a sustained release over 2 weeks. In vivo, this drug delivery
system improved bone healing of rat calvarial defects after 21 days [152]. A hybrid drug delivery
system was also in the focus of investigation by Lourenço and coworkers. The authors incorporated
strontium-loaded hydroxyapatite microspheres within an alginate hydrogel also containing strontium.
As strontium is present in both components of the drug delivery system, the authors supposed
strontium to be released with different release kinetics over long periods. In vivo, strontium delivered
by this approach over 60 days promoted bone formation in a critical-size femoral defect [153].
Das and coworkers investigated polymeric microspheres with incorporated FTY720. Within this
study, different microsphere compositions reflecting fast-degrading and slow-degrading scaffolds
were studied. The scaffold composition of the slow-degrading microspheres was more hydrophobic
than the fast-degrading ones, with the slow-degrading microspheres having faster release kinetics
in comparison to fast-degrading microspheres. The authors suggested a surface-near position of
FTY720 within the hydrophobic slow-degrading microspheres to be responsible for the faster release.
In a critical-size cranial defect model, FTY720-loaded microspheres enhanced bone formation over
an investigation period of 9 weeks [154]. In a similar study, polymeric films were loaded with
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microspheres encapsulating the sphingosine 1-phosphate receptor agonists FTY720 or VPC01091
(Figure 5). These dual compound scaffolds were implanted for 6 weeks in critical-size rat cranial defects.
In vivo, the drug delivery approach enhanced both bone formation and angiogenesis [155]. Wang and
coworkers dealt with polymeric nanoparticles having a bone-targeting moiety for site-directed delivery
of a GSK-3ß inhibitor XXVII (Figure 6). Inhibition of glycogen synthase kinase-3β (GSK-3β) activates
Wnt/β-catenin signaling and, by this, regulates both osteoblast and osteoclast differentiation [156].
In terms of drug release, the drug delivery system showed higher GSK-3ß inhibitor release rates at
lower pH compared to physiological pH over several days. In transgenic mice, these functionalized
nanoparticles accumulated at the bone fracture and led to increased bone mineralization and formation
after 4 weeks [157]. Additionally, other GSK-3 inhibitors like 603287-31-8 or AZD2858 could be
promising adjuvant drugs, whereas their bone regenerative potentials have so far only been shown
after oral administration or subcutaneous injection [22]. Particles as drug delivery systems provide
a huge variety and tunability regarding composition, size, or functionalization with bone-targeting
moieties and, by implication, drug loading, and release kinetics, too.

Figure 6. Chemical structure of selected enzyme inhibitors. GSK-3ß is a key enzyme of the Wnt/ß-catenin
pathway and inhibition results in cytosolic accumulation of ß-catenin and further transcription of
target genes promoting bone formation. Proteasome inhibitor bortezomib, mainly used in treatment
of multiple myeloma, hinders proteasomal degradation of ß-catenin leading to the effects mentioned
above. Furthermore, phosphodiesterase-4 inhibitors are anti-inflammatory agents and stimulate cellular
proliferation as well as differentiation due to accumulated cGMP (cyclic guanosine monophosphate)
and protein kinase G-mediated downstream signaling.

2.2.5. Liposomes and Micelles

Liposomes and micelles as drug carriers can easily be designed to target bone defects specifically to
increase drug efficacy and reduce undesired side effects. Therefore, liposomal or micellar surfaces are
decorated with several bone-targeting moieties. For instance, bisphosphonates and peptides made out of
negatively charged amino acids are able to bind to bone matrix component hydroxyapatite [18,23,158–161].
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A bone-targeting drug delivery strategy by Xie and coworkers deals with PEG-based micelles shielding
encapsulated atorvastatin (Figure 3). Drug release in this approach comprises an initial burst (up to
12 h) followed by decelerated release kinetic (up to 48 h). In osteoporotic rats, the authors depicted both
an improved bone mineral density and mechanical strength resulting after a 12 week treatment with
atorvastatin-loaded micelles [162]. For administration of water-insoluble drugs like simvastatin, Tanigo
and coworkers developed a drug delivery system combining statin micelles together with a gelatin
hydrogel. Simvastatin release proceeded in a sustained manner over 2 weeks due to dependency of
drug delivery on unspecific gelatin degradation by collagenases. In vivo, the released simvastatin
led to an accelerated bone formation in a rabbit mandibular model after 5 weeks [163]. Furthermore,
Low and coworkers used an aspartic acid octapeptide as bone-targeting moiety and delivered a
GSK3β inhibitor by micelles within 2 days. Treatment of femoral fractures with this drug delivery
approach resulted in increased bone mineral density and bone volume due to upregulated β-catenin
level [164,165]. In contrast, liposomal drug delivery can also be detrimental on bone healing as shown
by Lin and O’Connor. The authors detected impaired fracture healing of femoral defects after treatment
with clodronate-encapsulated liposomes (Figure 2) over an investigation period of 28 days [166].
Liposomes or micelles are suitable site-directed drug carriers, particularly for water-insoluble drugs
due to surface-decorated bone-targeting moieties.

Besides positive effects on bone fracture healing through treatment with a bioactive, adjuvant drug,
the major limitation of single drug delivery approaches is targeting a single physiological pathway
in the complex process of bone healing. To improve bone repair and drug efficacy, drug delivery
systems combining the action of several drugs of diverse substance types and classes in an additive or
synergistic way are required. In this way, several cellular or molecular processes can be addressed at
different healing phases by one drug delivery system.

3. Dual Drug Delivery

Most commonly, therapy strategies have focused on drug release of a single compound. However,
bone healing, as a complex process, requires a well-orchestrated interplay of multiple factors at
certain bone repair phases to affect key events like osteogenesis, angiogenesis, and inflammation.
By applying several drugs simultaneously or sequentially, potential synergistic effects might strengthen
bone regeneration. For instance, combining angiogenic and osteogenic signals or anabolic and
anti-resorptive effects are desirable. Kim and Tabata summarized a multitude of dual drug delivery
systems for simultaneous or sequential drug release in vitro and in vivo [167]. The authors concluded
that carrier composition for drug encapsulation, drug ratio as well as time and place have to be
considered to establish an optimal delivery system. Thereby, dual drug loading can rely, for instance,
on layer-by-layer or core-shell strategies (Figure 7) [12,167,168]. In the following part, several dual
drug delivery studies will be described in detail.

3.1. Growth Factors

In the literature, most investigations deal with growth factor co-delivery. Van der Stok and
coworkers filled porous titanium scaffolds with gelatin gels containing BMP-2 (3 µg total dose) and
FGF-2 (0.6 µg total dose). The scaffolds were supposed to release FGF-2 rapidly, whereas BMP-2
delivery was sustained. In rat femoral bone defects, scaffolds loaded with both growth factors enhanced
bone formation compared to unloaded ones after 12 weeks. However, the dual delivery approach
did not significantly improve bone regeneration in comparison to single growth factor delivery [169].
Wang and coworkers made use of FGF-2 and BMP-2 as well. The authors loaded the core and shell
of their microspheres with both growth factors for designed sequential release. The most promising
results in bridging autologous bone grafts in tibial defects were obviously for the delivery system with
BMP-2 in the core and FGF-2 in the shell region. Thereby, FGF-2 was released first within 2 weeks
followed by sustained BMP-2 delivery over 4 weeks [170].
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Figure 7. Exemplary drug loading techniques for simultaneous or sequential drug co-delivery.

Regarding dual delivery of angiogenic and osteogenic molecules, Hernández and coworkers
used polymeric microspheres with incorporated VEGF and BMP-2 within a porous scaffold. In vivo,
delivery of both growth factors showed a gentle burst followed by a sustained release proceeding over
3 to 4 weeks. The authors found only short-term synergistic effects of their dual delivery system by
investigating femoral defects in rabbits. For a more beneficial bone regenerative application, further
optimizations of the co-delivery strategy such as drug ratio have to be considered [171]. In another
strategy to create sequential release profiles, Geuze and coworkers loaded calcium phosphate scaffolds
with microparticles and surrounding gelatin hydrogel determining sustained or fast release, respectively.
Both delivery materials contained either BMP-2 or VEGF. The authors analyzed the impact of different
release profiles on bone formation. In an ectopic and critical-size ulnar defect model followed up for
9 weeks, dual growth factor delivery was beneficial. In contrast to ectopic bone formation, where
BMP-2 timing had an effect, in the critical-size defect no difference in formed bone amount for fast
or slow delivery of both growth factors was obvious [172]. Exploiting the same growth factors and
analogous delivery strategy, Kempen and coworkers fabricated scaffolds containing BMP-2-loaded
microspheres and surrounding VEGF-loaded gelatin hydrogel. The drug carrier released both growth
factors sequentially in vivo. VEGF release showed an initial burst within 3 days followed by sustained
BMP-2 delivery over several weeks. The authors found an improved bone regeneration in case of ectopic
application of this dual delivery approach compared to single treatment, but no significant improvement
in an orthotopic femoral defect model after 8 weeks [173]. In contrast, Sukul and coworkers established
a calcium phosphate-based scaffold loaded with nanocellulose. Within the nanocellulose, VEGF and
BMP-2 were incorporated for dual sustained release. In vivo, this dual drug delivery system enhanced
bone formation in an orthotopic model, whereas no desired effects were obvious in an ectopic model after
4 weeks [174]. Moreover, by analyzing ectopic bone formation, Shah and coworkers found promising
effects of co-delivered BMP-2 and VEGF from multilayered films. In vitro, rhVEGF being part of the
top layer was eluted within 7 days, whereas rhBMP-2 release from the lower layer of the fabricated
scaffold lasts for 2 weeks. In comparison to single BMP-2 release, co-delivery increased bone mineral
density by almost a third after 9 weeks in vivo [175]. Additionally, a variety of in vivo investigations
regarding co-delivery systems analyzed bone regeneration in cranial defects. Studies include dual
delivery of angiogenic VEGF and osteogenic BMP-2 [176–178]. For instance, Subbiah and coworkers
investigated dual compound scaffolds comprising PLGA nanoparticles with encapsulated BMP-2 (80%
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loading efficiency) for fast release and surrounding alginate microcapsules with incorporated VEGF
(40% loading efficiency) for sustained release. In rat cranial defect, this dual drug delivery system
showed synergistic effects and accelerated bone regeneration after 56 days in comparison to single
BMP-2 treatment [178].

Moreover, some investigators have used multilayered coated membranes incorporating BMP-2
in bottom layers and PDGF in top layers for promoted bone repair over 4 weeks in a calvarial defect
model. Both growth factors exhibited sustained release kinetics in vitro and in vivo, whereas PDGF
release in vivo was faster in comparison to BMP-2 as degradation of the coatings proceeds from top
to bottom [179]. Oest and coworkers also investigated dual growth factor delivery approaches. The
authors used polymeric scaffolds with RGD-alginate hydrogels. The hydrogels itself incorporated
BMP-2 (200 ng/50 µL scaffold) and TGF-ß (20 ng/50 µL scaffold). Co-delivery of the mentioned growth
factors resulted in increased bone volume of rat femoral defects after an investigation period of 16
weeks, but did not led to sufficient bone union [180]. Moreover, TGF-ß release combined with IGF
(insulin-like growth factor) seems promising. In rats, implantation of IGF- and TGF-ß-coated titanium
implants enhanced biomechanical stability based on dual growth factor delivery. Especially during
early bone healing phases, growth factor delivery from polymeric coating was beneficial. This was due
to a rapid release of half of the loaded growth factors within the first 2 days [181–183].

Additionally, co-delivery of BMP-2 with SDF-1 (stromal derived factor-1), a chemokine,
could arouse synergistic bone regenerative potential, as shown by Ratanavaraporn and coworkers.
Their chemically crosslinked gelatin-based hydrogel system released the incorporated molecules rapidly
during the first days after implantation due to diffusion mechanisms, followed by a degradation-
dependent delivery over 3 weeks. Comparing release of BMP-2 (300 ng/scaffold) with SDF-1 (500 ng/

scaffold), the authors observed a faster SDF-1 release in the presence of BMP-2 and suggested a stronger
interaction of the gelatin hydrogel with BMP-2 compared to SDF-1. In vivo, the dual delivery improved
bone regeneration of an ulnar critical-size defect in rats after 4 weeks in comparison to single BMP-2
treatment [184]. Sequential delivery of BMP-2 and SDF-1 was also subject of investigation in a study by
Shen and coworkers. The authors fabricated scaffolds with two compounds including BMP-2-loaded
microspheres and a hydroxyapatite-based scaffold functionalized with adsorbed SDF-1. SDF-1 release
followed a characteristically initial burst during the first days, whereas BMP-2 delivery proceeded in
a sustained manner over 3 weeks. In vivo, synergistic effects of both delivered molecules enhanced
bone repair in rat cranial defects 12 weeks after implantation [185]. Zwingenberger and coworkers
found a synergistic effect of SDF-1α (10 µg/scaffold) and low dose BMP-2 (2.5 µg/scaffold) on bone
regeneration in a murine critical-size bone defect model by co-release from heparinized mineralized
collagen type I matrix scaffolds over 6 weeks [186]. Thus, dual delivery of different growth factors to
stimulate osteogenesis and angiogenesis appears to be a promising approach.

3.2. Growth Factors and Bisphosphonates

In addition to dual delivery of angiogenic and osteogenic factors, co-delivery of the most
promising osteogenic growth factor BMP with bisphosphonates addresses several cell types being
important during bone regeneration. To combine anabolic and anti-resorptive effects, Murphy
and coworkers incorporated rhBMP-2 (5–10 µg/scaffold) and zoledronate (2–10 µg/scaffold) into a
collagen–hydroxyapatite scaffold. In vitro, BMP-2 release displayed a characteristic initial burst.
In contrast, the authors suggested a longer retention of zoledronate within the scaffold as the
bisphosphonate has a high binding affinity to the hydroxyapatite compound. Within this approach,
the authors demonstrated an almost 6-fold increased ectopic bone formation by dual delivery of growth
factor and bisphosphonate in comparison to single BMP-2 treatment [187]. Similarly, Yu and coworkers
analyzed the effect of a drug-loaded polymeric scaffold on bone healing up to 8 weeks. In their studies,
the scaffolds contained either BMP-7 and pamidronate or BMP-2 and zoledronate. According to the
authors, PLGA scaffolds delayed drug delivery in comparison to clinically used collagen scaffolds.
Addressing both anabolic and anti-resorptive targets resulted in an enhanced bone formation [188,189].



Pharmaceutics 2020, 12, 428 20 of 39

Gao and coworkers loaded hydroxyapatite-coated titanium implants with zoledronate (1 mg/mL) and
basic FGF (bFGF, 20 µg/mL) to stimulate bone formation and suppress bone resorption simultaneously.
In vitro, scaffolds with single drug coating exhibited burst release kinetics especially during the
first 3 days. In comparison, initial burst release of the adsorbed bisphosphonate and growth factor
from scaffolds with both drugs was reduced. In osteoporotic rats, combined local administration of
zoledronate and bFGF by this coating approach resulted in accelerated bone formation and mechanical
strength compared to single drug coatings after 3 months [190].

3.3. Growth Factors and Enzyme Inhibitors or Receptor Agonists

In further ectopic bone formation experiments, Tokuhara and coworkers, as well as Toyoda and
coworkers, used PEG implants for drug delivery and proved beneficial effects regarding combined
release of rhBMP-2 and rolipram (phosphodiesterase-4 inhibitor, Figure 6) or a prostaglandin receptor
agonist, respectively [191,192]. Furthermore, simultaneous delivery of a prostaglandin E2 receptor
agonist and BMP-2 being incorporated in a hydrogel accelerated bone formation in murine calvarial
defects [193]. In contrast, Li and coworkers developed a drug delivery scaffold for sequential delivery
of the glucocorticoid dexamethasone (Figure 8) and BMP-2. Thereby, BMP-2 was encapsulated in
nanoparticles and a surrounding polymer contained dexamethasone resulting in different release
kinetics. More precisely, dexamethasone delivery proceeded over 7 days, whereas BMP-2 release
lasted for 4 weeks. In vivo, delivery of osteogenic BMP-2 and anti-inflammatory (antiphlogistic)
glucocorticoid resulted in enhanced bone repair of rat calvarial defects compared to single treatment
approaches over an investigation period of 12 weeks [194]. Furthermore, delivery of small molecule
drugs and chemokines like SDF-1 are in focus of bone healing research. In vivo, co-delivery of
simvastatin with SDF-1 from PLGA scaffolds promoted bone formation in murine critical-size calvarial
defects after 6 weeks in comparison to single drug treatments [195,196]. Additionally, Kim and
coworkers investigated bone formation in rat critical-size bone defects after application of gelatin
hydrogels incorporating SEW2871-loaded micelles and platelet-rich plasma (PRP). Both molecules
were released in vivo within 7 days due to gelatin degradation. In terms of bone repair, sphingosine
1-phosphate receptor agonist SEW2871 (Figure 5) alone was not sufficient, but the dual delivery
approach resulted in accelerated bone healing 6 weeks after implantation [197].

Figure 8. Chemical structures of selected anti-inflammatory drugs. Both glucocorticoids and NSAIDs
are inflammation-modulatory small molecules inhibiting cyclooxygenase isoforms and prostaglandin
production. These drugs mainly impair bone repair, as prostaglandins are crucial during early bone
healing phases.

3.4. Growth Factors and Antibiotics

In addition to improving bone healing in principle, therapy approaches should also combat
adverse infections hindering appropriate regeneration of critical-size bone defects. For example,
Min and coworkers designed implant coatings for combined delivery of antibiotics and osteoinductive
factors. Within this strategy, coatings of an orthopedic implant contained BMP-2 in the lower layer for
sustained release and the aminoglycoside antibiotic gentamicin (Figure 9) as the top layer for burst
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release. In a rat tibia model studied for 8 weeks, the authors proved the antibiotic and osteoinductive
effects of their dual delivery system [198]. Furthermore, combinations of antibiotic agents with other
small molecule drugs are possible. For instance, calcium phosphate-based carrier released antibiotic
tetracycline (Figure 9) together with anti-inflammatory ibuprofen (Figure 8) by burst release kinetics
resulting in accelerated bone formation in rat cranial defects after 12 weeks compared to controls
without a drug carrier [199].

Figure 9. Chemical structures of selected antibiotics. Gentamicin prevents bone infections, whereas
tetracycline inhibits osteoclast differentiation and displays a high affinity to bone minerals as well.

3.5. Growth Factors and Cells

Besides co-delivery of several molecules, the research focus of bone healing strategies is also on
cell-based therapy approaches. Decambron and coworkers analyzed the bone regenerative effects of
mesenchymal stem cells and BMP-2 being co-delivered from calcium-based scaffolds. The authors
adsorbed BMP-2 in low dose onto the scaffold, but did not determine the protein release kinetics.
In vivo investigations focused on bone repair using a sheep model. This co-delivery approach tended
to result in accelerated bone formation in comparison to single cell or BMP-2 application, respectively.
However, only half of the bone defects were healed, demonstrating the necessity of further improving
the drug delivery strategy [200]. On the contrary, the study by Kirker-Head and coworkers showed
enhanced bone regeneration of rat critical-size femoral defects after application of BMP-2 and human
mesenchymal stem cells loaded on silk scaffolds as well as cell-free scaffolds [201]. Some investigations
went a step further towards co-delivery of cells and several growth factors to address diverse therapeutic
targets. Thereby, Kanczler and coworkers seeded bone marrow stromal cells (BMSCs) on scaffolds
comprising osteogenic BMP-2 and angiogenic VEGF. Concerning sequential drug release, the authors
fabricated a dual compound scaffold. In terms of scaffold composition, VEGF was encapsulated
within alginate fibers for fast release kinetics, which in turn were embedded in polymeric BMP-2
carrier for decelerated delivery of the second growth factor. In a critical-size femoral defect model, the
authors showed enhanced bone formation upon dual delivery approach of BMSCs and both growth
factors in comparison to empty scaffold and cell-free scaffold [202]. Simmons and coworkers also
followed dual growth factor release combined with cell delivery in their investigations. The scaffolds
contained additional rhBMP-2 and rhTGF-ß3 without designed release kinetics. The authors found
accelerated bone healing regarding dual delivery of growth factors in comparison to single treatment
approaches after application of the BMSC-containing alginate hydrogels ectopically to mice [203].
Furthermore, mixtures of multiple physiologically occurring growth factors derived from adipose
tissue, PRP and conditioned medium from hypoxia-treated human telomerase immortalized BMSCs
have a high bone-regenerative potential in first in vitro investigations [204]. These mixtures may
lead to a synergism between chemoattractive potential and osteogenic and angiogenic differentiation
capacity of the angiogenic proteins and cytokines.

In general, dual delivery approaches seem to be very promising due to targeting several key
aspects in bone healing. Further optimizations of these systems have to be considered with regard to
drug ratio, release kinetics or spatiotemporal delivery patterns.
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4. Triggered Drug Delivery

During crucial bone healing phases, controlled drug release as a response to a certain stimulus at
a defined time point represents an improvement of current therapy strategies. Triggered drug delivery
reduces the initial burst release, which is typical for diffusion-dependent drug release. On-demand
release kinetics optimize drug specificity, quantity, and reduce drug toxicity. The physiological
environment including active enzymes and pH, or external stimuli like temperature, physical fields,
light, or ultrasound (Figure 10), are feasible triggers in designed drug delivery systems [12,35,205–215].

Figure 10. Exemplary targeted drug delivery approaches based on internal or external stimuli.

4.1. Proteolytic Enzymes

The introduction of specific peptide sequences as enzymatically cleavable linkers into scaffold
compounds enables protease-mediated or site-directed degradation-dependent drug release. For
instance, matrix metalloproteases (MMPs) are key enzymes involved in several bone healing phases and
MMP cleavage sites are interesting features for designing smart drug carriers. Garcia and coworkers
used hydrogels containing a VPM-sequence (VPMS↓MRGG) for protease-dependent drug delivery.
The authors studied VEGF-loaded PEG-based hydrogels having additional integrin-specific peptide
sequences. VEGF was covalently bound to the hydrogel network to ensure degradation-dependent
release kinetics. In vitro, treatment with collagenase eluted VEGF within 2 days, but the authors
supposed longer drug release properties in vivo. In a murine critical-size radial bone defect model,
controlled VEGF release increased vascularization and bone formation dependent on the integrated
integrin structure after 8 weeks [216]. In rat calvarial defects, Kim and coworkers showed enhanced bone
regeneration after application of hyaluronic acid-based hydrogel. These hydrogels were MMP-sensitive,
as they comprised an MMP cleavage site (GCRDGPQG↓IWGQDRCG). Furthermore, the hydrogel
network contained BMP-2 (800 ng/construct) for local drug release and stem cells (8× 105 cells/construct).
Application of this drug delivery system improved bone formation based on an assumed synergistic
interplay of BMP-2 and stem cells after 4 weeks [217]. Lutolf and coworkers incorporated the
same MMP-cleavable sequence in a PEG-based hydrogel. In their study, the authors showed an
MMP-2-triggered BMP-2 (5 µg/defect) release and accelerated bone healing of rat critical-size cranial
defects 5 weeks after implantation [218]. Similar findings were also shown in a study by Terella
and coworkers, whereas another cleavable MMP linker sequence (KKCGGPQG↓IAGQGCKK) was
used [219].

In addition to MMP-sensitive sequences, several studies investigated enzymatically triggered drug
release based on the introduction of other protease-cleavable linker. For instance, Hsu and coworkers focused
on PEG-based hydrogels including a cathepsin K-degradable linker (GGGMGPS↓GPWGGK). The protease
is highly expressed in osteoclasts shifting hydrogel degradation and degradation-dependent drug
release towards later bone-related processes like bone remodeling. By using cathepsin K in vitro,
the authors showed rapid degradation and release kinetics within 24 h. In contrast, collagenase
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treatment delayed degradation indicating a cathepsin K-selective drug release. Furthermore, cell
culture experiments proved the osteoclast-specific response towards this hydrogel system. Therein, the
hydrogel was degradation-resistant against osteoblasts, but osteoclasts were feasible to degrade it [220].
Pan and coworkers studied another cathepsin K-sensitive peptide linker (Gly Gly Pro-Nle-alcohol
moiety; GGPJ↓-alcohol moiety) within a bone-targeting, acrylamide-based polymer for prostaglandin
E1 (PGE1) delivery. PGE1, a physiologically active eicosanoid having diverse hormone-like effects,
is used as an anabolic drug to support bone formation and is only biologically active, when being
released from the polymer in this delivery system. Thereby, PGE1 release kinetics depend on the
PGE1-containing side chains according to the cathepsin K assay [221]. The authors also investigated
the effect of their drug delivery system on bone formation in an ovariectomized rat model. The release
of bioactive PGE1 resulted in higher bone mineral densities after 4 weeks [222]. In another approach,
delivery of simvastatin from self-assembled PEG-based micelles was in focus. In vivo, the micelles
are supposed to target the bone defect site and release conjugated simvastatin due to hydrolysis of
ester bond linkages. The authors showed a gradual release of simvastatin and concomitant promotion
of bone healing in femoral fractures after 21 days [223,224]. Taken together, the introduction of
enzymatically cleavable linker within the scaffolds are promising strategies for targeted drug delivery
with several proteases and linker sequences being available.

4.2. Redox Environment

A redox-triggered drug delivery approach based on the cellular microenvironment could be
another interesting stimulus for controlled drug release. Yang and coworkers examined the impact
of disulfide-containing PEG-based scaffolds with incorporated rhBMP-2 (50 µg/scaffold) on bone
healing. In this drug delivery approach, oxidative stress produces glutathione, which triggers scaffold
degradation. The degradation profile was dependent on redox and polymer concentration, resulting in
a tunable degradation from several minutes up to several weeks. To simulate drug release in vitro,
the authors used bovine serum albumin as model compound and detected an initial burst release
within 4 days, with higher polymer concentrations retarding the release kinetics up to 3 weeks. In vivo,
the impact of the sustained rhBMP-2 release resulted in an improved bone repair and union of rabbit
radial critical defects after 12 weeks [225]. Likewise, Gong and coworkers took advantage of the
glutathione-mediated drug delivery mechanism. The authors investigated redox-sensitive nanofibers
for BMP-2 delivery. As with the former investigation, in vitro BMP-2 release followed burst release
kinetics and accelerated bone regeneration in a rat mandibular defect model after 12 weeks due to
redox-triggered BMP-2 release was confirmed [226]. However, only a few investigations have focused
on redox-sensitive drug delivery approaches in terms of bone healing so far.

4.3. pH Alteration

To remain in the field of microenvironmental stimuli, site-directed drug delivery based on pH
alterations at a cellular level represents an attractive research approach. Within a complex and
challenging drug delivery strategy, Gan and coworkers developed a pH-responsive drug delivery
system based on chitosan-functionalized mesoporous silica nanoparticles. The system serves for dual
release of BMP-2 (15 µg/scaffold) and dexamethasone (20 µg/scaffold), which were non-covalently
bound to the chitosan coating or encapsulated within the nanoparticles, respectively. Dexamethasone
is a glucocorticoid and operates as anti-inflammatory drug, but also might evoke detrimental effects
of steroid administration on bone regeneration. In a physiological context, the chitosan-coated
nanoparticles are supposed to elute BMP-2 quickly in the cytosol, whereas encapsulated dexamethasone
is intended to be released in a controlled manner after efficient endocytosis into cells and at a more
acidic pH value within lysosomes. The dual delivery strategy addresses optimal accessibility of
membrane-bound BMP-2 receptors and intracellular glucocorticoid receptors for activating different
signaling pathways synergistically. Moreover, this delivery approach might prevent time- and
concentration-dependent adverse effects of dexamethasone treatment. The authors found an initial
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burst release within 12 h for the surface immobilized BMP-2 and pH-dependent release kinetics for
dexamethasone. The nanoparticles eluted dexamethasone within 1 h, when bringing the system in a
slight acidic pH around 6.0, but no drug was released in neutral pH. Therefore, pH-dependent opening
and closing of the mesopores for several cycles switched drug release. Besides stimulating osteoblast
differentiation in vitro, the application of the described drug delivery approach also enhanced ectopic
bone formation in vivo after 4 weeks [227].

4.4. Temperature

In addition to internal triggers, external stimuli, like temperature, are also in the focus of
research for targeted drug delivery in terms of bone regeneration. López-Noriega and coworkers
described an approach using drug-containing thermo-sensitive liposomes being covalently linked to
an osteoconductive collagen-hydroxyapatite scaffold. A thermal pulse of 42 ◦C stimulated on-demand
release. The stimulus introduced a phase transition of the liposome membrane and, in consequence
of membrane permeabilization, an altered drug release up to 5-fold increase was achieved. In vitro,
a third of loaded osteogenic protein PTHrP (parathyroid hormone-related protein) was released rapidly
reflecting the amount of surface-adsorbed peptide. According to the authors, a slow PTHrP release
over 14 days followed burst release due to peptide leakage from liposomes under standard cell culture
conditions. Upon this thermo-responsive drug delivery approach, PTHrP was still bioactive [228].
In a second thermo-responsive approach, Reis and coworkers reported a controlled drug delivery
from nanoparticle-based coatings. The authors incorporated bortezomib (Figure 6) as model drug in
their coating and analyzed the release kinetics by in vitro investigations. Bortezomib is a proteasome
inhibitor and a potential drug for therapy of bone fractures in the context of bone-affecting neoplasias
such as multiple myeloma, as the drug can block inhibitors of the Wnt signaling, a crucial pathway
in promoting bone formation. Similar to the first investigation, the authors found an initial burst
release of adsorbed bortezomib followed by a gradual elution over 2 days. With a thermal stimulus of
42 ◦C, bortezomib release was accelerated due to conformational changes of the thermo-responsive
coating [229]. Regarding thermally triggered drug release for bone regeneration, in vivo investigations
are still lacking.

4.5. Near-Infrared Light Irradiation

As another external stimulus, light application can tune drug release kinetics of a respective drug
carrier. In principle, near-infrared light absorbed by appropriate materials such as black phosphorus
and following light-to-heat conversion is probably suitable for triggered drug delivery systems.
For example, Wang and coworkers investigated a light-triggered strontium release based on a PLGA
scaffold containing black phosphorus and strontium chloride in terms of bone regeneration. Strontium
promotes osteoblast differentiation, bone fracture healing, and improves mechanical strength as well
as inhibits osteoclast-dependent bone resorption. Upon this approach, strontium showed an initial
burst release and subsequent elution within 4 weeks. By applying this drug delivery strategy in vivo,
the authors proved an accelerated bone regeneration of rat femoral defects after 8 weeks [230].

4.6. Physical Fields

Other external stimuli including magnetic and electric fields are in the focus of scientific
research regarding the development of controlled drug delivery strategies. With respect to magnetic
field-induced drug release, Aw and coworkers developed titanium nanotube arrays including polymer
micelles as drug delivery systems. In their methodological study, the authors showed a sequential
release of a hydrophobic drug (indomethacin, Figure 8) and a hydrophilic drug (gentamicin) hereinafter.
The nanotube array released indomethacin, a potent antiphlogistic drug, and antibiotic gentamicin
independently over 10 days. The release kinetics for each individual release duration of 5 days
displayed a burst release followed by residual diffusion [231,232]. Using magnetically triggered drug
release, Matsuo and coworkers investigated injectable magnetic liposomes to deliver BMP-2 (3 µg
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total dose). To treat bone defects in a rat model over 9 weeks, the authors implanted a magnet and
applied BMP-2 loaded liposomes topically. In vivo, the targeted BMP-2 delivery approach, being
applied in early bone healing phases, enhanced bone formation in comparison to topical BMP-2
administration [233]. In addition to magnetic stimuli, studies report on electrically responsive drug
delivery systems. Microreservoires made out of a conductive polymer deliver dexamethasone in
response to an electric trigger. For electrically stimulated drug release, the authors applied voltage cycles
between −1 V and +1 V. Besides a passive drug diffusion of small dexamethasone amounts starting
after 50 h, the electric stimuli triggered an abrupt release. The on-demand release of dexamethasone
resulted in enhanced osteogenic differentiation in in vitro experiments [208].

4.7. Ultrasound

For tunable on-demand drug delivery, ultrasound-triggered systems represent another possible
tool. Crasto and coworkers used sono-disruptable liposomes for controlled BMP-2 delivery. In a
proof-of-principle study, the authors trapped BMP-2 within liposomes and BMP-2 release as a response
to ultrasound exposure followed fast release kinetics. Moreover, the drug delivery system enhanced
ectopic bone formation 28 days after implantation in a murine model [234].

Triggered delivery systems (Table 2) are advantageous with respect to time-specific drug
release to address critical bone healing processes precisely. In particular, investigations of external
triggered delivery approaches remain in experimental setups so far and evidence in substantial in vivo
studies are lacking [34]. Nevertheless, protease-mediated drug delivery approaches already show
promising results.

Table 2. Overview of representative studies providing kinetic data obtained from use of single or dual
compound delivery systems and passive or triggered drug release.

Drug Delivery
System

Single (S) or Dual
(D) Compound Drug Release Kinetics

Passive (P) or
Triggered (T)

Release
Ref.

Growth factors

calcium phosphate
ceramics S co-precipitation: 40%, adsorption: 80%

(VEGF after 4 days in vitro) P [57]

PLGA scaffolds S
unconjugated scaffold: 100% within 4 h,

heparin-conjugated scaffold: 100% after 21 days
(BMP-2 in vitro)

P [78]

chitosan-silica
membranes S hybrid membrane: 1.5 µg/mL, chitosan membrane:

<0.5 µg/mL (BMP-2 in vitro) P [84]

gelatin hydrogel S reduced water content resulted in a longer BMP-2
retention in vivo P [120,121]

silk hydrogel S 1% silk: 35%, 2% silk: 15% (BMP-2 day 1 in vitro) P [122]

PLGA-based fibrous
scaffold S

absorption: burst (80% BMP-2 within 1 week),
encapsulation: sustained release (80% BMP-2 after

35 days in vitro)
P [133]

nanofibrous
membranes S 500 pg/day BMP-2 release rate (in vitro) P [134]

core-shell
microspheres D

core: 80% within 24 days,
shell: 80% within 6 days (BMP-2 and FGF-2

in vitro)
P [170]

PLGA microspheres
within porous PLGA

cylinder
D 20% (BMP-2) or 10% (VEGF) remaining (14 days

in vivo) P [171]

PLGA microspheres
within gelatin hydrogel D microspheres: <20% BMP-2 after 30 days,

hydrogel: >70% VEGF within 7 days (in vitro) P [173]

calcium phosphate
scaffold loaded with

nanocellulose
D

single drug carrier: 3.19% BMP-2 and 7.91% VEGF,
dual drug carrier: 3.67% BMP-2 and 4.68% VEGF

(day 1 in vitro)
P [174]

PLGA nanoparticles
and alginate

microcapsules
D sequential release: 100 ng within 4 days (BMP-2)

and 14 days (VEGF) in vitro P [178]

PLA-coated implants D 54% IGF-I and 48% TGF-β1 within 48 h (in vitro) P [183]
gelatin hydrogels D 70–80% SDF-1 and 45–55% BMP-2 (day 1 in vivo) P [184]
silk microspheres

within hydroxyapatite
scaffold

D BMP-2 adsorption: >80% within 7 days, BMP-2
encapsulation: >60% within 14 days (in vitro) P [185]
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Table 2. Cont.

Drug Delivery
System

Single (S) or Dual
(D) Compound Drug Release Kinetics

Passive (P) or
Triggered (T)

Release
Ref.

heparinized
mineralized collagen

type I matrix scaffolds
D 4–10% BMP-2 and ~0.5% SDF-1α of loaded growth

factors released after 6 weeks in vitro P [186]

alginate fibers within
PLA polymer D sequential release: 2500 pg/mL after 2–3 weeks

(BMP-2) and 28 days (VEGF) in vitro P [202]

PEG-hydrogel S VEGF release and scaffold degradation within 2–3
days (50 µg/mL collagenase in vitro) T [216]

sono-disruptable
liposomes S 30 s: 5 µg/mL, 60 s: 7 µg/mL (BMP-2, 1 MPa,

in vitro) T [234]

Hormones

layered scaffold S daily pulsatile PTH release over 21 days (in vitro),
98.5% loading efficiency P [76,77]

thermo-sensitive
liposomes S stimulus at day 3: >20%, stimulus at day 8: <10%

(PTHrP, 42 ◦C in vitro) T [228]

Bisphosphonates

collagen sponge S 50% ibandronate after 50 h
(in vitro) P [43]

calcium phosphate
scaffolds S

1 mg/scaffold: 31.33% ± 1.58%, 5 mg/scaffold:
7.99% ± 0.08% (alendronate, within 1 day in vitro),

>72% loading efficiency
P [65]

hydroxyapatite-coated
titanium implants S

burst release order: zoledronate > ibandronate >
pamidronate

(within 7 days in vitro)
P [104]

PLA-calcium
phosphate-coated
magnesium-based

alloys

S
14% within 3 days: diffusion, up to 27% within 4

weeks: degradation of implant coating
(zoledronate, in vitro)

P [110]

hydroxyapatite
nanoparticles S

>60% zoledronate after 1 h
(in vitro),

loading efficiency between 28.15 ± 4.78% and
52.14 ± 8.47%

P [148]

hydroxyapatite-coated
titanium implants D

dual drug loading reduced initial burst compared
to single drug coating by almost 40% at day 1

(zoledronate and bFGF, in vitro)
P [190]

redox-sensitive
nanofibers S ~20% BMP-2 release by stepwise increase in

glutathione concentration (in vitro) T [226]

Glucocorticoids

nanoparticle-embedded
electrospun nanofiber D BMP-2: 30% after 300 h, dexamethasone: 30%

within 100 h (in vitro) P [194]

polypyrrole-filled
electrically responsive

microreservoires
S ~20% dexamethasone release by each stimulus

(voltage cycles between −1 V and +1 V in vitro) T [208]

chitosan-functionalized
mesoporous silica

nanoparticles
D pH 6.0: 80% after 50 min, pH 7.4: 10% after 80 min

(dexamethasone, in vitro) T [227]

NSAIDs

micelle-loaded titania
nanotube arrays D

sequential release due ratio of micelle
(hydrophobic indomethacin) to inverted micelle

(hydrophilic gentamicin) (in vitro)
T [231]

Prostaglandin E2 receptor agonist

PEG nanogel D ~30% released within 30 min, ~70% remained for 7
days (prostaglandin E2 receptor agonist, in vitro) P [193]

Enzyme inhibitors

micelles S >50% GSK3β inhibitor in 5 h (in plasma at 37 ◦C) P [165]
polyelectrolyte

particulate coating S ~50% bortezomib release at stimulus (42 ◦C
in vitro) T [229]

Sphingosine 1-phosphate receptor agonists

PLGA-coated
allografts S 0.57 mg FTY720 released in 14 days in vitro;

64% loading efficiency P [92]

polymeric
microspheres S

slow-degrading (more hydrophobic): >25%,
fast-degrading: <10% (FTY720, after 20 min

in vitro)
P [154]
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Table 2. Cont.

Drug Delivery
System

Single (S) or Dual
(D) Compound Drug Release Kinetics

Passive (P) or
Triggered (T)

Release
Ref.

Statins

calcium sulfate
scaffolds S >70% BMP-2 after 14 days in vitro (higher loading

reduced release rate) P [58]

polyurethane scaffolds S

almost linear trend
200 µg/g foam: 20%,

20 µg/g foam: 10% (lovastatin, after 30 days
in vitro)

P [73]

PLGA membranes S 1 µg/day release rate (fluvastatin, in vitro) P [75]

PCL nanofibers S absorption: burst, incorporation during fabrication:
sustained release (simvastatin) P [85]

PLGA-PEG hydrogel S >50% simvastatin after 2 days (in vitro) P [115]
PLGA-hydroxyapatite

microspheres S >20% simvastatin after 1 day (in vitro) P [151]

PEG-based micelles S 60% atorvastatin after 10 h (in vitro) P [162]

Metal ions

PLGA scaffold
containing black

phosphorus
S 10 s: 37%, 300 s: 45% (strontium, light irradiation) T [230]

Antibiotics

calcium phosphate
carrier D

calcium-deficient hydroxyapatite: 70% loading
(50% tetracycline release after 20 h),

hydroxyapatite: 55% loading (50% tetracycline
release in 5 h in vitro)

P [199]

5. Conclusions

Numerous targeted drug delivery approaches have been employed to enhance bone healing.
Smart scaffolds should provide structural and biological features according to the ‘diamond concept’
to reduce adverse side effects and increase local drug efficacy. For designing drug delivery implants,
a variety of natural and synthetic polymers, or hybrid compounds, that showed promising results in vivo
are available. These drug carriers can be fabricated in different formulations such as drug-eluting implant
coatings, hydrogels, particles, fibers, or dual compound systems. Moreover, bone-targeting properties
or other bioinspired and bioattractive surface functionalizations can be included. Regarding drug
delivery in the crucial bone healing phases, drug concentration and release kinetics have to be taken
into consideration when loading the drug carrier [20–22,235]. Thereby, several drug-loading techniques
like core-shell or layer-by-layer loading can be applied to modulate release kinetics of single drugs from
burst to sustained release or even co-deliver drugs simultaneously or sequentially.

In terms of clinical translation of local drug delivery systems for bone regenerative applications,
drug-loaded scaffolds should optimally be fabricated hierarchically for spatiotemporal drug release
of several drugs. A particular challenge is the time-controlled release of a combination of highly
hydrophobic and highly hydrophilic drugs. Innovative approaches would, for example, enable the
targeted use of selective cyclooxygenase-2 inhibitors, which are highly potent anti-inflammatory
drugs [20,236,237]. To achieve controlled release profiles, the smart scaffolds are supposed to have
multifactorial properties such as stimuli-triggered drug release characteristics and surface modifications
for optimal cell adhesion, and nutrient supply [123,238].
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