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Abstract

The prediction of epitope recognition by T-cell receptors (TCRs) has seen many advancements in recent years, with several
methods now available that can predict recognition for a specific set of epitopes. However, the generic case of evaluating all
possible TCR-epitope pairs remains challenging, mainly due to the high diversity of the interacting sequences and the
limited amount of currently available training data. In this work, we provide an overview of the current state of this
unsolved problem. First, we examine appropriate validation strategies to accurately assess the generalization performance
of generic TCR-epitope recognition models when applied to both seen and unseen epitopes. In addition, we present a novel
feature representation approach, which we call ImRex (interaction map recognition). This approach is based on the pairwise
combination of physicochemical properties of the individual amino acids in the CDR3 and epitope sequences, which
provides a convolutional neural network with the combined representation of both sequences. Lastly, we highlight various
challenges that are specific to TCR-epitope data and that can adversely affect model performance. These include the issue
of selecting negative data, the imbalanced epitope distribution of curated TCR-epitope datasets and the potential
exchangeability of TCR alpha and beta chains. Our results indicate that while extrapolation to unseen epitopes remains a
difficult challenge, ImRex makes this feasible for a subset of epitopes that are not too dissimilar from the training data. We
show that appropriate feature engineering methods and rigorous benchmark standards are required to create and validate
TCR-epitope predictive models.
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Introduction
For an adaptive immune response to be initiated, a TCR on
the surface of a T-cell has to recognize an immunogenic non-
self or altered-self peptide (epitope) presented in the context
of a major histocompatibility complex (MHC) molecule on the
surface of another cell. This system has to be able to recognize a
large variety of epitopes derived from rapidly evolving pathogens
or malignant cells locked in an evolutionary arms race. The
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recognition of this diverse set of epitopes is made possible by the
highly polymorphic MHC genes and the quasi-random somatic
V(D)J recombination of the T-cell receptors (TCRs).

Understanding the patterns that govern successful TCR-
peptide-MHC (pMHC) interaction and being able to predict
the binding of any given TCR-epitope pair would be an
important step towards personalized healthcare. For example,
knowledge on the specificity of the TCR repertoire could provide
information on the progression of an infectious disease and aid
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in the assembly of effective vaccines, support the development
of individually tailored cancer immunotherapy and deliver new
prospects in the research regarding auto-immune disorders.

Given the high intra- and inter-individual diversity of the
pMHC interactions and the difficulty of mapping them through
experimental means, computational methods offer a promis-
ing complementary approach to gain insight into the general
patterns of interaction-driven activation.

Thus far, research has primarily focused on modelling MHC-
epitope binding affinity and this has led to several reliable
predictive tools [1–7]. However, understanding the molecular
underpinnings of TCR-epitope recognition has been proven to
be more challenging. This can be explained in part by the larger
diversity of TCR sequences when compared to MHC alleles,
especially within an individual. This diversity leads to a large,
high-dimensional and likely non-homogeneous search space,
which necessitates sophisticated models that can efficiently
extract the underlying distinguishing features from the highly
variable molecular sequences. However, to train these models a
large amount of high-quality data is required, which is currently
still lacking because data generation can only happen at much
smaller scales than for MHC data. Fortunately, more and more
experimental data is constantly being generated and stored in
public databases such as VDJdb, IEDB and McPAS-TCR [8–10].

In essence, these models need to be able to understand the
processes that determine the affinity between a TCR and epitope
on a molecular level. This process is rather complex, because
even though sequence similarity seems to be a key factor, epi-
topes can be bound by varying TCRs [11–13], and conversely TCRs
can also display cross-reactivity against multiple epitopes [14].
Another complicating factor is that despite the advent of single
cell TCR paired chain sequencing, the currently available TCR-
epitope binding data still mostly consists of single-chain (usually
beta-chain) data, while in reality both the alpha and beta chains
are thought to contribute to binding specificity. Indeed, recent
studies have suggested that utilizing both chains could increase
the accuracy of predictive TCR-epitope models [15, 16].

Previous work has tackled the TCR-epitope recognition
problem from an epitope-specific angle and demonstrated
that the amino acid sequences of the TCR’s CDR3 region
contain relevant information to predict epitope recognition
using epitope-specific models [11, 12, 15, 17, 18]. These types
of predictive models have now also been made accessible to
immunology researchers via web tools such as TCRex [19].
While these epitope-specific models differ in their modelling
approaches and feature representation of the input sequences
(e.g. random forests and physicochemical properties of the
amino acids [17], Gaussian process classification and BLOSUM-
based sequence representations [15] or deepwalk and TCR
distances [18]), they share one shortcoming: a separate model
needs to be trained for every epitope (or for a set of epitopes in
the case of multi-class models [18]). Every model also requires
sufficient training examples of TCRs with the same epitope
specificity, which are not always readily available, for example
in the case of neoepitopes.

Generic sequence-based models that can predict the
interaction between any TCR and epitope are the next frontier.
Previous work on this problem has largely focused on deep
learning, employing several different techniques such as long
short-term memory recurrent neural networks or convolutional
neural networks (CNNs), coupled with feature representations
such as trainable embedding layers, autoencoders or BLOSUM-
encodings [16, 20–22]. Importantly, these methods all rely on
some form of concatenation to combine the encodings of the two

Figure 1. Overview of the difference between seen-epitope and unseen-epitope

prediction. For the former, the TCR-epitope pairs encountered during model

training cover the same set of epitopes as those provided during model testing.

For the latter, models are tested on TCR-epitope pairs that only contain epitopes

which have not been observed during model training.

interacting sequences. However, a common problem observed
by these studies is that while generic models can achieve a
reasonable performance on interactions that involve epitopes
that were already encountered during training, they cannot yet
reliably extrapolate to novel, unseen epitopes [16, 20, 21]. This
is likely caused by the large heterogeneity in potential TCR and
epitope sequences, and the limited amount of readily available
training data that covers the sequence space. The problem
of predictive models under-performing on new data due to a
shift in the distribution of the inputs (i.e., a divergent set of
TCRs and/or epitopes) is more generally referred to as covariate
shift [23]. It is crucial that appropriate methods are used to
assess these different types of generalization performance,
which we define as seen-epitope and unseen-epitope prediction,
and that they are not conflated Figure 1. These two approaches
are inherently answering different questions: “How well can
we predict interactions involving epitopes encountered during model
training?” versus “How well can we predict recognition of novel
epitopes?”

Given the fact that detecting TCR-epitope recognition can
be considered more complex than MHC-epitope recognition, at
least in part due to the larger diversity in sequence pairing and
the limited amount of available training data, training complex-
ity constitutes even more of a limiting factor in this setting.
This necessitates relevant feature encoding. Indeed, studies have
shown that feature engineering is essential for the prediction
of paratope–epitope binding [24] and that it can also improve
the performance of models for more general bioinformatics
problems [25]. Moreover, when complex machine learning meth-
ods are applied to small datasets, the dangers of overfitting
and memorization of examples pose an even bigger threat. In
the case of TCR-epitope recognition, the potential of models
to overfit on common epitope motifs should be assessed and
reduced.

To tackle these issues we present ImRex, an approach to
predict TCR-epitope recognition that was inspired by image
classification tasks, where CNN models have shown strong per-
formance [26]. Our method relies on a novel feature represen-
tation method that converts the molecular sequences into an
interaction map, which combines the physicochemical proper-
ties of both interactors on the amino-acid level (Figure 2). This
preprocessing step avoids the creation of an internal embedding
for each interacting molecule independently. We postulate that
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Figure 2. An interaction map of a CDR3 and epitope sequence encoded by

four physicochemical properties using the absolute difference as the pairwise

operator. The rightmost image is a combined representation of the four two-

dimensional maps, using CMYK colour encoding. As input to a CNN, the interac-

tion map is supplied as a three-dimensional tensor.

this feature representation can provide a better representation
of the binding context.

Using such an interaction map as the model input differs
from the prevailing approach seen in sequence-based neural
networks (NN), not only in the field of TCR-epitope prediction,
but also for the modelling of other molecular interactions. Com-
monly, each sequence is supplied to the network as a distinct
entity (i.e., in a separate input layer, before being combined
later on in the network, or as a concatenated encoding (either
at the sequence level or spread out over different channels of
the input) [1, 3, 5–7, 16, 21, 27, 28]. Consequently, the learning
task not only consists of finding an internal representation that
captures the properties of the amino acid residues in the two
sequences individually, but also includes the combination of
these higher-level features for the two interacting molecules in
order to accurately predict their binding context.

In this paper, we train a CNN to predict the recognition of
an epitope by a TCR, based on the amino acid sequences of
the TCR’s CDR3 region and the epitope. First, the sequences are
converted into an interaction map that represents a number of
physicochemical properties of each amino acid pairing between
the TCR and epitope. This interaction map is then fed into the
CNN, which is tasked with learning how to extract the features
that underlie the molecular binding process. We also contrast
different strategies that can be used to tackle the various biases
that are specific to TCR-epitope recognition, such as negative
data generation and epitope-bias.

Methods
Data

The data used in this study was collected from the August 2019
release of VDJdb [8]. It consists of 75,474 curated pairs of TCR
CDR3 alpha/beta sequences and their epitope targets, covering
both MHC classes and three species (Homo sapiens, Mus musculus
and Macaca mulatta).

This dataset was reduced to 19,842 unique CDR3-epitope
pairs by selecting only human TCR sequences (68,506), remov-
ing all spurious CDR3 sequences as defined by VDJdb (66,597),
retaining only MHC class I entries (64,386), omitting all entries
originating from the 10x Genomics demonstration study [29]
(24,513), limiting the length of the CDR3 and epitope sequences
to lie between 10-20 and 8-11 amino acids respectively (24,294),
and finally removing any duplicate sequence pair. This mixed
chain dataset was further split into an alpha chain (5,654 CDR3
alpha (TRA) sequences) and a beta chain (14,188 CDR3 beta (TRB)
sequences) dataset. In some experiments the beta chain dataset
was downsampled to address the epitope imbalance (see results
for exact numbers).

Figure 3. Overview of contents of the filtered VDJdb (mixed chain) dataset. A.

Length distribution of TCR CDR3 sequences per TCR chain. B. Length distribution

of epitope sequences per TCR chain. C. Top 30 most frequent epitopes. D.

Distribution of the MHC alpha subunit alleles. E. CDR3 cross-reactivity: frequency

of CDR3 sequences with different number of epitope targets (y-axis is shown in

log scale, percentages indicate the proportion of CDR3 sequences compared to

all sequence pairs in the dataset).

The mixed chain dataset contains 120 unique epitopes (60
and 118 for the alpha and beta chain datasets respectively),
although their abundances are skewed; the majority of epi-
topes occur only in a few entries, whereas a small number of
them appear in hundreds or thousands. An overview of the
distribution of these sequences is given in Figure 3.

Only MHC class I-derived pairs were used, since these made
up over 90% of the dataset. The sequence length constraints were
chosen in order to limit the amount of zero-padding required
for our feature encoding and removed less than 0.15% of all
pairs. We chose to exclude the 10x Genomics entries as the post-
processing cut-offs for true epitope-TCR pairs is still a point of
contention. Since our model only requires the CDR3 and epitope
sequence as its inputs, all other metadata that is available in
VDJdb was removed (e.g., V/J segments/genes). Lastly, we did not
perform any filtering on the VDJdb confidence score.

An independent repertoire dataset consisting of 250,000 TRB
CDR3 sequences, sampled from healthy TCR repertoires col-
lected by Dean et al. [30], was used as reference data to generate
negative examples in some experiments. The same size con-
straints as before were used and duplicate sequences were once
again removed, resulting in 248,895 unique CDR3 sequences.
This negative reference repertoire dataset showed minimal over-
lap with our filtered VDJdb dataset: only 749 sequences occurred
in both. However, due to the large size of the reference set,
we consistently observed fewer than 0.15% of TCR sequences
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that were shared between the positive and negative reference
pairs in the cross-validation (CV) folds. Thus, we expect that any
potential bias caused by this small amount of overlap will be
negligible.

The McPAS-TCR dataset [10] was used as an external test
dataset (database release June 24, 2020). Only human MHC-I
CDR3 sequences that were matched to an epitope via tetramer
assays or peptide stimulation experiments were selected and
the same length restrictions and deduplication as before were
applied. In addition, any sequence pair present in the VDJdb
dataset was removed. Afterwards, two subsets were created: the
shared epitope subset containing 4,101 unique CDR3-epitope
pairs covering a total of 47 epitopes, which were also present in
the training data, and the unique epitope sub-set containing 736
pairs covering 11 unique epitopes, of which none were present
in the training data.

TCR-epitope feature encoding via interaction maps

We have designed a novel feature representation for sequence-
based input data that summarizes the binding context of the
two interacting partners on the molecular level in terms of their
physicochemical properties. The model no longer has to learn an
embedding for the individual interactors, which could help steer
the model to focus on the actual interaction problem directly.

This encoding method can be thought of as the creation of an
image or pixel map, and results in a 3-dimensional tensor that
we will refer to as an interaction map. By lining up the sequence
of the TCR and the epitope on the axes of a two-dimensional
matrix, every position within it corresponds to the pairwise
combination of a specific physicochemical property of the amino
acids at that index of the two sequences. The map can have
several channels, each corresponding to a different property,
analogous to the colour channels of an RGB or CMYK image. An
example of an interaction map of a CDR3 and epitope sequence
for four physicochemical properties is given in Figure 2.

In our experiments, the interaction map for each CDR3-
epitope pair was constructed as follows. First, each sequence
in the pair was converted into a vector of physicochemical
property values of each amino acid. Next, a matrix was com-
puted that contained the pairwise absolute differences between
the elements of the two vectors. One such two-dimensional
matrix was created for each of the following physicochemical
properties: hydrophobicity, hydrophilicity, mass and isoelectric
point (as provided by Biopython [31]). The absolute difference
was chosen as the operator to combine the two sequences
because it matches the conceptual idea behind the interaction
map; by looking at the difference in magnitude between the
physicochemical property values of the amino acids, regions of
compatibility become apparent, e.g., amino acids with opposite
charge (isoelectric point) would result in a high value in the map.
Every element in the matrix was then scaled between zero and
one, based on the minimum and maximum possible values of
each property. Next, the matrices were zero-padded on both ends
of the map to a dimension of 20 × 11 (CDR3 × epitope). In the end,
the matrices were combined into a three-dimensional tensor,
where the length and width correspond to the two interacting
sequences, and the depth (channels) to the physicochemical
properties.

While the selected physicochemical properties are fairly bio-
chemically orthogonal (−0.36 < Pearson’sr < 0.37, with the
exception of hydrophobicity and hydrophilicity where r = 0.7),
we do not exclude the possibility that further refinement is still
possible on this front. The generic nature of the interaction map

feature representation naturally allows the use of other amino
acid properties.

ImRex CNN architecture

The architecture of the ImRex CNN was empirically determined
and is depicted in Figure 4 and follows the general design of
CNNs for image classification. The input layer accepts inter-
action maps of dimensionality 20 × 11 × 4, where the first
and second dimensions correspond to the amino acids of the
TCR CDR3 and epitope sequences respectively, and the third
(depth) corresponds to the different physicochemical properties.
Next, there is the feature extraction part, which is made up
of two identical units, each containing a series of 2D convo-
lutional layers followed by a 2D max pooling layer and spatial
dropout (25%). Batch normalization layers are positioned after
the first convolutional layer of each unit and after every dropout
layer [32]. The features extracted by the convolutional layers
are then flattened and fed into a fully connected layer (32
neurons), followed by a single neuron output layer. All layers
(except for the output layer) use an L2 regularization penalty
of 0.01.

All neurons use rectified linear unit (ReLU) activation func-
tions, except for the output neuron which relies on the sigmoid
activation function. The convolutional layers use 3×3 filters with
a stride of 1 and zero-padding (to keep the height and width
unchanged), and the max pooling layers use a 2 × 2 filter to
downsample and to introduce translational invariance.

Dual input CNN architecture

For comparison, we also created a second CNN, based on [21],
that represents the prevailing approach of providing the two
interacting sequences as separate inputs to the network, here-
after referred to as the dual input model (Figure 5). Briefly, fea-
tures are extracted independently from both inputs, before being
concatenated and processed by deeper layers. Both inputs have
only two dimensions, the amino acid sequence as the length and
a BLOSUM50 encoding as the depth [33]. The inputs are first both
passed through a layer of parallel 1D convolutions (consisting of
various filter sizes ranging from 1 to 9). Each differently sized
convolution for the two inputs is then concatenated alongside
the length dimension, before being passed to a second layer
of parallel convolutions with filter size 1. This is followed by
a global 1D max pooling layer, a final concatenation, a fully
connected layer and a single neuron output layer. No batch
normalization is used and there is only a single dropout layer,
located behind the fully connected layer. Sigmoid activation
functions are used throughout the network.

Model training

The RMSProp optimizer [34] was used to update model weights
with a learning rate of 0.0001 for the ImRex CNN and 0.001 for
the separated input CNN (as in the original publication [21]).
Binary cross-entropy was chosen as the objective function. The
batch size was set to 32, as recommended by [35] for improved
generalization performance. Models were trained for 20 epochs,
which proved sufficient by inspecting loss curves.

We implemented and trained our models using TensorFlow
2.1.0 [36] and the Python (3.7.6) packages Biopython 1.76 [31],
NumPy 1.18.1 [37], pandas 1.0.1 [38], pyteomics 4.2 [39, 40], scikit-
learn 0.22.1 [41] and SciPy 1.5.0 [42].
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Figure 4. Architecture of the ImRex CNN. The four colours in the input layer represent the four different physicochemical properties used in the creation of the

interaction map (hydrophobicity, hydrophilicity, mass and isoelectric point). Thin black lines originating from a smaller rectangle represent 2D convolutions, whereas

other lines represent concatenation steps.

Figure 5. Architecture of the dual input CNN. The two input sequences are encoded using the BLOSUM50 matrix and supplied to the model in separate layers before

being combined. Note that all layers contain sequences, not matrices as in the ImRex model Figure 4, and thin black lines originating from a smaller rectangle represent

1D convolutions, whereas other lines represent concatenation steps. The length dimension of the sequences is omitted, since the differently sized kernels all result in

different output lengths.

Performance evaluation for seen and unseen epitopes

The CNNs were trained under two different seeded CV schemes
(except when explicitly mentioned otherwise): (1) a regular 5
times repeated 5-fold CV and (2) a 5-fold epitope-grouped CV.
The former can be interpreted as “predicting the recognition of seen
epitopes by TCRs”, since the epitopes that are encountered during
testing have already been observed during training (albeit paired
with different TCR sequences). The epitope-grouped CV strategy
on the other hand ensures that the TCR-epitope pairs in different
folds never share their epitope (i.e., every fold contains unique
epitopes). Thus, it provides a representation of the performance
of the model on novel epitopes that have not yet been observed
(unseen-epitope generalization performance). In order for the
comparisons between different model architectures trained in
this manner to be valid, the folds (and negative data generation)
for experiments on the same datasets used the same seed. Gen-
eralization performance was measured using the sample mean
and sample standard deviation (s) of the area under the receiver
operating characteristic (AUROC) and average precision (AP) on
held-out CV folds. Significant differences in performance were
established using non-parametric testing (paired or unpaired as
appropriate).

In addition to CV validation performance, the McPAS-TCR
dataset [10] was used as an external test by splitting it up
into two subsets: the shared epitope sub-set containing 4101
unique pairs covering 46 epitopes, which were present in the
training data, and the unique epitope sub-set containing 736
pairs covering 10 unique epitopes, which were not present in the
training data.

Decoy epitope models

A challenging aspect of generic TCR-epitope interaction models
is that they could potentially memorize CDR3 motifs regardless
of the epitope partner. For these decoy datasets, every unique
epitope was replaced by a uniform random permutation of the
20 amino acids of the same length as the original, in order to
remove any chance of true molecular binding. If the performance
on a decoy dataset is comparable to the real data, it seems likely
that even though the model can deliver accurate predictions,
it has not been able to capture the true underlying molecular
forces that govern the binding process and has merely managed
to memorize spurious motifs that are present within the TCR
training data.
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Figure 6. Validation receiver operating characteristic (ROC) and precision-recall

(PR) curve for the ImRex and dual input CNNs when trained on the beta chain

dataset with shuffled negatives using 5 times repeated 5-fold CV.

Figure 7. Ranking of the validation area under the receiver operating charac-

teristic (AUROC) per epitope (≥ 30 examples, present in all 25 CV folds and at

least one model AUROC > 0.50) for the dual input and ImRex CNN trained on the

beta chain dataset with shuffled negatives using 5 times repeated 5-fold CV. The

performance of equivalent epitope-specific random forest (RF) models (TCRex)

are also shown.

Results
Impact of feature encoding on seen-epitope
performance

To assess the seen-epitope performance of the two different CNN
architectures on TCR-epitope data, namely the ImRex and dual
input approaches, we trained the beta chain dataset using 5
times repeated 5-fold CV with negative data generated through
shuffling. The validation receiver operating characteristic (ROC)
and precision-recall (PR) curves for both models are provided in
Figure 6.

The ImRex model outperforms the dual input one slightly
according to both area under the receiver operating character-
istic (AUROC) (AUROCImRex = 0.68 ± 0.01s; AUROCdual = 0.65 ±
0.01s; MannWhitney U-test (MWU) P-value = 8×−10) and average
precision (AP) (APImRex = 0.69 ± 0.01s; APdual = 0.66 ± 0.01s;
MannWhitney U-test (MWU) P-value = 3.3×−09). It is clear that
for both models recall (or sensitivity) is the biggest problem;
mistakes where the models fail to detect a true interaction are
the most common.

The per-epitope area under the receiver operating character-
istic (AUROC) ranking, derived by evaluating on the positive and
negative TCRs for one specific epitope in each CV fold, is shown
in Figure 7.

The differences between the two models are consistent with
the overall performance, with the dual input model lagging
behind the ImRex variant for most epitopes (Wilcoxon signed-
rank test on per-epitope mean area under the receiver operating
characteristic (AUROC) P-value = 3.8×−05). The top epitopes per-
form substantially better than the overall area under the receiver

operating characteristic (AUROC), but it is also apparent that
other epitopes do much worse. Importantly, we found no correla-
tion between the area under the receiver operating characteristic
(AUROC) of an epitope and the number of training examples
that were available in the training set (Fig. S9). This per-epitope
view also highlights that the overall performance metrics can be
misleading in certain situations. Indeed, if a model works excep-
tionally well or poorly on a given abundant epitope, this could
skew the overall performance metric in an unintended manner.

In order to compare these results to the current state-of-the-
art epitope-specific classifiers, we trained equivalent random
forest (RF) models for each epitope that met the above criteria
based on the methodology of TCRex [19]. We re-used the CV
folds of the CNN models, each time extracting only those CDR3
sequences that were paired with a given epitope (both positives
and negatives). Thus the TCRex performances could be overly
conservative as the negative data is far more limited than that
used for typical training.

As expected however, the epitope-specific models do still
outperform the generic ones (Wilcoxon signed-rank test on per-
epitope mean area under the receiver operating characteristic
(AUROC) of the ImRex and TCRex models P-value = 1.1×−05).
This can be explained by the fact that epitope-specific models
are solving a simpler problem, and that they are trained on less
diverse datasets. Instead of having to learn the correct pairing
between two entities, an epitope-specific model must only learn
to recognize a single set of motifs, namely those TCRs that are
associated with the specific epitope that the model is being
trained for. Similar results were also found by Fischer et al. [16]
Springer et al. [20]. Interestingly, there is a clear trend across
the different models: in general, epitopes which do well, do
well across all models, and vice versa, and this seems to be
independent of the number of training examples.

Sources of biases in performance

Prior to exploring the performance of various methods in the
unseen-epitope setting, it is worthwhile to explore the inherent
challenges that the TCR-epitope recognition problem brings. In
this setting, training and validation data will be used in an
epitope-grouped format, which ensures that epitopes used as
validation data do not occur in training data. This is a far more
complex set-up than the epitope-specific case.

Various aspects of the TCR-epitope interaction problem could
hinder model performance or lead to erroneous conclusions
and overly optimistic (or pessimistic) estimates of generalization
performance. We identified the following potential obstacles
and sources of bias, and designed strategies to investigate their
influence or reduce their impact during both model training and
evaluation.

i. Absence of true negative data
ii. Imbalanced epitope distribution

iii. Different TCR chain inclusion
iv. Seen-epitope versus unseen-epitope prediction

Reference negatives result in over-optimistic performance compared
to negatives generated via shuffling

The TCR-epitope interaction datasets only contain positive
examples: interacting pairs of TCRs and epitopes. However, in
order to train supervised models both positive and negative
examples (pairs of TCRs and epitopes that do not recognize
each other) are required. The latter need to be generated in a
biologically plausible manner, as they need to represent an
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unbiased estimate of the true distribution of non-interacting
sequences.

We compared two different methods for generating negative
observations: (1) shuffling the known positive pairs and (2) sam-
pling uniformly from a negative TRB CDR3 reference repertoire
set. The frequency of positive and negative examples was kept
equal in both scenarios (50:50 ratio), and downsampling was
used to address epitope-imbalance (see next section).

For the shuffle method, each CDR3 sequence in the positive
dataset was combined with an epitope that was sampled uni-
formly at random from the epitopes in the positive sequence
pairs, while excluding its known true peptide partner(s). This
approach ensures that every CDR3 sequence occurs both in a
positive and in a negative pair, only combined with a different
epitope. Shuffling known positive pairs makes the assumption
that TCRs can only bind to their seen epitope partner, and that
any other combination would not lead to successful binding
events, which is plausible considering the enormous diversity of
potential TCR and epitope sequences.

For the negative reference approach, CDR3 sequences
sampled from the negative TRB CDR3 reference dataset were
matched with epitopes sampled uniformly at random from the
positive pairs. This builds on the assumption that TCRs from this
reference set are unlikely to bind a randomly assigned epitope.
In this case, there is no overlap between the CDR3 sequences in
the positive and negative pairs, unlike in the shuffled dataset.

In isolation, it seems that the model that was trained on
reference negatives does slightly better than the one trained on
shuffled negatives, as can be seen in Figure 8 (AUROCshuffled =
0.55±0.02s; AUROCreference = 0.57±0.03s). However, when they are
contrasted to models trained on decoy datasets, it becomes clear
that the baseline performance of reference negatives is slightly
better than random, whereas we would expect the performance
on the decoy dataset to be close to random (AUROCshuffled−decoy =
0.50 ± 0.01s; AUROCreference−decoy = 0.55 ± 0.02s). This indicates
that the performance of the model is for the most part due to
its ability to separate positive TCRs from negative TCRs regard-
less of the matched epitope. This may be due to an unknown
bias either within the TCR-epitope data or within the reference
repertoire data used for negative interactions. In contrast, when
shuffled negatives are used, the decoy model has an average area
under the receiver operating characteristic (AUROC) just below
that of a random classifier, while the model trained on the true
data was able to achieve a somewhat higher performance (albeit
lower than the reference negative setting). This finding was
also supported by a MannWhitney U-test (MWU), which found a
significant difference between the area under the receiver oper-
ating characteristic (AUROC) of the true and the decoy dataset in
the case of shuffled negatives (P-value = 0.0061), but not for the
reference negatives (P = 0.11).

An inherent bias that comes with using an external nega-
tive reference dataset is not unexpected, and this is why prior
evaluations have always used shuffled datasets. Thus for the
remainder of this study, we will continue with only the shuffled
negative dataset.

For the seen-epitope models the differences between true
and decoy data very small, but significant for both types of
negatives, see Fig. S1.

Downsampling to address epitope imbalance has a small negative
effect on model performance, but allows for more robust
cross-validation (CV) strategies

As can be seen from Figure 3, the number of interaction pairs
differs substantially between different epitopes. This has two

Figure 8. Box plots of the validation area under the receiver operating char-

acteristic (AUROC) for the ImRex CNN trained on the downsampled beta chain

dataset and its decoy, with either shuffled or reference negatives and using 5-fold

epitope-grouped cross-validation (CV).

important implications for evaluating the performance of our
predictive models.

First, models could develop a bias towards (that is, overfit on)
those epitopes which deliver the majority of the training data.
To combat this, model performance was not only evaluated on
the entire test dataset (which results in an overall metric), but
also on an individual per-epitope basis. A per-epitope metric can
immediately reveal whether a model has focused exclusively on
a small number of abundant epitopes, and at the same time
ensures that the performance evaluation is not steered entirely
by the most abundant epitopes, unlike the overall performance
which is strongly influenced by those. This entails evaluating the
trained model on a test set (or its held-out cross-validation (CV)
folds) that is restricted to only those sequence pairs that contain
a specific epitope (both positives and negatives).

Second, when an epitope-grouped cross-validation (CV)
strategy is used, it might not be possible to create folds that are
balanced in terms of both the total number of interactions and
the number of unique epitopes. Folds might even be created that
only contain a single abundant epitope, making it impossible
to generate negative pairs via shuffling. To avoid this issue, a
downsampling strategy was employed, where the number of
interactions for the top outliers was reduced through uniform
sampling. While this does not entirely fix the imbalance, it does
lower the highest counts to less than the cross-validation (CV)
fold size, ensuring that a mix of epitopes is present in each fold.
In short, downsampling allowed us to create epitope-grouped
cross-validation (CV) folds with a more comparable epitope
distribution, at the cost of having substantial fewer observations
for training and testing.

To gauge the effects of this downsampling strategy, models
were trained using either moderate or strong downsampling,
by setting a threshold of 1,000 and 400 examples per epitope
respectively (reducing the beta chain dataset from 14,188 to
8,945 and 6,702 sequence pairs respectively), or no downsam-
pling at all (see Table S1 for which epitopes were impacted).
No downsampling restricted the number of possible epitope-
grouped cross-validation (CV) folds to three instead of five when
using shuffled negatives. These scenarios examine the trade-
off between sample size and epitope-skew, and at the most
extreme end (no downsampling) combines this with a less robust
estimate of model stability due to the lower number of cross-
validation (CV) folds.

As shown in Figure 9, the differences in area under the
receiver operating characteristic (AUROC) between the dif-
ferent degrees of downsampling (AUROCno = 0.58 ± 0.04s;
AUROCmoderate = 0.54 ± 0.04s; AUROCstrong = 0.55 ± 0.02s) are not
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Figure 9. Box plots of the validation area under the receiver operating char-

acteristic (AUROC) for the ImRex CNN trained on the beta chain datasets with

shuffled negatives and CV using different degrees of downsampling: none

(3-fold CV), moderate downsampling with a threshold of 1000 examples per

epitope (5-fold CV) and strong downsampling with a threshold of 400 examples

per epitope (5-fold CV).

significant according to the Kruskal-Wallis test (P-value = 0.27)
for the ImRex CNN model trained on the beta chain dataset with
shuffled negatives.

Importantly, the per-epitope performance of the most abun-
dant epitopes (e.g., NLVPMVATV and GILGFVFTL) are similar
among all three datasets (Fig. S2). Consequently, the observed
differences in performance can likely be attributed mostly to
differences in cross-validation (CV) splits and negative data
generation, and the larger training size when not downsampling
and using fewer folds.

These results suggest that the effect of downsampling, which
is utilized throughout for the unseen-epitope setting, will not
dominate the effects on performance. Because we focus on per-
epitope comparisons in this study, we opted to use the strong
downsampling variant since it allows for a more thorough cross-
validation (CV) strategy and because it is least problematic in
terms of maintaining a balanced ratio of positives and negatives
on a per-epitope basis.

The effects of downsampling appear to be negligible for the
seen-epitope models, as shown in Fig. S3.

TCR chain information is not exchangeable

While TCRs are made up of two chains, the TRB chain is far
more ubiquitous in TCR-epitope databases. A naive approach
for modelling recognition may be to utilize both chains as indi-
vidual examples, since similar molecular interaction patterns
could be expected to underlie both chains, as they are similar
in composition and they both contact the same molecule, i.e.,
the epitope. To investigate the exchangeability of the chains,
we trained separate models on the mixed chain and beta chain
dataset using cross-validation (CV). In addition, a model was
trained on the beta chain dataset and then used for predictions
on the alpha chain dataset.

We found that models trained on the beta chain dataset
outperform those that were trained on the mixed chain dataset
(AUROCmixed = 0.52 ± 0.01s; AUROCbeta = 0.55 ± 0.02s, MannWhit-
ney U-test (MWU) test P-value = 0.030, Figures S4 and S5). In
addition, models that were trained purely on TRB data do not
generalize to the alpha chain dataset, and the performance is no
better than random (AUROCalpha = 0.47).

Figure 10. Ranking of the validation area under the receiver operating charac-

teristic (AUROC) per epitope (≥ 30 examples and at least one model AUROC >

0.50) for the ImRex and dual input CNNs after 5-fold epitope-grouped cross-

validation (CV) when trained on the downsampled beta chain dataset with

shuffled negatives. The colour gradient indicates the minimum edit distance of

each epitope to the epitopes in the training dataset.

These findings suggests that TCR chain information is not
entirely exchangeable for the ImRex approach. This could for
example be caused by the fact that the underlying binding
process differs too strongly between the two types of chains for
the model to be transferable between them.

Similar observations hold for the seen-epitope setting (see
Figures S6 and S7), models trained on exclusively TRB sequences
do not carry over to TRA sequences. However, here the mixed
chain dataset does lead to better results than the beta chain
dataset.

Impact of feature encoding on unseen-epitope
performance

Bearing in mind the issues that were discussed in the previous
section, we compared the generalization capabilities of the two
CNN architectures to unseen epitopes via an epitope-grouped
cross-validation (CV) on the beta chain dataset while using
strong downsampling and negatives generated by shuffling the
sequence pairs.

Both the ImRex and dual input CNN show a higher than ran-
dom, but generally poor unseen-epitope performance (Fig. S8):
AUROCImRex = 0.55 ± 0.02s, AUROCdual = 0.52 ± 0.01s MWU
P-value = 0.018) and APImRex = 0.55 ± 0.02s, APdual = 0.52 ± 0.01s
(MWU P-value = 0.018). Thus as expected the performance is
far worse for the unseen-epitope problem than for the seen-
epitope problem that was shown before. This signifies that the
performance on seen epitopes cannot simply be transferred to
this more challenging problem.

Importantly however, a ranking of the per-epitope area
under the receiver operating characteristic (AUROC) shows
that despite the lacklustre overall performance, the models
do manage to perform reasonably well for a small subset
of epitopes (Figure 10). The top ranking individual epitope
performances are achieved by the ImRex model (eight out of
the ten highest area under the receiver operating characteristic
(AUROC) values). This is confirmed by a Wilcoxon signed-rank
test, which finds a significant difference (α = 0.05) in the
per-epitope area under the receiver operating characteristic
(AUROC) medians (P-value = 0.016), although naturally this test
depends strongly on the selected thresholds for the area under
the receiver operating characteristic (AUROC) and number of
examples. These results once again highlight the fact that overall
performance metrics cannot provide a complete picture of the
behaviour of TCR-epitope prediction models.

Strong performance for closely related epitopes

When the epitopes that show a strong performance for the
ImRex approach are compared with the epitopes that were
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Figure 11. Box plots of per-epitope area under the receiver operating character-

istic (AUROC) and minimum edit distance to epitopes in the training dataset for

the ImRex CNN trained using 5 times repeated 5-fold cross-validation (CV) on

the downsampled beta chain dataset with shuffled negatives and its decoy.

present in the training dataset, a striking pattern emerges. As
can be seen in Figure 11, the highest performance is achieved for
those epitopes that shared some similarity with epitopes present
in the training data. For epitopes with at most a single amino acid
difference, the average area under the receiver operating charac-
teristic (AUROC) over the epitopes is 0.61, which is significantly
higher than the average decoy area under the receiver operating
characteristic (AUROC) of 0.49 (MannWhitney U-test (MWU) test
P-value = 0.0004). Thus the TCR-epitope patterns learned by the
molecular ImRex approach, work best for related epitopes. This
is not unexpected as these epitopes share similar physicochem-
ical properties and thus some underlying interaction patterns
may be shared. It is then the task of the CNN to learn which
patterns are relevant in which case. In contrast, the dual input
approach was unable to achieve this relationship (mean area
under the receiver operating characteristic (AUROC) for epitopes
with minimum edit distance 1 = 0.51; mean area under the
receiver operating characteristic (AUROC) for decoy epitopes =
0.50; MannWhitney U-test (MWU) test P-value = 0.28), as can be
seen in Fig. S10, demonstrating that this is a non-trivial problem.

These findings also highlight that the overall area under the
receiver operating characteristic (AUROC) achieved by a model
can be misleading in certain situations, as in this case, where the
average area under the receiver operating characteristic (AUROC)
over the different cross-validation (CV) folds was influenced by
a small number of outlying epitope examples (each occurring
fewer than 30 times). Depending on one’s perspective, either the
overall or the per-epitope performance is the more appropriate
measure of performance, but a distinction must be made
regardless.

Evaluation on independent datasets

We utilized the McPAS-TCR dataset [10] as an independent test
set. After filtering, it was split into two subsets: one containing
epitopes already present in the VDJdb training data, and one
with unique epitopes. As before, negative interaction pairs were
generated using a shuffling approach for each subset. Both test
datasets were used to evaluate the ImRex CNN that was trained
on the entire downsampled beta chain dataset with shuffled
negatives.

The ImRex model did not attain the same level of perfor-
mance on the shared-epitope McPAS-TCR data as it did during
seen-epitope cross-validation (CV) (AUROC = 0.59 and AP = 0.59).

Figure 12. Ranking of the test area under the receiver operating characteristic

(AUROC) per epitope (≥ 30 examples) on the shared epitope McPAS-TCR data

for the ImRex CNN when trained on the entire downsampled beta chain dataset

with shuffled negatives.

Figure 13. Ranking of the test area under the receiver operating characteristic

(AUROC) per epitope (≥ 10 examples) on the unique epitope McPAS-TCR data for

the ImRex CNN when trained on the entire downsampled beta chain dataset with

shuffled negatives. The colour gradient indicates the minimum edit distance of

each epitope to the epitopes in the training dataset. The total number of testing

examples is depicted above each bar.

However, as before the overall performance can be considered
a misleading metric here. The most abundant epitopes (LPRRS-
GAAGA) makes up over 35% of the observations, while showing
an area under the receiver operating characteristic (AUROC) of
0.50, and this strongly influences the overall performance val-
ues. Looking at the individual per-epitope performances, these
seem in line with those seen during the 5 times repeated 5-fold
cross-validation (CV), both in terms of absolute numbers and
which specific epitopes do well (Figures 7 and 12).

Similar to the epitope-grouped cross-validation (CV) setting,
the overall area under the receiver operating characteristic
(AUROC) and average precision (AP) were only slightly better
than random performance for the unique-epitope McPAS-TCR
data (AUROC = 0.54 and average precision (AP) = 0.53). Bearing in
mind the drawbacks of the overall performance metrics, the
ranking of the individual per-epitope AUROCs are shown in
Figure 13. Like in the previous results, strong performance is
found for epitopes with low edit distance.

Discussion
The prediction of TCRs binding to unseen epitopes is extremely
challenging [16, 20, 21]. The lack of training examples, or con-
versely, the immense space covered by the human immune
repertoire and the potentially interacting epitopes, remains an
issue for the prediction of novel epitopes that were not encoun-
tered during training, and it will likely not be overcome via
new modelling approaches alone. As long as the available train-
ing data only sparsely covers the epitope sequence space, it
will likely limit the predictive power of any unseen-epitope
approach.
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In this work, we have presented a new feature representation
technique for generic sequenced-based TCR-epitope interaction
prediction models, based on the pairwise combination of amino
acids, called ImRex. While the overall performance remains poor,
a comparison with a standard dual input embedding approach
showed an improved performance of the ImRex model for the
unseen-epitope setting. This is due in part to a high performance
unique to ImRex for epitopes which have similar amino acid pat-
terns to the training data. This supports our hypothesis that the
use of an interaction map, instead of separate embedding steps
for the two molecular interactors, allows the model to identify
molecular TCR-epitope interactions which may have helped to
avoid overfitting and improve the generalization capabilities of
the model (i.e., extrapolation to unseen epitopes).

A similar increase in performance of the ImRex model
compared to the dual input approach could be found for the
seen-epitope setting. However, here our results show that these
models also display high performance trained on decoy data
with nonsense epitopes. We hypothesize that the current
generation of seen-epitope models still mainly rely more on
CDR3 patterns for the prediction of TCR interactions with seen
epitopes. Hence, they work similar to epitope-specific models,
such as TCRex, for seen epitopes. Thus the behaviour for the
seen-epitope setting cannot be readily extrapolated to that of the
unseen-epitope setting. In the case of ImRex, we do find a minor
increase above the decoy performance, indicating that it may
still be using the epitope information itself in a small part for
seen epitopes.

We have also shown that overall performance metrics might
not be the most appropriate measure to assess generic TCR-
epitope interaction prediction models, as this metric could be
strongly influenced by the abundance of specific epitopes with
better (or worse) than average performance.

Furthermore, we listed a number of other challenges that are
unique to the TCR-epitope prediction problem, and examined
different approaches to deal with them. These were related to
the type of negative data generation, the epitope imbalance
and the exchangeability of TCR alpha and beta chains. We also
demonstrate the use of decoy epitope data as a method of
establishing a baseline performance.

First, we recommend the use of shuffling over a reference
repertoire as the de-facto method of generating negatives in
most situations. In the unseen-epitope case, only shuffled neg-
atives outperform their decoy counterpart (albeit at a lower
overall performance than reference negatives). For the seen-
epitope setting the impact on model performance seems to be
fairly limited however.

Next, no clear trends were found between the number of
training examples of a given epitope and its final individual per-
formance in the seen-epitope setting. This might be explained by
the underlying diversity of the epitope-specific TCRs. In general,
we expect to overestimate the model performance when the
model is trained on a low-diversity data set which does not give a
good representation of the entire epitope-specific repertoire (i.e.,
few large TCR clusters). Ideally future evaluation metrics and
training procedures should attempt to take this diversity into
account. Although, the size of the training dataset did not seem
to impact the model performance, downsampling will remain
necessary when an epitope-grouped CV is required, depending
on the desired number of folds and the extent of the epitope-
skew. The fact that the amount of downsampling has a negligible
effect on the epitope-grouped models supports our assumption
that future improvements to TCR-epitope recognition prediction

will largely depend on the collection of more diverse epitope-
TCR pairs.

Finally, we found that TCR chain information is not
exchangeable. In other words, adding TRA chain sequences
as additional training examples does not markedly improve
model performance, nor can models trained on TRB chains be
transferred to datasets with only TRA chains. Note that this does
not preclude the possibility that models trained on a combined
input of the TRA and TRB chains could improve our current
results, which has been suggested by other studies [15, 16],
although this does require adequate amounts of paired data.

Given these results, we believe there is a strong need for
a more consistent and stringent benchmarking framework for
assessing the generalization performance of TCR-epitope recog-
nition models. The influence of epitope bias is clearly shown by
the difficulty of extrapolating trained models to unseen epitopes,
and as mentioned TCR diversity could have an effect here as well.
A quantification method that can measure the extent of overlap
between training and test data could play an important role in
addressing these issues.

An interesting avenue for future research is the extension of
ImRex to include additional information about the interacting
molecules. For example, the inclusion of the alpha chain seems
like an obvious candidate, provided that the number of paired
TCR chains with known specificities continues to grow. Similarly,
V/J genes (which boosted performance in Sidhom et al. [22]),
other CDR loops, or the MHC context could be included, either
by appending them to the sequence vectors in the interaction
map, or as entirely separate input layers to the network. Lastly,
it has not escaped our notice that interaction maps could be
used to model other types of molecular interactions, such as
protein–protein or antibody–antigen interactions.

Key Points

1. We present ImRex, a novel feature representation
method for generic TCR-epitope interaction models
which combines the physicochemical properties of
both interactors on the amino-acid level.

2. We demonstrate that ImRex can enhance model per-
formance compared to separate embedding strategies,
when prediction is limited to seen epitopes. How-
ever, epitope-specific models still outperform generic
models in this task. unseen-epitope prediction (based
on an epitope-grouped cross-validation (CV)) remains
difficult, but we find evidence that ImRex can more
easily extrapolate to epitopes that are close to the
training data than dual input approaches, and achieve
performance on-par with the seen-epitope setting for
these epitopes.

3. Overall performance metrics for generic TCR-epitope
interaction models should be interpreted with care,
as the performance for the individual epitopes can
deviate and have a large impact on the average per-
formance depending on the number of examples for
each epitope.

4. The generation of a negative training data set through
shuffling can limit performance overestimation due to
memorization of CDR3 sequences.

5. The performance of unseen-epitope models is cur-
rently still limited by the lack of sufficient amounts of
diverse TCR-epitope pairs, but appropriate modelling
approaches can alleviate this to a small degree.
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The code underlying this article (including a script to perform
new predictions) is available on GitHub, at https://github.co
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