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The landscape for medical treatment of lung cancer has irreversibly changed since

the development of immuno-oncology (IO). Yet, while immune checkpoint blockade

(ICB) revealed that T lymphocytes play a major role in lung cancer, the precise

dynamic of innate and adaptive immune cells induced by anticancer treatments including

chemotherapy, targeted therapy, and/or ICB is poorly understood. In lung cancer,

studies evaluating specific immune cell populations as predictors of response to medical

treatment are scarce, and knowledge is fragmented. Here, we review the different

techniques allowing the detection of immune cells in the tumor and blood (multiplex

immunohistochemistry and immunofluorescence, RNA-seq, DNA methylation pattern,

mass cytometry, functional tests). In addition, we present data that consider different

baseline immune cell populations as predictors of response to medical treatments of lung

cancer. We also review the potential for assessing dynamic changes in cell populations

during treatment as a biomarker. As powerful tools for immune cell detection and

data analysis are available, clinicians and researchers could increase understanding of

mechanisms of efficacy and resistance in addition to identifying new targets for IO by

developing translational studies that decipher the role of different immune cell populations

during lung cancer treatments.
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INTRODUCTION

Lung cancer is the leading cause of cancer deaths worldwide (1), and systemic treatments
(chemotherapy, targeted therapy, or immunotherapy) are required for the vast majority of patients
(clinical stages Ib–IV) (2). In the last 5 years, the development of immune checkpoint blockade
(ICB) has improved the outcomes of advanced non–small cell lung cancer (NSCLC) (3–5). With
this new focus on immuno-oncology (IO), ∼200 lung cancer immunotherapy clinical trials are
active worldwide (6). The standard initial treatment for advanced NSCLCwithout driver mutations
now includes immunotherapy [monotherapy with high [programmed death ligand 1 (PDL-1)
expression or combined with platinum doublet chemotherapy at any level of PDL-1 expression]
(7, 8). Despite these treatment strategies, the immune cell dynamic induced by systemic treatments
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BOX 1 | Method: search strategy.

Database: PubMed, Google Scholar, Scopus, Web of Science, ASCO

abstracts, ESMO abstracts, WCLC abstracts

Database key words (MeSH terms and title/abstract) = “immune cells” OR

“immune biomarker” OR “immune monitoring” OR “immuno-monitoring AND

“lung cancer” OR “lung neoplasm” OR “non–small cell lung cancer” OR “small

cell lung cancer”

Time limit: last 10 years (2009–2019)

Language: English only

Species: Human only

Inclusion criteria: Lung cancer treated with chemotherapy (CT), targeted

therapy, or immunotherapy (IT), in an adjuvant setting, locally advanced or

metastatic setting. Data available for immune cell population (e.g., CD3T

cells) or immune cell markers (e.g., PDL-1 expression in macrophage or

dendritic cells).

(chemotherapy, targeted therapy, or ICB) is poorly understood.
Additional knowledge about this immune dynamic could be
important to better understand the mechanisms of both efficacy
and resistance to anticancer drugs. Further, it is possible that
this exploration could identify new targets for immunotherapy.
Compared to the field of melanoma (9), data are limited and
very fragmented among lung cancer studies. Consequently, we
conducted a systematic review of lung cancer studies that look
at immune cell populations (Box 1). First, we will describe
techniques that allow immune cells detection, focusing on recent
discoveries. Second, we will review the immune predictors of
response to medical treatments in lung cancer, studied at baseline
or during treatment.

CLASSICAL AND NEW TECHNICS OF
IMMUNE MONITORING

New Developments in
Immunohistochemistry and
Immunofluorescence
Since its invention by Albert Coons in the 1940s,
immunohistochemistry (IHC) has been the gold standard
in studying immune cell infiltration inside the tumor and the
tumor immune microenvironment (TIME) (10) (Figure 1).
Briefly, the classical IHC is the staining of formalin-fixed,

Abbreviations: CyTOF, cytometry by time-of-flight; DCs, dendritic cells;

ELISPOT, enzyme-linked immunospot; FFPE, formalin-fixed, paraffin-embedded;

HR, hazard ratio; ICB, immune checkpoint blockade; IF, immunofluorescence;

IFN, interferon; IHC, immunohistochemistry; IO, immuno-oncology; LAG3,

lymphocyte-activation gene 3; MDSC, myeloid-derived suppressor cells; Mo-

MDSC, monocytic myeloid-derived suppressor cells; NGS, next-generation

sequencing; NLR, neutrophil-to-lymphocyte ratio; NSCLC, non–small cell lung

cancer; OS, overall survival; OR, odds ratio; PBMC, peripheral blood mononuclear

cell; PD1, programmed death 1; PDL-1, programmed death ligand 1; PFS,

progression-free survival; PR, partial response; RNA-seq, RNA sequencing;

SD, stable disease; STING, stimulator of interferon genes; TIGIT, T cell

immunoreceptor with Ig and ITIM domains; TIL, tumor-infiltrating lymphocytes;

TIME, tumor immune microenvironment; TKI, tyrosine kinase inhibitors; TLS,

tertiary lymphoid structures; TMB, tumor mutational burden; TReg, regulatory

T cells.

paraffin-embedded (FFPE) tissues with antibodies linked to
an enzyme or fluorescent dye (14). This approach allows
preservation of the tumor and TIME architecture, allowing
spatial resolution. However, the main inconvenience of classical
IHC is that a maximum of 2 antibodies are stained on one slide,
necessitating a lot of tumor material and complicating the study
of multiple cell populations. “Multiplex IHC” is a new technique
allowing the visualization and quantification of specific immune
cell populations by using multiple markers to identify different
subsets [e.g., subset of dendritic cells (DCs) or CD8+ T cells]
(15, 16). Multiplex IHC allows consecutive staining on a
single slide (up to 10 antibodies) by using multiple rounds of
staining and destaining (15). Several commercial solutions are
available, mainly based on proprietary fluorescent probes and
frozen materials (16). A nonproprietary assay called MICSSS
(multiplexed immunohistochemical consecutive staining on
single slide) has been developed based on chromogens and
virtual color assignment (17). For example, in NSCLC patients
(n = 75), MICSSS allowed staining of T cells, regulatory T cells
(TReg), B cells, DCs, macrophages, and neutrophils together on
a single slide, allowing for meaningful co-localizations (17). To
improve the semiquantitative aspect of IHC, several algorithms
have been developed to automatically analyze the slides of FFPE
tumors (e.g., AQUA R©), both for immunofluorescence (IF) and
IHC, with an increasing use in translational research (18, 19). In
the context of immune checkpoint inhibitors, quantitative IF and
AQUA R© were used to determine a “dormant” tumor-infiltrating
lymphocyte (TIL) signature (elevated TILs with low activation
and proliferation) associated with survival benefit (20). Recently,
the performance of several biomarkers of anti–PDL-1 was
studied in a meta-analysis of 45 studies; multiplex IHC/IF
was associated with improved performance over PDL-1 IHC,
tumor mutational burden, or gene expression (21). Finally, a
new technique called “imaging mass cytometry” couples the
principles of IHC and mass cytometry; tissue sections are stained
with antibodies (up to 40) linked to rare metal isotopes, and an
ultraviolet laser ablates the material spot by spot, which is then
sent to the CyTOF (cytometry by time-of-flight) mass detector
(see below cytometry section) (22).

Immune Gene Expression Profiling
As cell types have distinct transcriptional profiles, it is possible
to define immune cell populations by gene expression analysis.
Traditional techniques, such as microarrays or NanoString
nCounter R© systems already, allow this identification, but the
development of RNA-seq has transformed gene expression
analyses into a powerful tool to identify cell populations.
The main advantage of RNA-seq is to determine the primary
sequence and relative abundance of each RNA molecule without
previous knowledge of the sequence (using retrotranscription
to cDNA and next-generation sequencing) (23). Furthermore,
with microfluidics and barcodes (24), samples can be analyzed
on a single-cell basis (single cell (sc) RNA-seq), allowing
precise characterization of cell types in samples with cellular
heterogeneity, such as lung (25–27). Sc RNA-seq also has
the potential to define novel cell subtypes in blood (28)
or solid tissues (29) and to follow cell differentiation with
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FIGURE 1 | New techniques for immune monitoring, in blood or tumor microenvironment of lung cancer. Colors in the text (bellow each image): green is for the main

advantage; red is for the main disadvantage. Illustrations are adapted from the following references: (A) Rakaee M et al. (11); (B) Stern et al. (12); (C) Papalexi et al.

(13); (D) Epicentral.com. Ab, antibody; IHC, immunohistochemistry; NGS, next-generation sequencing; scRNA-seq, single-cell RNA sequencing.
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RNA velocity (30). Of course, RNA-seq requires important
computational statistical analysis, but machine learning methods
such as Cibersort, XCell, and MetaNeighbor have been recently
developed to simplify the characterization of cell composition
from transcriptome data (31–33).

Methylation Patterns
Epigenetic modifications, particularly DNA methylation, are
crucial biological processes, allowing for the expression of specific
cellular phenotypes from a common genetic background (34).
DNA methylation is the addition of a methyl group to the
C5 carbon residue of cytosines by DNA methyltransferases.
Interestingly, these methylation patterns are cell type specific,
and several studies describe that the methylome distinguishes cell
lineages with high sensitivity and specificity (35–37). Technically,
methylome analysis begins with a bisulfite conversion, as sodium
bisulfite converts cytosines into uracils, whereas methylcytosines
remain unmodified (38, 39). Subsequent amplification gives rise
to two polymerase chain reaction products that are sequenced.
From there, the sequences are aligned to a reference sequence,
which can prove to be challenging (40, 41). As the tools for DNA
methylation mapping are improving, and the required amount
of DNA is decreasing, DNA methylome can now predict cell
compositions in plasma (42). Consequently, plasmatic immuno-
monitoring studies could be published in the future.

Cytometry (Flow and Mass)
Invented in the 1960’s, flow cytometry is a technique that
studies the properties of a single cell in a liquid environment
using fluorophore-linked antibodies (43). Lasers excite the
fluorophore-linked antibodies at a certain spectrum, and the
detectors record the emission spectrum (44). This signal is
proportional to the expression of intracellular or extracellular
cell markers, allowing for the identification of cell types–based
markers of interest (45). Flow cytometry has quickly become
a routine technique not only in malignant hematology and
infectious disease studies, but also in drug development and
drug monitoring (45–47). Successive technical improvements
have broadened the number of excitation lasers (up to 10; BD
InFlux) and the available fluorophores (notably with tandem
and brilliant violet) allowing classical 18+ antibody panels.
However, themultiplication of antibodies in a limited wavelength
range (350–550 nm) leads to spectral overlap of fluorophores,
requiring complex and time-consuming compensation setup
before analyzing the cytometry data (48).

Around 2010, DVS Sciences Company and the Nolan Lab
at Stanford University developed mass cytometry (CyTOF), a
technique using antibodies tagged with rare earth metal isotopes
(lanthanide series of the periodic table) (49). After staining with
antibodies, the cells are nebulized and ionized with an argon
inductively coupled plasma, and the ratio charge/mass is used to
get a specific time of flight (TOF) proportional to the marker of
interest (50). Thanks to the ability to distinguish isotopes clearly,
up to 40 parameters can be studied in a single cell simultaneously,
which is very useful for precious samples (51). Comparative
analysis with flow cytometry showed that mass cytometry had
a strong accuracy and reproducibility (52). The development of

CyTOF and its very large amount of biological data initiated a
new era of high dimensional analyses (53). Several algorithms
were created (Spade, viSNE, Citrus) to automatically cluster cell
populations and provide a global map of cell signaling responses
to interventions (54–57). Use of CyTOF led to several interesting
results in predictors of response to ICB in melanoma (58, 59).
Although the cost of the instrument is high, and the amount
of the data generated requires some statistical expertise, the
value of mass cytometry as a tool for immune monitoring is
quickly increasing.

Functional Tests
While understanding the cellular composition of TIME is
important, knowing the functional status of the infiltrating
immune cells tremendously enhances the value of the data.
Researchers can study the proliferation of lymphocytes [a
prognostic marker in several tumor types (60, 61)], thanks to the
incorporation of 3H thymidine after stimulation with mitogens
(62, 63). Cytotoxicity properties of CD8+ T cells or natural
killer (NK) cells are also frequently measured with radioactive
chromium (51Cr) assays in which target cells are loaded in vitro
with radioactive chromium, and lysis is determined bymeasuring
chromium released by dying cells in the supernatant (64, 65).
Developed in 1968, this technique is still the gold standard for
evaluation of cytotoxicity but requires handling radioactivity
and autologous tumor targets. Interestingly, nonradioactive tests
for cytotoxicity are emerging, based on flow cytometry (66) or
microscopy of fluorescent target cells (67). Another classical
way to measure T cell and NK cell cytotoxicity is enzyme-
linked immunospot (ELISPOT), a sensitive immunoassay that
measures the frequency of cytokine-secreting cells at the single-
cell level (68, 69). As cytotoxic effector cells, on the one hand,
will induce killing by different mechanisms (perforin, granzyme,
Trail) but at the same time produce cytokines important for
immune and inflammatory functions [such as interferon (IFN)
and tumor necrosis factor (TNF)], IFN-γ ELISPOT is often used
as a surrogate marker for cytotoxic properties of effector T cells.
Other ELISPOT analyses also include granzyme B or perforin,
two secreted proteins involved in perforation and caspase
activation of the target cells (70). Lastly, measuring cytokine
production with ELISPOT or intracellular flow cytometry allows
assessment of the activation of CD4+ T cells (IL-2 production)
or differentiation of subpopulations, such as CD4+ TH1 (IFN-γ,
IL-2, IL-6, IL-12, IL-21, and TNF-α), TH2 (IL-4, IL-5, and IL-13),
and TH17 (IL-17) cells.

BASELINE PREDICTORS OF RESPONSE

Immune Predictors of Chemotherapy and
Targeted Therapy Response
The majority of studied biomarkers for efficacy of platinum
doublets are not immune biomarkers but tumor biomarkers,
studied at a genomic (71), transcriptomic (72), or protein
level (73) (Figure 2). However, a few studies have raised the
question of TILs in the context of chemotherapy. For example,
in an analysis of 1,586 resected lung cancers treated with
platinum-based adjuvant chemotherapy, an intense infiltration
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FIGURE 2 | Baseline immune predictors of response to lung cancer medical treatments, in blood and tumor microenvironment. “Dormant TIL” is defined as CD3high

granzyme Blow Ki-67low. Abbreviations: CD4 THD, highly differentiated CD4+ T cells (CD27– CD28low/−); Mo-MDSC, monocytic myeloid-derived suppressor cells;

PDL-1, programmed death ligand 1; TIME, tumor immune microenvironment; TReg, regulatory T cells.

of TIL in IHC was a positive prognostic marker, but had no
predictive value for efficacy of the platinum doublets (74). In a
metastatic setting, of 159 patients analyzed for TILs based on
IHC, none of the T-cell subsets alone (CD8, CD4, TReg) were
associated with tumor response, but a low TReg/CD8

+ ratio
was associated with more tumor response to platinum doublets
in multivariate analysis [odds ratio = 4.17, 95% confidence
interval (CI) = 1.02–13.37, p = 0.029] (75). Finally, even if less
studied, B cells can organize in the stroma with T cells and
DCs into tertiary lymphoid structures (TLSs) that are ectopic
lymphoid organs at site of inflammation (76). In 122 NSCLCs
treated with neoadjuvant chemotherapy and surgery, density of
follicular B cells and DCs organized in TLS was associated with
an improved disease-specific survival (DSS) after 50 months’
follow-up (median DSS for B cells Hi/DCs Hi >60 vs. 21 months
for B cells Low/DCs Low, p= 0.007) (77).

Among immune cells biomarkers in the blood, one of the
most studied is monocytic myeloid-derived suppressor cells (Mo-
MDSCs: CD33+, HLADR−, CD11b+, CD14+), an immature
myeloid cell population inhibiting proliferation and cytotoxicity
of T cells. In a cohort of 24 stage IV patients treated with
chemotherapy (cisplatin/pemetrexed), progressors had higher
rates of a subset of Mo-MDSCs, CD11b+, CD14+, and S100A9+

(damage-associated molecular pattern molecules). Patients with
a decreased frequency of these cells under the median had
significantly longer progression-free survival (PFS) (9.2 vs. 3
months, p < 0.001) (78). In another study of 60 patients with
advancedNSCLC treated with chemotherapy, progressive disease
was associated with more baseline Mo-MDSCs (HLA-DR−/low,
CD14+), and a baseline number ofMo-MDSCs under themedian

was also associated with longer median PFS (9 vs. 3 months,
p < 0.001) (79). This effect of Mo-MDSCs on PFS was consistent
both in frequency (%) and absolute number (cells/µL). Another
interesting blood biomarker is the pretreatment neutrophil-to-
lymphocyte ratio (NLR). In 182 stage IV patients treated with
platinum doublets (80), a high NLR (>2.63) was associated with
worse PFS [hazard ratio (HR) = 1.81, p = 0.018] and overall
survival (OS) (HR = 1.76, p = 0.02) in multivariate analysis,
suggesting an independent detrimental effect of inflammation
in response to chemotherapy. Next to NLR, a 2019 abstract
suggests that high prechemotherapy absolute lymphocyte count
is associated with favorable outcome in stage IB–III NSCLC
patients who received adjuvant chemotherapy after surgical
resection (81).

In the field of targeted therapy (e.g., EGFR and ALK
inhibitors), data about baseline immune biomarkers are very
scarce. Similar to chemotherapy, a retrospective analysis of 152
stage III/IV patients treated with EGFR tyrosine kinase inhibitors
(TKIs) also found that a high NLR (>2.11) was an independent
prognostic factor for longer OS (HR = 1.07, p = 0.03) (82).
Additionally, in a prospective cohort of 33 patients treated with
EGFR-TKI (mainly erlotinib) (83), flow cytometry analyses on
peripheral blood mononuclear cells reported that a high baseline
PDL-1+ CD3+ T cells predicted shorter OS in multivariate
analysis (HR= 3.52, 95% CI= 1.09–11.4, p= 0.036).

Immune Predictors of Checkpoint
Inhibitors Response
In the TIME, several baseline biomarkers are associated with
response to checkpoint inhibitors, which we can schematically
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resume in 2 categories: (1) immune infiltrate or immune
exclusion and (2) immune function or immune dysfunction of
TIL infiltrate.

First, the pattern of immune infiltration (immune infiltrate vs.
immune exclusion) seems crucial, as pejorative outcomes were
described for lung tumors without immune CD8+ infiltration
(immunological ignorance) or with immune CD8+ infiltrate
outside of the tumor (excluded infiltrate) (84, 85). However,
compared to melanoma, few data about immune exclusion are
available in the ICB area in lung cancer (86). Recently, in 39
NSCLC patients treated with diverse ICB, the level of T-cell
infiltration (CD3+) assessed by quantitative multiplex IF was 2.4-
fold higher in patients with durable clinical benefit (n= 16) (20).

Second, data suggest that the presence of infiltration per se
is not predictive, but depends of the precise nature of TIL
infiltration and TIL functional state. Indeed, in the previous
study, the highest response to ICB was observed in a specific
subgroup called “dormant TIL signature” (CD3 high granzyme
B low Ki-67 low, n = 7) (20). Interestingly, this signature
was independent of PDL-1 expression in tumor cells or
tumor mutational burden. Similarly, in the phase 1 study of
atezolizumab in NSCLC patients (n = 53), best responses were
observed in a specific subgroup of tumor-infiltrating immune
cells with PDL-1 expression (macrophages, DCs, and lymphoid
cells) (84). The presence of this immune infiltrate correlated with
an improved objective response rate (ORR) (83% of ORR in
the subgroup of immune PDL-1 expression >10%, compared to
14%−20% of ORR otherwise). Moreover, this association with
atezolizumab response was stronger for PDL-1 expression in
tumor-infiltrating immune cells than for PDL-1 expression in
tumor cells. These data suggest that PDL-1 has a major role in
pretreatment immunosuppression that can be reversed by that
checkpoint inhibitor. Gene expression profile can also assess the
functional state of TILs: in a prospective setting, IMpower150
study of PDL-1 inhibitor atezolizumab used the biomarker
CD8+ Teff gene signature, defined by PDL-1, CXCL9, and
IFN-γ mRNA expression from baseline tumor tissue (87). The
benefit of the combination treatment atezolizumab, bevacizumab,
carboplatin, paclitaxel (ABCP) vs. bevacizumab, carboplatin,
paclitaxel (BCP) was particularly important in the Teff-high
subgroup (median PFS ABCP = 11.3 months vs. median PFS
BCP= 6.8 months) compared to the general population (median
PFS ABCP = 8.3 months vs. median PFS BCP = 6.8 months).
If confirmed, Teff mRNA signature is a promising surrogate
of exhausted peritumoral T cells that can be reversed by ICB
(85). Interestingly, this transcriptomic IFN-γ signature was
independent of PDL-1 tumor expression (IHC). Increasing IFN-
γ response is a current goal of pharmacological development
to boost ICB, notably with STING (stimulator of interferon
genes) agonist (88). Finally, there are limited data for alternative
checkpoints such as LAG-3 expression on T cells, associated
with shorter OS with PD-1 inhibitors (89). In conclusion, an
approach combining both T cell exclusion and dysfunction [as
the gene expression TIDE computational method (85)] may be
particularly relevant to predict ICB response.

In the blood, contrary to the field of melanoma where
several baseline immune predictors of response are described

[e.g., baseline CD14+ CD16− HLA-DRhi monocytes (58) or
baseline Ki67+ PD-1+ CD8+ T cells (59)], only one large
study is available in NSCLC, including 466 patients treated
with diverse PD-1/PDL-1 inhibitors. The authors studied the
impact of baseline Lung Immune Prognostic Index (LIPI),
combining derived neutrophils/(leukocytes minus neutrophils)
ratio (dNLR) and Lactate dehydrogenase (LDH) (90). Poor
baseline LIPI, combining dNLR greater than 3 and LDH
greater than upper limit of normal, was correlated with worse
outcomes for ICB treatment in patients with NSCLC, but
not with chemotherapy. Median OS was 4.8 (95% CI, 3.6–
7.7) vs. 10.0 (95% CI, 7.3–12.6) vs. 16.5 (95% CI, 11.4–34.0)
months for the poor, intermediate, and good LIPI groups,
respectively. Similarly to chemotherapy (80, 82), these data
raise the important question of the detrimental effect of
baseline inflammation for ICB treatment in NSCLC. Recently,
our group presented mass cytometry analysis about baseline
predictors of pembrolizumab efficacy in NSCLC on KEYNOTE-
001 using machine-learning algorithm (91). Three predictors
of response were identified (classical monocytes perforin+

granzyme+/central memory CD4+ T cells ICOS+ CD28+

PD1+/41BB+ and perforin+ effector CD8+ T cells), and
prospective validation is ongoing. Interestingly, the positive
impact of classical monocyte in baseline has been previously
published in melanoma (58).

Recently, the importance of myeloid cells is emerging
in lung cancer; in 32 NSCLC patients treated with ICB
(pembrolizumab, nivolumab, atezolizumab), a high proportion
of myeloid cells expressing PDL-1 (PDL-1+ CD11b+ myeloid
cells) was associated with objective response (92). Additionally,
a functional CD4 immunity also seems important; among
51 NSCLC patients treated with anti–PDL-1, those with an
increased proportion of highly differentiated CD4 (THD: CD27

−

CD28low/−) had improved PFS/OS (93). The majority of these
CD4+ THD cells corresponded to nonsenescent, nonexhausted
memory CD4 cells.

Finally, some data are emerging about the worrying
phenomenon of hyperprogression; in 263 NSCLC patients
treated with PD-1/PDL-1 inhibitors, a lower frequency
of effector/memory CD8+ T cells (CCR7− CD45RA−)
and a higher frequency of severely exhausted populations
(TIGIT+ T cells among PD-1+ CD8+ T cells) were associated
with hyperprogression (n = 55/263) and inferior survival
rate (94).

DYNAMIC PREDICTORS OF RESPONSE

Baseline predictive biomarkers may be sufficient to identify
patients benefiting from medical treatments (Figure 3).
However, dynamic biomarkers have theoretical added value.
Immune system is a highly dynamic system with many
switches, thresholds, and feedforward and feedback loops (95).
Consequently, immunity is very sensitive to initial conditions,
and minuscule differences may go undetected. Moreover,
immune system has been described as a complex system with
randomness and stochastic variations (e.g., lymphocyte fate

Frontiers in Immunology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1036

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rochigneux et al. Immunomonitoring Lung Cancer Treatments

decision) (96), where small differences can lead to massive
consequences downstream (minor bacterial exposure leading to
a septic shock, targeting one single molecule leading to cytokines
storm). If dynamic biomarkers are just emerging, they are
promising tools to identify secondary mechanisms of resistance,
especially if the selected timepoints are chosen wisely (at the
time of progression or response). Finally, understanding these
resistance mechanisms could help develop new IO combination
therapies (97).

Immune Predictors of Chemotherapy and
Targeted Therapy Response
Similar to baseline markers, one of the most studied dynamic
immune cells blood biomarker is MDSCs (CD33+ CD11b+). Liu
et al. (98) reported variation of granulocytic MDSCs (CD33+

CD11b+ CD14− CD15+) in advanced NSCLC patients treated
with chemotherapy; nonprogressors (partial response or stable
disease, n = 41) decreased their Gr-MDSC frequency compared

FIGURE 3 | Dynamic changes in immune cell populations during

chemotherapy or immune checkpoint blockade in lung cancer (data available

in blood only). Abbreviations: Chemo, chemotherapy; ICB, immune checkpoint

blockade; MDSC, myeloid-derived suppressor cells; PD-1, programmed death

1; PDL-1, programmed death ligand 1; RLC, relative lymphocyte count.

to baseline (p < 0.0001), contrary to progressors (n = 37), who
kept similar frequency. The authors also described a negative
correlation between Gr-MDSC frequency and CD8+ T cells in
blood, consistent with the known immunosuppressive effect of
MDSCs on T cells. Although less convincing statistically, another
study of 46 patients with unresectable NSCLC, treated with
platinum-based chemotherapy, reported that disease progression
was associated with significantly higher levels of MDSC
subpopulations (CD15+ and CD14+) compared to patients with
disease control (100).

Except limited data about cytokines variations (101), the only
immune variations described during EGFR inhibition are those
described in the previously cited study about PDL-1+ CD3+

T cells (83). A value over the median after 1 week of EGFR
inhibitors is associated with a decreased OS (HR = 6.49, 95%
CI= 1.9–21.8, p= 0.002). These findings may reflect an immune
resistance mechanism occurring in the PD-1/PDL-1 pathway
after initiation of the targeted therapy (83).

Immune Predictors of Checkpoint
Inhibitors Response
Unfortunately, despite several studies describing the evolution of
systemic immunity during checkpoint inhibitors in melanoma
[e.g., increase of central memory CD4+ T cells (102)], there
are few data available for lung cancer patients. In the
previously cited phase 1 study of atezolizumab, an increase of
CD8+ HLA-DR+ Ki67+ T cells in blood was seen at C2D1
(second infusion), but this variation was not correlated with
atezolizumab response (84). Similarly, after 6 weeks of treatment,
durvalumab significantly increased tumor gene expression of T
cell chemotactic chemokine CXCL9, the checkpoint molecule
LAG3, and IFN-γ, but the clinical effects of these immune
variations was unclear (103).

However, some positive results are emerging; in an American
Society of Clinical Oncology 2019 abstract, in 88 NSCLC
patients who received anti-PD1 therapy in a single institution,
NLR and relative lymphocyte count (RLC) were recorded at
baseline and during the treatment (104). Using median RLC

TABLE 1 | Immune cell populations predicting efficacy in lung cancer medical treatments (including cells function and references).

Immune biomarker Definition Location Outcome References

Treg/ CD8+ ratio CD4+ FoxP3+ Tumor ↑ Chemo response rate (75)

Tertiary Lymphoid Structures B cells, DCs, CD4+ CD8+ T cells Tumor ↑ Chemo PFS (77)

“Teff” lymphocytes signature PD-L1, CXCL9, and IFNγ mRNA Tumor ↑ ICB PFS/OS (signature] (87)

“Dormant” lymphocytes CD3+ Granzyme B− Ki67− Tumor ↑ ICB response rate (20)

CD4+ highly differentiated CD27− CD28low/− Blood ↑ ICB response rate (93)

PDL1+ immune cells PDL1+ macro, DCs, lymphocytes Tum/Blood ↑ ICB response rate (83, 84, 92)

“Reactivated” lymphocytes CD8+ PD1+ Ki67+ Blood ↑ ICB response rate (99)

Neutrophil lymphocyte ratio (NLR] Neutrophil/Lymphocyte Blood ↓ Chemo PFS/OS (high NLR] (80)

Lung immune prognostic index (LIPI] dNLR >3; LDH > ULN Blood ↓ ICB PFS/OS (high LIPI] (90)

Myeloid derived suppressor cells CD33+ HLADR− CD11b+ Blood ↓ Chemo/ICB response rate (78, 98)

Data are presented for published studies (not for abstract only). Immune populations with a positive or detrimental outcome are highlighted in green or red, respectively. CXCL9, chemokine

(C-X-C motif) ligand 9; DCs, dendritic cells; IFN, interferon; Chemo, chemotherapy; ICB, immune checkpoint blockade; NLR, neutrophil-to-lymphocyte ratio; PD-1, programmed death

1; PDL-1, programmed death ligand 1; PFS, progression-free survival; OS, overall survival, w, weeks.
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at 4 weeks as a threshold, patients with high RLC at 4 weeks
had significantly favorable survival (log-rank p < 0.0001). For
patients with acquired resistance to therapy, RLC increased
early during treatment followed by a decrease at the time of
progression. Moreover, it is known that PD-1 inhibitors can
rescue exhausted T cells (59). Interestingly, in a cohort of 29
NSCLC (responders: n = 10) treated with three different anti–
PD-(L)1 agents (pembrolizumab, nivolumab, and atezolizumab),
80% of NSCLC patients with partial clinical responses presented
early proliferative CD8+ T cells, which were both PD-1+

(exhausted) and Ki67+ (in replication) (99). Patients with an
early proliferation of these PD-1+ Ki67+ CD8+ T cells in the
blood within 4 weeks of treatment initiation had higher response
rates (99). In another study in NSCLC patients (n = 13), the
same team described that PD-1+ CD8+ T cells activated by PD-1
therapy were mostly CD28+, suggesting a potential role for this
costimulation molecule in ICB response (105). Altogether, these
studies describe a positive outcome of an early PD-1+ CD8+ T-
cell blood response unleashed by blockade of the PD-1 pathway.

CONCLUDING REMARKS

To be concise, we voluntarily limited this review to medical
treatments of lung cancer and immune cells, even if some
interesting immunological data are emerging about neoantigens
or T Cell Receptor (TCR) repertoire (106). Inside this field,
baseline data showed that a low number of Mo-MDSCs, a
low NLR, and a high number of TLS improve platinum-
based chemotherapy outcomes. Dynamic data showed that
the decrease of MDSCs and the increase of PD1+ CD8+ T
cells improve chemotherapy or immune checkpoint inhibitors
outcomes (Table 1). However, the knowledge about immune

dynamics induced by medical treatments is still scarce, and
none of these markers have sufficient level of evidence to
be used in clinical practice. Academic research needs to
lead in designing translational studies capable of rigorously

evaluating this kind of data. Deciphering immune dynamics
induced by medical treatments would aid in understanding the
mechanisms of resistance and could also identify new targets for
immunotherapy. Powerful and robust tools such as multiplex
IHC/IF, RNA-seq, methylome, or mass cytometry are now
available, together with software for data analysis. In the future,
multi-omics approach will help integrate the different data about
immune cells biomarkers (107). In that perspective, systems
cancer immunology may soon help guide clinical decision-
making (108). Lung cancer physicians and researchers should
seize this opportunity to pursue immune monitoring together
with drug development in IO.
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