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Patients with diabetes are physiologically frail and more likely to suffer from infections and even life-threatening sepsis. This study
aimed to identify and verify potential biomarkers of diabetes-related sepsis (DRS). Datasets GSE7014, GSE57065, and GSE95233
from the Gene Expression Omnibus were used to explore diabetes- and sepsis-related differentially expressed genes (DEGs). Gene
set enrichment analysis (GSEA) and functional analyses were performed to explore potential functions and pathways associated
with sepsis and diabetes. Weighted gene co-expression network analysis (WGCNA) was performed to identify diabetes- and
sepsis-related modules. Functional enrichment analysis was performed to determine the characteristics and pathways of key
modules. Intersecting DEGs that were also present in key modules were considered as common DEGs. Protein-protein
interaction (PPI) network and key genes were analyzed to screen hub genes involved in DRS development. A mouse C57 BL/
6J-DRS model and a neural network prediction model were constructed to verify the relationship between hub genes and DRS.
In total, 7457 diabetes-related DEGs and 2606 sepsis-related DEGs were identified. GSEA indicated that gene datasets
associated with diabetes and sepsis were mainly enriched in metabolic processes linked to inflammatory responses and reactive
oxygen species, respectively. WGCNA indicated that grey60 and brown modules were diabetes- and sepsis-related key
modules, respectively. Functional analysis showed that grey60 module genes were mainly enriched in cell morphogenesis, heart
development, and the PI3K-Akt signaling pathway, whereas genes from the brown module were mainly enriched in organelle
inner membrane, mitochondrion organization, and oxidative phosphorylation. UBE2D1, IDH1, DLD, ATP5C1, COX6C, and
COX7C were identified as hub genes in the PPI network. Animal DRS and neural network prediction models indicated that the
expression levels of UBE2D1 and COX7C in DRS models and samples were higher than control mice. UBE2D1 and COX7C
were identified as potential biomarkers of DRS. These findings may help develop treatment strategies for DRS.

1. Introduction

Incidence of diabetes, a major global medical concern, is
increasing at an overwhelming rate. The number of individ-
uals with diabetes, which had reached 422 million by 2014, is
expected to increase to 590 million by 2035 [1]. A national
representative cross-sectional study reported that the overall
prevalence of diabetes in China was 12.4% and associated
with being overweight or obese, increased intake of red meat,
and low physical activity [2]. Although significant progress
has been made in diabetes diagnostics due to advancements
in molecular methods such as real-time reverse transcriptase
PCR and next-generation sequencing technology [3, 4], fur-
ther studies are needed to explore and improve diagnostic

testing for diabetes. Diabetes mellitus (DM) is considered a
major comorbidity in patients presenting with sepsis. The
incidence of diabetes and diabetes-related sepsis (DRS) has
been increasing parallelly. A large retrospective cohort study
involving 12,321 sepsis cases in intensive care reported 3,509
(28.48%) cases of comorbid diabetes, while the in-hospital
mortality associated with DRS was 14.88% [5].

Sepsis is a clinically complex, life-threatening syndrome
characterized by acute organ dysfunction resulting from a
dysfunctional bodily response to infection [6]. Yearly, an
estimated 49 million sepsis cases and 11 million sepsis-
related deaths are reported worldwide [7]. Improved sepsis
diagnosis requires the development of more efficient, effec-
tive, and accessible tools and strategies that are applicable
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in community settings [8]. Molecular- and biomarker-based
diagnostic techniques combined with traditional blood cul-
ture assays are reliable tools for managing sepsis [9, 10].
Both sepsis and diabetes share certain dysregulated immune
pathways, which may induce a more destructive host
response in diabetics with sepsis. Thus, immunomodulatory
approaches targeting pathways shared in diabetes and sepsis
may be promising therapeutic options [11]. Frydrych et al.
found that individuals with type 2 diabetes (T2D) were more
likely to develop fatal infections and die from sepsis owing to
immune dysfunction and physiological frailty [12]. Another
study indicated that altered immune response in patients
with diabetes may accelerate microorganism growth and
contribute to sepsis progression [13]. However, the current
lack of effective biomarkers for DRS hinders the develop-
ment of novel potential therapeutic targets for this common
but devastating disease. Thus, exploring the relationship
between diabetes and sepsis may lead to the development
of novel diagnostic methods.

Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo) is a powerful and comprehensive international
public genomics database of high-throughput resources with
numerous web-based tools to support researchers in reana-
lyzing bioinformatics data [14]. In the present study, we
identified DEGs associated with diabetes and sepsis by
analyzing three mRNA expression profiles from the GEO
database. Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), gene set enrichment analysis
(GSEA), and weighted gene co-expression network analysis
(WGCNA) were used to study the molecular mechanisms
underlying diabetes and sepsis. Subsequently, we con-
structed a PPI network of diabetes- and sepsis-related DEGs
and WGCNA key modules to identify hub genes of DRS.
Next, the expression levels of hub genes were validated via
RT-qPCR using mouse model of DRS. Finally, a neural net-
work prediction model was constructed to screen for poten-
tial biomarkers of DRS. These innovative explorations may
assist us in developing potential novel biomarkers and effec-
tive gene-targeted treatment for diabetes, sepsis, and DRS.

2. Materials and Methods

2.1. Diabetes and Sepsis Datasets. We selected gene expres-
sion profiles of diabetes and sepsis from the open-access
GEO database. The following keywords were used for
search: “diabetes,” “sepsis,” “homo sapiens,” and “expression
profiling by array.” Three investigators reviewed these data-
sets independently and conducted face-to-face discussions
on controversial opinions. Datasets containing the gene
expression profiles of blood tissue from patients with diabe-
tes or sepsis were included. Datasets with a sample size <10,
from in vitro research, or lacking a healthy control group,
were excluded. Finally, we extracted a diabetes-related data-
set (GSE7104) and two sepsis-related datasets (GSE57065
and GSE95233) for subsequent analysis [15–17]. All datasets
were generated from the GPL 570 [HG-U133_Plus_2] Affy-
metrix Human Genome U133 Plus 2.0 Array. A GSE7014
dataset, including 10 DM1 biopsies, 20 DM2 biopsies, and
the biopsies of six healthy individuals, was used to identify

DEGs between diabetics and healthy controls. The GSE57065
dataset contained 28 patients with sepsis and 25 healthy volun-
teers. The GSE95233 dataset contained 51 patients with sepsis
and 22 healthy volunteers. GSE57065 and GSE95233 were used
to identify DEGs between sepsis patients and healthy volun-
teers (Table 1). The flowchart of the analysis is shown
(Figure 1).

2.2. Data Processing and Identification of DEGs. Perl script
was used to transform probe information into gene names,
and background correction and normalization of datasets
were performed using R package “limma” (version 3.42.0,
https://bioconductor.org/packages/limma/) [18] and “affy”
(version 1.72.0 https://bioconductor.org/packages/affy/) [19]
provided by the open bioinformatics source platform, Biocon-
ductor (version 3.12, http://bioconductor.org/). We adjusted
the original P-values using the Benjamini-Hochberg method
and calculated fold changes (FC) in the false discovery rate.
DEGs were identified using a threshold of |log2 FC| >1 and
adjusted P-value <0.05 and visualized using the limma pack-
age in R software (version 3.6.3, https://www.r-project.org/).
Volcano plots and heatmaps of diabetes- and sepsis-related
DEGs were visualized using the “ggplot2” package (version
3.3.3, https://ggplot2.tidyverse.org/) [20] and “pheatmap”
package (version 1.0.12, https://CRAN.R-project.org/package
=pheatmap) in R software (version 3.6.3), respectively.

2.3. Weighted Gene Co-Expression Network Analysis
(WGCNA). WGCNA was carried out using the “WGCNA”
package (version 1.69, https://cran.r-project.org/web/packages/
WGCNA/index.html) in R software (version 3.6.3) [21]. First,
a co-expression network was constructed for all the genes, and
25% genes showing the highest variance were filtered prior to
further analysis. The samples were then used to create an adja-
cency matrix, which was then transformed into a topological
overlap matrix. Genes were divided into different modules
using TOM-based differences. When exploring modules, min-
imal gene module size was set to 30, and the threshold to
merge similar modules was set to 0.25. Pearson’s correlation
was used to evaluate the correlation between the modules
and diabetes or sepsis. The module with the highest correla-
tion with diabetes or sepsis was identified as the module of
interest for subsequent analyses.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA is a power-
ful analytical tool that interprets gene expression data and pro-
vides functional and pathway enrichment analyses [22]. In this
study, GSEA was performed to explore the potential functions
and molecular mechanisms underlying diabetes and sepsis.
Gene annotation files, reference function sets, and all gene
data of both diabetes vs. normal group and the sepsis vs. nor-
mal group were imported and analyzed using GSEA software
(version 4.1.0, http://www.gsea-msigdb.org/gsea/index.jsp).
Statistical significance was set at P < 0:05.

2.5. Functional Enrichment Analysis from Metascape
Database. Gene Ontology (GO) analysis is a comprehensive
resource of gene functions and widely used to analyze omics
and related data. Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis associated genomic details with
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higher-order functional information. Metascape (http://
metascape.org) is a powerful online database that provides
comprehensive analysis resources and gene list annotations
[23]. In our study, GO and KEGG analyses of modules of
interest were performed using the Metascape database. The
threshold for pathway and process enrichment was set at a
minimum overlap of 3; P value cutoff was 0.05, while mini-
mum enrichment was 1.5.

2.6. Identification of Common Genes, Protein-Protein
Interaction (PPI) Networks, and Hub Genes. FunRich
(version 3.1.3, http://www.funrich.org/) is a standalone soft-
ware tool that may be used to graphically depict gene
analysis results [24]. First, we explored and created Venn
diagrams for common genes for diabetes-DEGs, sepsis-
DEGs, diabetes-WGCNA module, and sepsis-WGCNA
module, using FunRich software. The STRING database
(version 11.0, http://string-db.org/) is a publicly available
database that provides comprehensive lists of differentially
expressed genes [25]. In this study, PPI networks of
common DEGs were analyzed using the STRING database
(confidence score > 0.4). Subsequently, PPI networks were
visualized and analyzed using Cytoscape software (version
3.8.2). To investigate the hub genes based on the PPI net-
work, a Cytoscape plug-in CytoHubba (version 0.3) was
employed to rank essential nodes in the PPI network using
different topological analysis methods (closeness, radiality,
betweenness, and eccentricity) [26]. The top 14 node genes
were then defined and extracted from node results, ranked

according to closeness, radiality, betweenness, and eccentric-
ity. Node genes shared by these four topological analyses
were identified as hub genes of interest by drawing Venn
diagrams using FunRich software (version 3.1.3, http://
www.funrich.org/).

2.7. DRS Animal Model. Twenty male C57BL/6 mice (6-8
weeks) were obtained from Beijing Huafukang Biological
Technology Co., Ltd. and randomly divided into two groups:
normal (n = 10) and DRS (n = 10). A mouse model of diabetes
in the DRS group was induced via intraperitoneal injection of
streptozotocin (60mg/kg/d for 5 consecutive d) [27]. Sepsis
was induced in mice in the diabetic group via ligation and per-
foration of the cecum as previously reported [28]. All mice
were anesthetized with a 3% sodium pentobarbital solution.
Then, a 2-cm midline laparotomy that exposed the cecum
was performed using a scalpel. Then 1/3 of the junction of
the ileum and cecum was ligated with 4-0 silk and punctured
twice using an 18G needle. All mice were sacrificed 24h after
the model was successfully constructed, and blood samples
were collected.

2.8. RT-qPCR Assay. Total RNA was extracted from blood
samples using TRIzol® (Beijing Biolab Technology Co.,
China) and reverse-transcribed using the Servicebio®RT
First-Strand cDNA Synthesis kit (cat. no. G3330; Wuhan
Servicebio Biotechnology Co., Ltd.) for 60min at 42°C. The
reaction was terminated by heating the mixture at 70°C for
5min. RT-qPCR was performed using a Light Cycler®
4800 System (Roche Diagnostics) with a specific set of

Table 1: Summary of diabetes and sepsis microarray datasets from GEO database.

Series Platform Affymetrix GeneChip
Healthy
controls

Patients with
diabetes/
sepsis

1 GSE7014 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 6 30

2 GSE57065 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 25 28

3 GSE95233 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 22 51
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Figure 1: Flowchart showing data analysis approach used in this study.
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primers for amplifying the selected hub genes. Primers used are
listed in Table 2. The thermocycling conditions were as follows:
95°C for 15 s; followed by 60°C for 60 s (total 30 cycles). The
relative expression (relative quantification = 2−ΔΔCt, where Ct
represents quantification cycle values) of each sample were
calculated and is presented as a fold change of gene expression
relative to the control group. GAPDH was used as an endoge-
nous control.

2.9. Construction of the Neural Network Model. Both inputs
and outputs of the neural network must be determined prior
to performing neural network modeling. Due to the limita-
tion of data, some input feature vectors in the disease risk
determination model had to be excluded, and data pertinent
to the three features of UBE2D1, COX7C, and DRS were
used as input vectors to conduct limited validation of the
DRS disease risk determination model; this model reflects
the health status of the body to a large extent due to the rel-
atively large impact of these characteristics.

An individual’s diagnostic result corresponds to the
three characteristics-based data entered, wherein regarding
health status, 1 represents that the individual is positive for
DRS and 0 represents that the individual is negative for
DRS. To fit the data and provide the risk of DRS, the model
only required a corresponding output.

2.10. Statistical Analyses. Data are expressed as percentages
and mean ± SD. An independent-samples t-test was used,
and where equal variances could not be assumed, the
Brown-Forsythe test was performed. Pearson’s rho test was
performed to analyze the degrees of correlation between
hub genes and DRS. The effect of the relative parameters
on DRS was evaluated using multivariate linear regression
analysis. All statistical analyses were conducted using SPSS
software (version 24.0; IBM Corp., Armonk, NY, USA)
and MATLAB (R2014a, MathWorks Inc., New Mexico,
USA). Statistical significance was set at P < 0:05.

3. Results

3.1. Detection of DEGs. In this study, 55764 probes and
20485 genes in the GSE7014, GSE57065, and GSE95233
datasets were determined. A total of 7,457 diabetes-DEGs
were obtained, comprising 3,912 genes with upregulated
expression and 3,545 genes with downregulated expression
(Figures 2(a) and 2(b)). Subsequently, 2,606 sepsis-DEGs
were identified, comprising 913 genes with upregulated
expression and 1,693 genes with downregulated expression
(Figures 2(c) and 2(d)).

3.2. WGCNA and Identification of Modules of Interest. For
WGCNA-based analysis of the diabetes datasets, the soft
thresholding power was 10. A hierarchical clustering tree
of all genes in the diabetes database was constructed, and
nine modules were generated (Figure 2(e)). The grey60
module was most strongly related to diabetes (Figure 2(f)).
The dendrogram and heatmap of genes showed that the dif-
ferences in the interactions between different modules were
not significant, proving that these modules had a high degree
of independence (Figure 2(g)).

The soft-thresholding power for WGCNA of sepsis data-
sets was 11. Furthermore, a hierarchical clustering tree of all
genes in the diabetes database was produced. Thirteen mod-
ules were generated (Figure 2(h)), where the brown module
correlated most with sepsis (Figure 2(i)). The dendrogram
and heatmap of the genes demonstrated that these modules
had a high degree of independence (Figure 2(j)).

3.3. Functional and Pathway Enrichment Analysis of GSEA
and Metascape Database. For diabetes-related datasets, the
results of Gene Ontology analysis were significantly enriched
in calcium ion transmembrane import into cytosol, cytosolic
calcium transport, and positive regulation of inflammatory
response, among others (Figures 3(a) and 3(b)). The results
of KEGG analysis were significantly enriched in gluconeo-
genesis, TGF-beta signaling pathway, and JAK-STAT signal-
ing pathway, among others (Figures 3(c) and 3(d)). The GO
analysis indicated that genes from the diabetes-related
grey60 module were mainly enriched in cell morphogenesis,
heart development, myofibril, muscle structure develop-
ment, mitochondrial membrane part, and generation of
precursor metabolites and energy (Figures 3(e) and 3(g)).
The results of KEGG analysis were primarily enriched for
Alzheimer’s disease, valine, leucine, and isoleucine degrada-
tion, cancer pathways, citrate cycle, platelet activation, and
regulation of the actin cytoskeleton (Figures 3(f) and 3(h)).

For sepsis-related datasets, the results of GO analysis
were significantly enriched in positive regulation of leuko-
cyte degranulation, positive regulation of reactive oxygen
species, metabolic process, and regulation of vascular endo-
thelial cell proliferation, among others (Figures 4(a) and 4
(b)). The results of KEGG analysis were significantly
enriched in glycosaminoglycan degradation, oxidative phos-
phorylation, and Wnt signaling pathway, among others
(Figures 4(c) and 4(d)). The GO analysis of genes from the
sepsis-related brown module showed significant enrichment
in organelle inner membrane, mitochondrion organization,
transferase complex, neutrophil activation, Golgi membrane,

Table 2: Primers sequences used for RT-qPCR.

Primer Sequence (5′–3′)
GAPDH-hF TGAAGGTCGGAGTGAACGGAT

GAPDH-hR CGTTCTCAGCCTTGACCGTG

UBE2D1-hF GAATAAATGTTAGCTGTCCCTA

UBE2D1-hR AGGATGAGGCTGGAAATG

IDH1-hF AGGCTCTGCTGATTCTTT

IDH1-hR TTCTTAACTTTGCGATGC

DLD-hF CCTTGGGTAAATCAGAAA

DLD-hR AGGCCAACATCATTGTAT

ATP5C1-hF TGAGCAGAGTGCCAGGAT

ATP5C1-hR CGGGTACGGTTGAATGTC

COX6C-hF TTGCTCTGGCTAGGACTT

COX6C-hR CAGATTTGACATCGCATTA

COX7C-hF CAGGAGTTCCAGACCAGCCT

COX7C-hR TGGCCAGGCTGGTCTGGAAC
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mitochondrial proton-transporting ATP synthase, etc.
(Figures 4(e) and 4(g)). The enrichment results of KEGG
analysis were mainly enriched in oxidative phosphorylation,
epithelial cell signaling in Helicobacter, O-glycan biosynthe-
sis, mucin-type core, protein processing in the endoplasmic
reticulum, protein export, and basal transcription factors
(Figures 4(f) and 4(h)).

3.4. Identification of Common Genes and PPI Networks. We
defined 82 common genes among the diabetes-DEGs, sepsis-
DEGs, diabetes-related grey60 modules, and sepsis-related
brown modules (Figure 5(a)). PPI networks of common
DEGs were constructed using STRING and Cytoscape
(Figure 5(b)), and 31 nodes and 96 edges were identified
via the PPI network. Hub genes were ascertained using the
following four algorithms; betweenness, closeness, radiality,
and eccentricity. We then created Venn diagrams of the
hub genes using the four algorithms (Figure 5(c)). UBE2D1,
IDH1, DLD, ATP5C1, COX6C, and COX7C were identified
as the hub genes (Figure 5(d); Table 3).

3.5. Results of RT-qPCR for Hub Genes. RT-qPCR results
(Figure 6) indicated that the relative expression levels of
UBE2D1, DLD, COX6C, and COX7C in the DRS group were
all significantly higher than those in the normal group
(P < 0:05). However, the relative expression levels of IDH1
and ATP5C1 in the DRS group were significantly lower than
those in the normal group (P < 0:05).

3.6. Correlation Analysis of the Hub Genes and DRS.
Pearson’s rho analysis showed a strong relationship between
hub genes’ expression and DRS (P < 0:05). DRS was
associated with the relative expression levels of COX7C
(P < 0:001, R = 0:9034), COX6C (P < 0:001, R = 0:7401),
ATP5C1 (P < 0:001, R = −0:7810), DLD (P < 0:001, R = 0:78),
and IDH1 (P < 0:001, R = −0:7876). In addition, a strong rela-
tionship was observed between UBE2D1 expression and DRS
(P < 0:001, R = 0:8028). Furthermore, the heatmap showed
strong correlations between the hub genes and DRS (Figure 7).

3.7. The Effect of Correlative Genes on DRS Based on Multiple
Linear Regression Analysis. To confirm that the significant
risk factors had an impact on DRS, we analyzed DRS and
associated risk factors. A multivariate linear regression
model indicated that when all other variables were held at
any fixed value, DRS remained associated with COX7C
expression (β = 0:652, P < 0:001). In addition, no collinear-
ity issues were detected among other factors (Table 4).

3.8. UBE2D1 and COX7C Were Strongly Correlated with
DRS according to the BP Neural Network. The best training
performance was 9.5671e-05 at epoch 26 (Figure 8(a)), with
a relativity of 0.99995 (Figure 8(b)). The model verified this
result, and there were no significant differences between the
predicted and actual values (Figures 8(c) and 8(d)). Based on
these results, we speculate that the levels of UBE2D1 and
COX7C expression may act as predictive indices for DRS.

4. Discussion

Incidence of diabetes and sepsis has reached epidemic pro-
portions worldwide. Mounting evidence has established dia-
betes as a risk factor for sepsis. However, the molecular
mechanisms underlying such association have not been fully
elucidated. Bioinformatics offers an ideal means for screen-
ing large gene expression datasets, which may lead to a
better understanding of the potential links between these
two diseases [29–31]. Zou et al. performed a comprehensive
bioinformatics-based gene analysis to identify potential
biomarkers and therapeutic targets pertaining to atrial
fibrillation-related stroke, and their results showed that atrial
fibrillation and stroke were related and that four hub genes
were significantly associated with novel biomarkers of atrial
fibrillation-related stroke [29]. Santiago et al. compared the
blood transcriptomes of patients with mild cognitive impair-
ment, Alzheimer’s disease (AD), and advanced AD with
those of individuals afflicted with T2D and revealed shared
and unique pathways and potential therapeutic targets,
which suggested that T2D may play a role at different stages
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of AD by disrupting various molecular pathways during pre-
clinical as well as more advanced stages of the disease [30].
Rahman et al. applied a high-throughput network-based

quantitative pipeline using agnostic approaches to identify
abnormally expressed genes in both T2D and neurological
diseases, as well as some of the shared molecular pathways
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enrichment of GO/KEGG based on cluster analyses; (g, h) enrichment heatmap of selected GO/KEGG analyses.
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Figure 4: Enrichment analysis of sepsis-related datasets using GSEA and Metascape: (a–d) enrichment of GO/KEGG using GSEA; (e, f)
enrichment of GO/KEGG based on cluster analyses; (g, h) enrichment heatmap of selected GO/KEGG analyses.
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that underpin T2D and neurological disease interactions
[31]. Similar to these studies, our investigation of co-
expressed genes, aimed at gaining a better understanding
of the relationship between diabetes and sepsis, revealed
UBE2D1 and COX7C as potential biomarkers and therapeu-
tic targets for DRS.

In the present study, we performed a comprehensive bio-
informatic analysis, which combined WGCNA and DEG
analyses to detect hub genes in crucial modules of the co-

expression network, which allowed the mining of more valu-
able gene data. The diabetes and sepsis datasets were down-
loaded from the GEO database and reanalyzed to identify
modules that correlated most with DRS. GO and KEGG
analysis of the diabetes-grey60 module and the sepsis-
brown module were carried out to identify the potential
molecular mechanisms associated with the genes in the
module. Interestingly, the chemokine signaling pathway
and the B cell receptor signaling pathway were enriched in
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Figure 5: Relationship between DEGs in diabetes and sepsis series: (a) the Venn diagram of common genes between diabetes-related DEGs,
sepsis-related DEGs, grey60 module and brown module; (b) PPI network of the common genes; (c) the Venn diagram of shared hub genes;
(d) PPI network of shared hub genes.

Table 3: Summary of hub genes.

Symbol Description Function

ATP5F1C ATP synthase F1 subunit gamma
GO:0042776 mitochondrial ATP synthesis coupled proton transport;

GO:0015986 ATP synthesis coupled proton transport;
GO:0042407 cristae formation

DLD Dihydrolipoamide dehydrogenase
GO:0061732 mitochondrial acetyl-CoA biosynthetic process from pyruvate;

GO:0006086 acetyl-CoA biosynthetic process from pyruvate;
GO:0006554 lysine catabolic process

IDH1 Isocitrate dehydrogenase (NADP(+)) 1
GO:0006740 NADPH regeneration;

GO:0060696 regulation of phospholipid catabolic process;
GO:0006097 glyoxylate cycle

UBE2D1 Ubiquitin conjugating enzyme E2 D1
GO:0035666 TRIF-dependent toll-like receptor signaling pathway;

GO:0002756 MyD88-independent toll-like receptor signaling pathway;
GO:1902916 positive regulation of protein polyubiquitination

COX7C Cytochrome c oxidase subunit 7C
GO:0006123 mitochondrial electron transport, cytochrome c to oxygen;
GO:0042775 mitochondrial ATP synthesis coupled electron transport;

GO:0042773 ATP synthesis coupled electron transport

COX6C Cytochrome c oxidase subunit 6C
GO:0006123 mitochondrial electron transport, cytochrome c to oxygen;
GO:0042775 mitochondrial ATP synthesis coupled electron transport;

GO:0042773 ATP synthesis coupled electron transport
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KEGG analysis of the diabetes-grey60 module. Thus, we
hypothesized that genes in the grey60 module may play a
crucial role in the immune system. Hyperglycemia, inflam-
mation, and subsequent impairment of the immune system
in diabetics may increase their susceptibility to severe infec-
tions and sepsis [32, 33]. Daryabor et al. reported that dys-

functional immune responses induced by diabetes may
reduce the ability to control invading pathogens, resulting
in patients with diabetes being more susceptible to infections
and complications [33]. Moreover, KEGG analysis indicated
that the sepsis-brown module was enriched in the TNF sig-
naling pathway and leukocyte transendothelial migration,
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Figure 6: The relative expression levels of hub genes based on the RT-qPCR. The PCR results indicated that the expression levels of
UBE2D1, DLD, COX6C, and COX7C in the diabetes-related sepsis group were significantly higher than those of the normal group,
whereas the relative expression levels of IDH1 and ATP5C1 were significantly lower (P < 0:05).
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which substantiated the crucial role played by the immune
system in sepsis. Therefore, immunotherapy may be a prom-
ising early treatment strategy against DRS.

In this study, six hub genes (UBE2D1, IDH1, DLD,
ATP5C1, COX6C, and COX7C) were identified based on
PPI network analysis. UBE2D1 (ubiquitin-conjugating
enzyme E2D1) is a member of the E2 ubiquitin-
conjugating enzyme family, which plays an essential role in
the degradation of dysfunctional or aged proteins.
Ubiquitin-conjugating enzyme splice variants are reportedly
associated with increased maternal fasting plasma glucose
[34]. Azzam et al. identified UBE2D1 as a genetic risk factor
for diabetic retinopathy in Emirati patients with T2DM [35].
In addition, proteins possessing E2 ubiquitin enzyme activ-
ity are reportedly associated with sepsis-related mortality
[36]. Therefore, ubiquitin-conjugating enzymes may form
key nodes between diabetes and sepsis. IDH1 (isocitrate
dehydrogenase 1) catalyzes oxidative decarboxylation of iso-
citrate to 2-oxoglutarate. IDH1 expression is upregulated

during the differentiation of brown adipocytes, which are a
novel therapeutic target for T2D [37]. Thus, IDH1 may play
a vital role in the occurrence and development of DRS. DLD
(dihydrolipoamide dehydrogenase), a member of the class I
pyridine nucleotide-disulfide oxidoreductase family, acts as
a dehydrogenase that plays a key role in pyruvate oxidation
and tetrahydrofolate metabolism and serves as a potential
marker of diabetes in human myocytes [38]. Su et al. also
reported that DLD may be a useful metabolic biomarker of
sepsis [39]. Thus, we propose DLD as a potential and valu-
able biomarker of DRS. ATP5C1 (ATP synthase, H+ trans-
porting, mitochondrial F1 complex, gamma polypeptide 1)
is a mitochondria-related gene. Mitochondria-related genes,
such as ATP5C1 and TIMM9, promote mitochondrial bio-
genesis, which is beneficial for the treatment of diabetes
[40]. COX6C (cytochrome c oxidase subunit 6C) and
COX7C (cytochrome c oxidase subunit 7C) are subunits of
cytochrome c oxidase that transfers electrons from cyto-
chrome c to oxygen. Interestingly, expression of COX6C is
significantly upregulated in rat diabetic nephropathy models
[41]. Moreover, Zhang et al. demonstrated that telmisartan
ameliorates damaged kidney function in diabetic rats by reg-
ulating mitochondrial oxidative phosphorylation [42].
Therefore, we hypothesized that mitochondrial oxidative
phosphorylation may play an essential role in DRS. These
results suggest that the hub genes identified in our study
may be pivotal regulators of the pathophysiological pro-
cesses of DRS.

In the current study, functional and pathway enrichment
analyses were performed to explore the potential functions
and signaling pathways of genes shared among the diabe-
tes-DEGs, sepsis-DEGs, diabetes-related grey60 module,
and sepsis-related brown module. Notably, the calcium sig-
naling pathway was significantly enriched in the GSEA.
Many cellular functions are reportedly regulated by the cal-
cium signaling pathway. Wang et al. indicated that altering
Ca2+-dependent signaling pathways helped regulate the
activities of oxidative metabolism and mitochondrial func-
tion [43]. Sabatini et al. demonstrated that the upregulation
of calcium signaling pathways in insulin-producing β-cells
may initiate many signaling pathways and stimulate vesicle
exocytosis [44]. Long-term activation of these pathways,
which is not conducive to β-cell health, plays an important
role in T2D. Moreover, Zhang et al. indicated that nNOS
(neuronal NOS) may inhibit TNF-alpha (myocardial
tumour necrosis factor-alpha) in cardiomyocytes in
response to LPS (lipopolysaccharide) treatment [45]. Peng
et al. reported that the Ca2+ signaling pathway is activated
during sepsis, indicating that blocking the calcium signaling
pathway may protect the heart, liver, and kidneys from
sepsis-induced damage [46]. Thus, we hypothesized that
Ca2+-dependent signaling pathways may play a key role in
diabetes and sepsis. However, these findings need to be ver-
ified in the future studies.

An animal modal and a neuronal network prediction
model were constructed to validate the relationship observed
between these hub genes and DRS. A RT-qPCR assay
revealed that the expression of UBE2D1, DLD, COX6C,
and COX7C was significantly upregulated compared with
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Figure 7: Heatmap showing strong correlations between the hub
genes and diabetes-related sepsis (DRS). DRS was associated with
the relative expression of COX7C (P < 0:001; R = 0:9034). In
addition, a strong relationship is seen between UBE2D1 expression
and DRS (P < 0:001; R = 0:8028).

Table 4: The effects of correlated genes on diabetes-related sepsis
based on multiple linear regression analysis.

Factors
Diabetes-related sepsis

βb P-value VIF

UBE2D1 -0.163 0.501 8.420

IDH1 -0.103 0.810 26.748

DLD 0.462 0.058 7.495

ATP5C1 -0.054 0.899 25.847

COX6C -0.031 0.861 4.456

COX7C 0.652 <0.001 2.770

β: parameter estimate.
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controls, which was consistent with the result of our bioin-
formatics analysis. In addition, the results of the neural net-
work prediction model indicated that the levels of UBE2D1
and COX7C expression could be predictive indices of DRS.

Similar to most research-based bioinformatic analyses,
our study was also beset by some limitations. Firstly,
common diabetes- and sepsis-related DEGs may not be
completely equivalent to potential biomarkers of DRS, and
thus, the biomarkers identified in this study may require val-
idation using DRS datasets. Thus, we plan to collect blood
samples from animal models of DRS or DRS patients and
conduct sequencing experiments to verify our results. Sec-
ondly, although we verified the association between the
identified hub genes and DRS via RT-qPCR, the reliability
of our conclusions may be significantly improved by using
larger sample sizes for experimentation as well as clinical

verification. Thirdly, mounting evidence indicates that
biological sex differences play a role in the risk and clinical
presentation of diabetes and sepsis [7, 47]. Our study did
not conduct sex or sex subgroup analyses due to a lack of
essential clinical information.

5. Conclusions

In the present study, we performed bioinformatics analyses
and verification experiments and identified UBE2D1 and
COX7C as potential biomarkers of DRS. Our findings pro-
vide new insights and directions for the development of
treatment strategies for DRS. Nevertheless, these findings
need further validation via additional experimental and
clinical research.
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Figure 8: Correlation between candidate genes and diabetes-related sepsis based on the neural network: (a) the best training performance;
(b) the relativity of training; (c) the comparison chart of training results; (d) the error analysis diagram.
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